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ARE TRANSFORMERS ABLE TO REASON BY CON-
NECTING SEPARATED KNOWLEDGE IN TRAINING
DATA?

Yutong Yin∗ Zhaoran Wang∗

ABSTRACT

Humans exhibit remarkable compositional reasoning by integrating knowledge
from various sources. For example, if someone learns ( B = f(A) ) from one source
and ( C = g(B) ) from another, they can deduce ( C=g(B)=g(f(A)) ) even without
encountering ( ABC ) together, showcasing the generalization ability of human
intelligence. In this paper, we introduce a synthetic learning task, “FTCT” (Frag-
mented at Training, Chained at Testing), to validate the potential of Transformers
in replicating this skill and interpret its inner mechanism1. During training, data
consist of separated knowledge fragments from an overall causal graph. In testing,
Transformers must combine these fragments to infer complete causal traces. Our
findings demonstrate that few-shot Chain-of-Thought prompting enables Trans-
formers to perform compositional reasoning on FTCT by revealing correct com-
binations of fragments, even if such combinations were absent in training data.
Furthermore, the emergence of compositional reasoning ability is strongly corre-
lated with model complexity and training-testing data similarity. We propose, both
theoretically and empirically, that Transformers learn an underlying generalizable
program from training, enabling effective compositional reasoning during testing.

1 INTRODUCTION

Humans exhibit a generalized reasoning ability that integrates knowledge from diverse sources. For
example, if one learns ( B = f(A) ) from one source and ( C = g(B) ) from another, they can deduce (
C = g(B)=g(f(A)) ) without direct exposure to ( ABC ). We formally define this capability as compo-
sitional reasoning—the skill to integrate discrete pieces of knowledge from multiple sources to form
a coherent reasoning, even in the absence of explicit examples connecting these pieces during learn-
ing. This ability is a manifestation of a broader concept known as systematic compositionality—
understanding and generating an infinite number of expressions by combining a finite set of known
components and rules (Fodor & Pylyshyn, 1988; Chomsky, 2002). Transformer-based large lan-
guage models demonstrate signs of compositional reasoning by producing comprehensive content
that includes elements not likely to co-occur within the training data, suggesting the emergence of
general intelligence (Press et al., 2022; Zhou et al., 2022a; Bubeck et al., 2023). However, the com-
plexity and ambiguity of their natural language training and testing data make it hard to scientifically
validate the compositional reasoning ability and explore the underlying mechanisms.

This paper validates the potential of Transformers in doing compositional reasoning on synthetic
dataset and investigates the inner mechanisms eliciting such ability. Specifically, we address three
key questions: 1) When are Transformers able to perform compositional reasoning by connecting
fragmented knowledge in training data? 2) How do different training factors impact the emergence
of this ability? 3) What internal mechanisms enable Transformers to develop this ability?

We first introduce the “FTCT” (Fragmented at Training, Chained at Testing) dataset, on which
we investigate the performance of Transformers to address these questions. This dataset simulates
knowledge relationships through graph-like causal structures, where vertices represent knowledge
points and edges represent the relationships between their values. Multi-step reasoning paths are rep-
resented by chains consisting of connected vertices with values calculated by edges between them.

∗Northwestern University; yutongyin2028@u.northwestern.edu, zhaoranwang@gmail.com.
1The code is in https://github.com/YYT-t/Fragmented-at-Training-Chained-at-Testing.
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The training data comprises only fragmented knowledge segments (child chains of short lengths),
while testing requires the model to connect these segments into long, complete causal chains. To
examine the impact of prompting on compositional reasoning, we concatenate similar examples to
enable reasoning with few-shot Chain-of-Thought (CoT) (Wei et al., 2022c) prompts. Detailed con-
struction of the FTCT dataset is shown in Section 3. This approach evaluates the model’s ability to
generalize learned knowledge to novel combinations.

Regarding question 1), we find that few-shot CoT prompts enable Transformers to perform compo-
sitional reasoning. Testing Transformers trained on FTCT revealed poor compositional reasoning
abilities in zero-shot scenarios, but significant improvement with few-shot CoT prompts. Few-shot
CoT examples provide Transformers with correct vertices order to imitate, while Transformers itera-
tively deduce both vertices and their correct values based on preceding reasoning paths. Notably, the
CoT prompts during testing time consist of complete reasoning paths—an out-of-distribution (OOD)
scenario compared to the fragmented knowledge in training data. The capability to understand and
utilize OOD CoT prompts indicates Transformers’ compositional reasoning ability.

Regarding question 2), we examine the influence of data distribution and model complexity. Data-
wise, compositional reasoning emerges as the similarity between training and testing data increases.
In FTCT, this is measured by the relative knowledge ratio—the ratio of child chain length in training
data to complete chain length in testing data. A phase transition occurs when the ratio reaches
0.3, marked by notable performance enhancement. Model-wise, multi-layer attention mechanisms
prove essential, with the compositional reasoning emerging at a complexity of at least 2 layers and 2
heads. Single-layer Transformers fail to replicate vertices order from CoT prompts, and Multilayer
Perceptrons (MLPs) struggle with sparse information of value relationships.

Regarding question 3), we find that Transformers develop compositional reasoning ability by learn-
ing an underlying program during training. This program, comprising in-context learning and par-
ent retrieving (detailed in Section 5.1), minimizes both training and testing loss by capturing the
common latent structure of fragmented knowledge and chained reasoning paths. Theoretically, we
prove that Transformers have the expressivity to simulate such an underlying program. Empiri-
cally, through attention heatmap plotting and linear probing (Hewitt & Manning, 2019; Clark, 2019;
Allen-Zhu & Li, 2023), we provide evidence that Transformers simulate the underlying program
through two mechanisms—induction heads and attention assignment. These mechanisms respec-
tively facilitate in-context learning and parent retrieving.

To summarize, within the context of the FTCT learning task, this article answers the above three
questions as following:

1) Few-shot CoT prompting enables Transformers to perform compositional reasoning by pro-
viding the correct order of vertices to imitate, improving from poor zero-shot performance.

2) Compositional reasoning abilities emerge as the similarity between training and testing data
increases (with a relative knowledge ratio ≥ 0.3) and require multi-layer attention (with a
minimum of 2 layers and 2 heads).

3) Transformers develop compositional reasoning by learning an underlying program during
training, facilitated through induction heads and attention assignment, to integrate frag-
mented knowledge into coherent reasoning paths.

2 RELATED WORKS

Step-by-step reasoning. Chain-of-Thought (CoT) prompting (Nye et al., 2021; Wei et al., 2022c;b;
Kojima et al., 2022) enables language models to conduct step-by-step reasoning, significantly boost-
ing their performance in complex tasks like mathematical deduction and code generation (Cobbe
et al., 2021; Suzgun et al., 2022; Zhou et al., 2022b; Lee et al., 2023; Achiam et al., 2023; Romera-
Paredes et al., 2024). Our research emphasizes few-shot CoT prompting (Wei et al., 2022c), which
initiates reasoning by integrating CoT examples into prompts. Interpretability studies suggest CoT’s
efficacy arises from models’ enhanced expressivity via intermediate reasoning steps (Feng et al.,
2024; Li et al., 2024b;a). Besides the expressivity perspective, we additionally examine CoT gen-
eralization in out-of-distribution (OOD) settings, showing few-shot CoT prompts can elicit correct
reasoning even with previously unseen prompts. Another study (Prystawski et al., 2024) evaluates
data’s role in CoT’s capacity for generalized reasoning. Our FTCT structure draws inspiration from
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their Bayesian networks, additionally inserting contextual noise and complicating value relation-
ships. While they focus on locality structure’s impact on CoT efficacy, we investigate how various
training factors influence compositional reasoning emergence and conduct an in-depth analysis of
the mechanisms within Transformer structures that elicit such capability.

In-context learning. In-context learning (ICL) (Brown, 2020; Garg et al., 2022; Min et al., 2022;
Wei et al., 2023) enables language models to perform various tasks by interpreting examples within
the provided prompt, without needing explicit tuning. This capability allows Transformers trained
on our FTCT to emulate the order of vertices in few-shot examples. Several theoretical studies (Xie
et al., 2021; Li et al., 2023; Wang et al., 2024; Hahn & Goyal, 2023; Wies et al., 2024; Zhang et al.,
2023) treat ICL as implicit Bayesian inference. Another set of works (Dai et al., 2022; Von Oswald
et al., 2023; Akyürek et al., 2022; Ahn et al., 2024) argue that ICL functions similarly to gradient
descent from a function approximation perspective. Notably, a mechanism within Transformers,
known as ”induction heads” (Elhage et al., 2021; Olsson et al., 2022; Bietti et al., 2024), is identified
as the direct cause of ICL capabilities (detailed explanation is in Section 6.1). We demonstrate that
induction heads exist in Transformers trained on FTCT, enabling the model to replicate the order of
vertices from few-shot examples through ICL.

Compositional generalization. Compositional generalization refers to machine learning models’
ability to solve new problems by integrating known components from training data (Lake & Baroni,
2018; Keysers et al., 2019; Kim & Linzen, 2020; Hupkes et al., 2020). Prior works have validated
the potential of Transformers in compositional tasks where answers are directly output without in-
termediate reasoning steps (Hupkes et al., 2020; Arora & Goyal, 2023; Yu et al., 2023; Xu et al.,
2024; Treutlein et al., 2024). In contrast, our FTCT dataset with deep causal structure allows explo-
ration of explicit reasoning’s impact on compositional generalization. While some empirical studies
have shown that step-by-step reasoning enhances large language models’ compositional abilities on
real-world tasks (Press et al., 2022; Zhou et al., 2022a; Khot et al., 2022), the complexity of natural
language corpora used by them complicates the scientific validation, which can be done credibly
by our synthetic data. Recent studies have explored Transformers’ generalized reasoning on various
controllable synthetic tasks (Ramesh et al., 2023; Allen-Zhu & Li, 2023; Ye et al., 2024). In contrast,
our FTCT task not only ensures controlled experimentation but also introduces measures of training-
testing data similarity and establishes a distinct parent-child causal relationship, facilitating analysis
of the underlying mechanisms in terms of data distribution and model structure. Although some
studies have highlighted Transformers’ shortcomings in achieving compositional generalization due
to structural constraints (Dziri et al., 2024; Peng et al., 2024) or misleading statistical features (Zhang
et al., 2022), our findings reveal that few-shot CoT prompting elicits compositional generalization
in sequential reasoning tasks, indicating the importance of data structure and prompting skills.

Transformer expressivity. Transformers have been proven to exhibit a high degree of expressiv-
ity in approximating universal sequence-to-sequence functions (Yun et al., 2019), Turing machines
(Pérez et al., 2019; Wei et al., 2022a), and programmable computers (Giannou et al., 2023). Prior
research has demonstrated that Transformers can simulate various algorithms related to in-context
learning (Dai et al., 2022; Von Oswald et al., 2023; Akyürek et al., 2022; Ahn et al., 2024), step-by-
step reasoning (Li et al., 2024a; Feng et al., 2024), and causal graph inference (Nichani et al., 2024;
Edelman et al., 2024; Makkuva et al., 2024). Building on this foundation, we explicitly construct
a Transformer architecture that efficiently minimizes both the training and testing loss of FTCT. To
streamline the proof, we adopt the associative memory perspective (Bietti et al., 2024), using this
approach to construct the weight matrices as the sum of outer products of orthogonal embeddings.

3 FRAGMENTED AT TRAINING, CHAINED AT TESTING

We introduce the structure of FTCT dataset and corresponding training and testing loss, illustrating
the reason why it measures the model’s compositional reasoning ability. Figure 1 demonstrates the
data generation procedure.

3.1 CAUSAL STRCTURE

We represent knowledge relationships with a directed graph G = (V, E), where knowledge points are
simulated by vertices V , a subset of the alphabet Vall := {A,B, . . . , Z, a, b, . . . , z}. Each vertex v in
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Figure 1: Overview of the FTCT Data Generation Process. The generation begins with the introduc-
tion of “Causal Structure”, representing the relationships of knowledge points. The “Fragmented at
Training” stage shows how shorter child chains with noise vertices are formed to simulate incom-
plete knowledge during training. The “Chained at Testing” stage presents the longest chains used
in testing to assess compositional reasoning ability. The “Few-Shot Examples” part demonstrates
the concatenation of multiple sequences for both training and testing to enable few-shot learning.
In the end, the “Downstream Processing” adapts sequences into natural language-like sentences for
intuitive reasoning format.

V has a value q(v) from its associated set VALS(v) ⊂ Z. Relationships between knowledge points
are represented by the edges set E . Each edge e := (v1, v2) ∈ E defines the relationship between the
parent vertex v1 and the child vertex v2 by the operation op(e), satisfying q(v2) = op(e) ◦ q(v1).
We assume that op(e) only represents addition or subtraction operation like +a or −b. Multi-step
reasoning paths are represented by the chains T (G) := {[v1, v2, . . . , vn] | n ∈ N, (vi, vi+1) ∈ E}.
The depth of G, denoted as N , is the length of the longest chain in T (G). The “Causal Structure” in
Figure 1 illustrates a causal structure with depth N = 3.

3.2 DATA GENERATION

Step 1.1. Fragmented at Training: To simulate disconnected knowledge, training data excludes
the longest chain in T (G) and instead includes shorter child chains with length M < N , interspersed
with M ′ noise vertices from Vall−V . Child chains vertices are merged with noise vertices, preserving
their order. Child chain vertices receive values based on their edge operations, while noise vertices
get random values. The final vertex-value sequence is formatted as seq := [v1, q1, . . . , vm, qm],
where m = M +M ′. As shown in ”Fragmented at Training” in Figure 1, the training data includes
sequences like [A, 100, Z, 3, B, 101, H, 1], where [A, B] is a child chain from T (G) with values
following the “+1” operation, and [Z, H] are sampled from Vall −V with randomly assigned values.

Step 1.2. Chained at testing: To test models’ compositional reasoning ability, the testing data
consists of longest chains (length N ) from T (G) without noise, formulating the sequence seq :=
[v1, q1, . . . , vN , qN ], where (v1, . . . , vN ) ∈ T (G). Refer to ”Chained at Testing” in Figure 1.

Step 2. Few-shot learning: For both training and testing datasets, multiple sequences with the
same vertices order are concatenated into few-shot document, which is formatted as

dock := [seq(1), \n, . . . , \n,seq(k)], where seq(i) := [v1, q
(i)
1 , . . . , vL, q

(i)
L ]

where L is the sequence length which can be either m or N , and k is the shots number ranging from
0 to K. The k-shot input and label are formatted as

inpk := dock + [v1, q
(k+1)
1 ], labk := [v2, q

(k+1)
2 , . . . , vL, q

(k+1)
L ].

The model should generate labk autoregressively from inpk. Especially, the zero-shot input inp0

requires reasoning without any preceding examples. See “Few-Shot Examples” in Figure 1.
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Step 3. Downstream processing: This process adapts sequences into natural language-like sen-
tences by adding punctuation, contextual details, and stating the reasoning goal upfront. As illus-
trated in ”Downstream Processing” in Figure 1, a few-shot document like [A, 110, Z, 1, B, 111, H,
5, \n, A, 102, Z, 4, B, 103, H, 9] transforms into the sentence

“H=?: ... A=110, ... Z=1, ... B=111, ... H=5 \n H=?: ... A=102,︸ ︷︷ ︸
processed input

... Z=4, ... B=103, ... H=9”︸ ︷︷ ︸
processed label

with “...” indicating tokens’ context. The processed input and label are denoted as ĩnp
k

and l̃ab
k
.

For brevity, we define Dtrain as the distribution of inputs and labels generated by Step 1.1, 2, 3, and
Dtest as the distribution of inputs and labels generated by Step 1.2, 2, 3. The detailed data generation
with specific sampling methods is in Appendix B.

3.3 TRAINING AND TESTING LOSS

Training loss: For any input and label sampled from Dtrain, we train the language model to autore-

gressively generate label given input. With the length of label l̃ab
k

defined as dk, the training loss
is formatted as

Ltrain := −El̃ab,ĩnp∼Dtrain

K−1∑
k=0

dk−1∑
t=1

log
(
Pmodel

(
l̃ab

k

t+1 | ĩnp
k
+ l̃ab

k

1:t

))
.

Testing loss: For any input and label sampled from Dtest, given the input, we test how well a
language model can generate sentence having the same vertex-value pairs as the label. Specifically,
We define a decoding function dec(l̃ab) := lab = [v2, q2, . . . , vN , qN ] to decode the vertex-
value information from the processed label. Given the input, the sentence generated by the model is
defined as model(ĩnp). We measure model’s testing loss with k-shot prompt by

Lk
test := −Eĩnp

k
,l̃ab

k∼Dtest
1{dec(model(ĩnp

k
))=dec(l̃abk

)}. (1)

Transformers trained on Dtrain have not seen the complete chains in Dtest from either the reasoning
paths or the few-shot examples. As a result, the fact that they still achieve low testing loss indicates
the emergence of the compositional reasoning ability. The empirical version of training and testing
loss are in Appendix A.

4 EMPIRICAL FINDINGS

4.1 FEW-SHOT COT PROMPTING ENABLES COMPOSITIONAL REASONING

Our empirical findings highlight the essential role of few-shot CoT prompts in enabling compo-
sitional reasoning in Transformers during testing. We evaluate model’s compositional reasoning
ability using the following criterion:2

Whole chain accuracy: Measures if the model’s generation contains all vertices and values along

the reasoning chain in a correct order. For (ĩnp
k
, l̃ab

k
) sampled from Dtest, it measures whether

dec(model(ĩnp
k
)) contains all elements from dec(l̃ab

k
) in a correct order.

Further, we decompose the compositional reasoning ability into two sublevel abilities—the ability
of generating correct vertices order and the ability of deducing correct values given preceding paths,
which are evaluated respectively by these criteria:

Testing vertices accuracy: Measures if the model correctly outputs all vertices in dec(l̃ab
k
).

Testing values accuracy: Measures if the model outputs correct values of intermediate vertices,
given correct preceding reasoning paths sampled from Dtest. For the causal structure in Figure
1, this is tested by prompting models with sentences like ”... A=100, ... B=”. The model is
considered to output accurate values if and only if it outputs “101” as the next token.

2We also assessed final value accuracy (Appendix H.1), which considers the model correct if it outputs the
correct value of the last vertex. Models’ performance under such metric mirrors that of whole chain accuracy,
underscoring the necessity of proper reasoning paths for correct final answers.
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We trained 3-layer 3-head GPT-2-like Transformers (details in Appendix G) on FTCT training set
with varying graph depths and child chain lengths. Figure 2 (left) shows the testing performance for
Transformers trained on graph depths N = 5, 10, 15, with k-shot CoT prompting (k from 0 to 4).
Different curve colors represent different child chain lengths M = 2, 3, 4, 6. Our conclusions are:

Few-shot CoT enables compositional reasoning by revealing correct vertices order. Whole
chain accuracy is low with zero-shot prompts but increases sharply with more shots. At zero-shot,
values accuracy is optimal while vertices accuracy is near zero. This indicates that few-shot CoT
prompts enhance models’ compositional reasoning by revealing the correct vertices order. Notably,
such order has not appeared in the training data. The ability to understand and imitate the OOD
vertices order stems from Transformers’ in-context learning via induction heads (Section 5, 6).

Transformer outputs correct values with OOD reasoning paths. High testing values accuracy
shows Transformers’ robust performance in deducing correct values with the OOD compositional
reasoning paths. Such an ability ensures models to iteratively output correct values of the vertices
generated by few-shot CoT, leading to correct reasoning paths. This ability stems from Transform-
ers’ parent retrieving mechanism brought by proper attention assignment (Section 5, 6).

An adequate number of shots is necessary. Performance improvements plateau or decline after
one-shot examples, possibly due to increased dissimilarity between training and testing data with
more CoT examples. A detailed discussion is in Appendix K.

Figure 2: Left: Zero and few-shot testing performance of Transformers trained on FTCT with various
causal depths and child chain lengths. Right: Relationship between the relative knowledge ratio
and model’s compositional reasoning ability. Each row shows testing performance under a specific
criterion: The 1st row indicates whole chain accuracy (correct prediction of all vertices and values),
the 2nd row shows testing vertices accuracy (correct order of vertices), and the 3rd row shows testing
values accuracy (correct values of vertices with correct preceding reasoning paths).

4.2 THE SIMILARITY BETWEEN TRAINING AND TESTING DATA DETERMINES THE
EMGERGENCE OF COMPOSITIONAL REASONING

For each FTCT task, we measure the similarity between training and testing data by the relative
knowledge ratio λ := M/N , where M is the child chain lengths and N is the causal graph depth.
We find that compositional reasoning emerges as λ increases. Figure 2 (right) illustrates the re-
lationship between λ and model’s compositional reasoning ability. For each λ, the compositional
reasoning ability is measured by the optimal few-shot testing performance of Transformers trained
on tasks whose relative knowledge ratio is λ. A phase transition occurs: compositional reasoning
remains weak when λ < 0.3 and distinctly emerges when λ ≥ 0.3. In essence, a larger λ makes
few-shot CoT prompts more similar to training data, thereby enhancing testing performance. How-
ever, the fact that testing accuracy approaches one with λ = 0.3—a ratio significantly smaller than
1—underscores the non-triviality of our results.

Experiments on larger models like GPT-2-small (12 layers 12 heads) and GPT-2-large (36 layers 20
heads) show the same pattern (Appendix J), demonstrating the generalizability of our conclusions.
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Model Params
Training Testing

Valid loss Vertices acc Values acc Vertices acc Values acc Whole acc

TF

3L3H 54M 1.446 1.000 1.000 0.996 1.000 0.996

2L2H 48M 1.433 1.000 1.000 1.000 1.000 1.000

2L1H 48M 1.436 0.870 1.000 0.768 1.000 0.766

1L2H 42M 1.559 0.138 0.994 0.776 1.000 0.776

1L1H 42M 1.624 0.025 0.974 0.026 1.000 0.022

MLP
4L 145M 3.464 0.063 0.104 0.484 0.290 0.002

2L 143M 2.147 0.065 0.146 0.850 0.346 0.022

Table 1: Performance of different models trained on FTCT task with causal structure depth N = 5
and child chain length upper bound M = 3. “Params” stands for numbers of parameters of dif-
ferent models; “Training” column includes three criteria described in Section 4.3 measuring the in-
distribution performance;“Testing” column includes three criteria described in Section 4.1 measur-
ing the compositional reasoning performance. We only show the performance of models prompted
by CoT with the optimal shots number.

4.3 MULTI-LAYER ATTENTION MECHANISM ENABLES COMPOSITIONAL REASONING

We show that compared with other simpler structures, multi-layer Transformers excel at imitating
vertices order from few-shot examples and deducing correct values with preceding reasoning paths,
leading to outstanding compositional reasoning ability. In addition to compositional reasoning met-
rics (Section 4.1), we introduce the following criteria to evaluate in-distribution performance:

Validation loss: Tracks the validation loss during training.
Training vertices accuracy: Assesses how well the model imitates the vertices order from the
few-shot examples sampled from Dtrain.
Training values accuracy: Measures if the model outputs correct values of vertices from child
chains, given preceding reasoning paths sampled from Dtrain.

We assess the performance of various models on the FTCT task with a causal structure depth of 5
and a child chain length of 3. Models include Transformers (TF) of various layers and heads, and
multi-layer perceptrons (MLPs) of different depths (details in Appendix G). Table 1 summarizes the
results. For brevity, we only show the performance of models prompted by CoT with the optimal
shots number.

Depth of Transformer enables the imitation of vertices. Table 1 indicates that Transformers
with at least 2 layers and 2 heads achieve optimal in-distribution and compositional reasoning per-
formance. As complexity decreases, performance deteriorates, notably with a significant drop in
the vertices accuracy, both training and testing, while values accuracy remains optimal. Such phe-
nomenon indicates that depth in Transformers is crucial for imitating vertices order in few-shot
examples, hence enhancing compositional reasoning. This is because induction heads for in-context
learning are less likely in single-layer Transformers (Section 6).

Attention mechanism enables the deduction of sparse values information. For MLPs with ap-
propriate window sizes (details in Appendix G.2), both the training and testing values accuracy
remain low. Conversely, even the simplest Transformer (1 layer, 1 head) achieves nearly optimal
values accuracy, suggesting that MLPs struggle to capture sparse value information in noisy con-
texts as effectively as Transformers. Interestingly, MLPs perform well in generating vertices order
during testing but not during training, possibly due to the extra noise vertices in the training data,
suggesting a different knowledge memorization approach that warrants further study.

5 TRANSFORMER DOES COMPOSITIONAL REASONING VIA THE
UNDERLYING PROGRAM

As discussed in Section 4.3, the multi-layer attention mechanism of Transformers is crucial for
compositional reasoning. However, how Transformers achieve this ability through training remains
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unclear. In this section, we explain this mystery by showing the capability of Transformer in learn-
ing an underlying program that minimizes both training and testing loss. In Section 6 we provide
empirical evidence of this underlying program in the Transformer’s hidden states. We focus on
the few-shot testing loss {Lk

test}K−1
k=1 and a modified training loss accounting only for shots number

k ≥ 1, which is defined as

L̂train := −El̃ab,ĩnp∼Dtrain

K−1∑
k=1

dk−1∑
t=1

log
(
Pmodel

(
l̃ab

k

t+1 | ĩnp
k
+ l̃ab

k

1:t

))
. (2)

5.1 UNDERLYING PROGRAM

We construct a text-generating program which provably achieves optimal performance on both train-
ing and testing data. Key components are summarized here, with an algorithm (Algorithm 1) in the
Appendix. Given any input sentence z1:T that contains at least 1-shot example, the program executes
the following two parts iteratively:

In-context learning: If the last token zT is a comma “,”, zT−3 must be a vertex vi. The program
identifies all vi in the previous few-shot examples and attends to their next vertex vi+1, returning
vi+1’s contextual tokens.
Parent retrieving: If the last token zT is an equation token “=”, zT−1 must be a vertex vj . The
program retrieves the parent of vj from the preceding context. If vj belongs to the child chain
from T (G) and has a parent vj1 with value qj1 in the preceding context, the program returns
qj = op(vj1 , vj) ◦ qj1 with probability one. Otherwise, it returns value qj randomly sampled
from vi’s value set VALS(vi).

For example, in the testing sentence shown in Figure 1, given the input

“C=?: . . . A=100, . . . B=101, . . . C=103 \n C=?: . . . A=105,” ,

the program, through in-context learning, attends to “B” in the preceding example and outputs its
contextual information as the next token. The program continues generating tokens using other
minor parts from Algorithm 1 until the output

“C=?: . . . A=100, . . . B=101, . . . C=103 \n C=?: . . . A=105, . . . , B=” .

The program then retrieves “A” as the parent of “B” by parent retrieving part, returning the value
106 = 105 + 1. The Following lemmas show that the underlying program minimizes both the
few-shot training loss and few-shot testing loss.

Lemma 5.1. For any sentence z1:T := ĩnp
k
+ l̃ab

k

1:t, where input ĩnp
k

and label l̃ab
k

are
sampled fromDtrain with k ≥ 1, and t is an arbitrary position within the label, denote the distribution
output by the program as Pprog(· | z1:T ). We have that Pprog(· | z1:T ) = Ptrain(· | z1:T ). Hence, Pprog

minimizes the few-shot training loss L̂train (eq. (2)) .

Lemma 5.2. For any input ĩnp
k

and label l̃ab
k

sampled from Dtest with k ≥ 1, denoting the sen-

tence generated by the program as prog(ĩnp
k
), we have dec(prog(ĩnp

k
)) = dec(l̃ab

k
). Hence,

prog(·) minimizes the few-shot testing loss {Lk
test}K−1

k=1 (eq. (1)).

Lemma 5.1 and 5.2 show that, despite the different distributions of fragmented training data and
chained testing data, their next-token distributions given few-shot examples can be represented by
a common program. As demonstrated in Sections 5.2 and 6, the Transformer learns this common
latent structure through training, achieving the compositional reasoniong ability.

5.2 TRANSFORMER IS EXPRESSIVE ENOUGH TO SIMULATE THE UNDERLYING PROGRAM

We prove that Transformer is expressive enough to simulate the underlying program by explicitly
constructing a 2 layers Transformer. Representing the model parameters by θ, we state

Lemma 5.3. There exists a 2 layer Transformer with parameters θ∗ that approximates Algorithm 1
with arbitrarily small error.

8



Published as a conference paper at ICLR 2025

Layer 2 ... ... E = 138 , ... A = 141 , ... o = 135 , ... i = 130 , ... D = 138 , ... \n ... E = 125 ,

Layer 1 ... ... E = 138 , ... A = 141 , ... ... E = 125 ,

Layer 2 ... ... A = 141 , ... o = 135 , ... i = 130 , ... D = 138 , ... \n ... E = 125 , ... A = 128 ,

Layer 1 ... ... E = 138 , ... A = 141 , ... o = 135 , ... ... E = 125 , ... A = 128 ,

Layer 2 ... ... o = 135 , ... i = 130 , ... D = 138 , ... \n ... E = 125 , ... A = 128 , ... o = 122 ,

Layer 1 ... ... E = 138 , ... A = 141 , ... o = 135 , ... i = 130 , ... ... E = 125 , ... A = 128 , ... o = 122 ,

Layer 2 ... ... i = 130 , ... D = 138 , ... \n ... E = 125 , ... A = 128 , ... o = 122 , ... i = 117 ,

Layer 1 ... ... A = 141 , ... o = 135 , ... i = 130 , ... D = 138 , ... E = 125 , ... A = 128 , ... o = 122 , ... i = 117 ,

Table 2: Attention weights of induction heads on the sentence sampled from test dataset.

Data
0-shot prompt 1-shot prompt 2-shot prompt 3-shot prompt 4-shot prompt

Parent Others Parent Others Parent Others Parent Others Parent Others

Depth 5 train 78.6 11.6 79.3 10.3 81.9 9.3 80.8 9.5 77.9 10.2

Child 3 test 78.3 4.3 77.1 4.5 78.8 4.5 79.8 4.1 77.8 4.5

Depth 10 train 77.6 10.3 80.8 10.0 79.3 9.7 78.3 9.5 80.5 9.4

Child 4 test 81.5 3.1 79.3 2.6 78.4 2.7 78.8 2.5 74.6 2.5

Depth 15 train 80.6 8.8 83.8 9.4 80.6 10.0 81.8 10.9 79.7 9.6

Child 5 test 78.2 2.4 80.3 2.4 78.8 2.1 76.9 2.9 73.9 2.5

Table 3: Probing accuracy in predicting the replaced values of different vertices. “Parent” column
records the accuracy in predicting values of parent vertices while “Others” column records the ac-
curacy in predicting values of non-parent vertices.

The ability of a 2-layer Transformer to simulate the underlying program aligns with the empirically
observed performance in Table 1. By expressing the training and testing loss as functions of the
model parameters θ, we summarize Lemmas 5.1, 5.2, and 5.3 into the following theorem.
Theorem 5.4. There exists a Transformer model parameterized by θ∗ that satisfies{ ∣∣L̂train(θ

∗)−minθ L̂train(θ)
∣∣ < ϵ, where ϵ is an arbitrarily small value,

Lk
test(θ

∗) = 0, where k = 2, . . . ,K.

Theorem 5.4 shows that the parameters θ∗ approximate the minimizers of the few-shot training loss,
indicating they can be learned from fragmented knowledge. Additionally, θ∗ minimizes the few-shot
testing loss, reflecting strong compositional reasoning ability. The reason why θ∗ (approximately)
minimizes both the training and testing loss is that it simulates the underlying program common
to both training and testing data. It is noteworthy that the theorem only establishes the existence of
such program-simulating θ∗. However, empirical evidence in Section 6 demonstrates that the hidden
states of Transformers trained in practice exhibit patterns corresponding to the underlying program.

6 EMPIRICAL EVIDENCE OF THE UNDERLYING PROGRAM

We present empirical evidence showing that Transformers are simulating the underlying program
through two mechanisms—induction head and attention assignment, which respectively facilitate
the in-context learning and parent retrieving.

6.1 INDUCTION HEADS

By plotting Transformer’s attention heat map, we provide empirical evidence showing the existence
of induction heads that enables in-context learning. As described in previous works (Elhage et al.,
2021; Olsson et al., 2022), induction heads are two heads of the Transformer in different layers that
collaborate to copy patterns. For example, with input sentences like ”. . . [A][B]. . . [A]”, the first
head in a shallow layer copies information from the first [A] to [B], while the second head in a

9
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deeper layer recognizes [B] and retrieves its context from [A], guiding the model to output [B] as
the next token. In our task, we discovered similar induction heads operating in a slightly different
manner. Given an input sentence formatted as (for clarity, we highlight comma tokens at different
positions with boxes and different colors):

“ . . . vi = qi, . . . vi+1 = qi+1 , . . . \n . . . vi = q′i , ”

The head in the shallower layer copies the information of vi and vi+1 to “,”. The head in the deeper
layer attends “,” along with the information of vi+1 to “,”, making the model to output the contextual
information of vi+1.

To empirically demonstrate this pattern, we trained a 3-layer, 3-head Transformer on the FTCT task
with a causal structure depth of 13 and a child chain length of 6, generating attention heatmaps
for each layer. Complete heatmap plots are available in Appendix L, and an abbreviated version is
shown in Table 2 which displays the average attention weights of heads in different layers for their
respective tokens. For each comma in the black frame, the distribution of its attention weights to
preceding tokens is shown using colored boxes—the brighter the color, the more attention paid. In
Layer 1, each comma attends to its previous two vertices, recording their information in its hidden
state. In Layer 2, each comma uses this information to identify the preceding comma whose vertex
is next to be output.

6.2 ATTENTION ASSIGNMENT

By linear probing (Hewitt & Manning, 2019; Clark, 2019; Allen-Zhu & Li, 2023), we empirically
show that the parent retrieving is facilitated by proper attention assignment—focusing on the value
of parent vertex while ignoring others.

For each sentence sampled from either the training or testing data, we identify the equation token
“=”, where its corresponding vertex has a parent in the preceding context. Specifically, we examine
input formatted as:

“ . . . vj1 = qj1 , . . . vj = ”
where vj1 is the parent of vj . We construct the probing dataset by each time picking a position i < j
(including j1), replacing qi with randomly sampled q′i, and recording the Transformer’s hidden state
for this modified sentence. We train a linear function (details in Appendix G.3) to predict q′i from
the hidden states. If the Transformer attends to qi, the linear function should predict q′i with high
accuracy. If not, the accuracy should be low.

Table 3 shows the results for 3-layer, 3-head Transformers trained on multiple FTCT tasks. For
sentences sampled from training or testing data, linked to prompts with shot numbers 0-4, the prob-
ing accuracy of predicting replaced values is tested. The results demonstrate that for both training
and testing data, the probing function achieves high accuracy in predicting parents’ replaced val-
ues, while showing low accuracy for other positions. This indicates that Transformers successfully
retrieve parent vertices within fragmented knowledge, ignoring irrelevant information.

7 CONCLUSION

Our research validates the potential of Transformers in doing compositional reasoning on synthetic
data and investigates the inner mechanism eliciting such ability. We demonstrate that few-shot CoT
prompting enables Transformers to perform compositional reasoning by providing the information
of correct order of knowledge points. We also find that compositional reasoning ability emerges
when the training-testing data similarity and the model complexity are above certain thresholds. We
further show that Transformers develop compositional reasoning by learning an underlying program
during training, which minimizes both training and testing loss. This program leverages in-context
learning and parent retrieving mechanisms, facilitated by induction heads and attention assignment.

Through experiments on synthetic data, we demonstrate the potential of Transformers to develop
generalized reasoning skills, indicating that the impressive performance of contemporary large lan-
guage models extends beyond mere memorization of vast data. While our conclusions may not
directly apply to real-world models trained on extensive natural language datasets, we believe that
our analysis offers valuable insights into the training processes and understanding of today’s large
language models.
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Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Noam Chomsky. Syntactic structures. Mouton de Gruyter, 2002.

Kevin Clark. What does bert look at? an analysis of bert’s attention. arXiv preprint
arXiv:1906.04341, 2019.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can gpt
learn in-context? language models implicitly perform gradient descent as meta-optimizers. arXiv
preprint arXiv:2212.10559, 2022.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 36, 2024.

Benjamin L Edelman, Ezra Edelman, Surbhi Goel, Eran Malach, and Nikolaos Tsilivis. The
evolution of statistical induction heads: In-context learning markov chains. arXiv preprint
arXiv:2402.11004, 2024.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for
transformer circuits. Transformer Circuits Thread, 1(1):12, 2021.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: a theoretical perspective. Advances in Neural Information
Processing Systems, 36, 2024.

Jerry A Fodor and Zenon W Pylyshyn. Connectionism and cognitive architecture: A critical analy-
sis. Cognition, 28(1-2):3–71, 1988.

11



Published as a conference paper at ICLR 2025

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. In International Conference
on Machine Learning, pp. 11398–11442. PMLR, 2023.

Michael Hahn and Navin Goyal. A theory of emergent in-context learning as implicit structure
induction. arXiv preprint arXiv:2303.07971, 2023.

John Hewitt and Christopher D Manning. A structural probe for finding syntax in word representa-
tions. In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Pa-
pers), pp. 4129–4138, 2019.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed:
How do neural networks generalise? Journal of Artificial Intelligence Research, 67:757–795,
2020.

Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii Kashu-
bin, Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, et al. Measur-
ing compositional generalization: A comprehensive method on realistic data. arXiv preprint
arXiv:1912.09713, 2019.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. arXiv
preprint arXiv:2210.02406, 2022.

Najoung Kim and Tal Linzen. Cogs: A compositional generalization challenge based on semantic
interpretation. In Proceedings of the 2020 conference on empirical methods in natural language
processing (emnlp), pp. 9087–9105, 2020.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In International conference on machine learning,
pp. 2873–2882. PMLR, 2018.

Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kangwook Lee, and Dimitris Papailiopoulos.
Teaching arithmetic to small transformers. arXiv preprint arXiv:2307.03381, 2023.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers
as algorithms: Generalization and stability in in-context learning. In International Conference on
Machine Learning, pp. 19565–19594. PMLR, 2023.

Yingcong Li, Kartik Sreenivasan, Angeliki Giannou, Dimitris Papailiopoulos, and Samet Oymak.
Dissecting chain-of-thought: Compositionality through in-context filtering and learning. Ad-
vances in Neural Information Processing Systems, 36, 2024a.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems. arXiv preprint arXiv:2402.12875, 2024b.

Ashok Vardhan Makkuva, Marco Bondaschi, Adway Girish, Alliot Nagle, Martin Jaggi, Hyeji Kim,
and Michael Gastpar. Attention with markov: A framework for principled analysis of transformers
via markov chains. arXiv preprint arXiv:2402.04161, 2024.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? arXiv
preprint arXiv:2202.12837, 2022.

12



Published as a conference paper at ICLR 2025

Eshaan Nichani, Alex Damian, and Jason D Lee. How transformers learn causal structure with
gradient descent. arXiv preprint arXiv:2402.14735, 2024.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show
your work: Scratchpads for intermediate computation with language models. arXiv preprint
arXiv:2112.00114, 2021.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
heads. arXiv preprint arXiv:2209.11895, 2022.

Binghui Peng, Srini Narayanan, and Christos Papadimitriou. On limitations of the transformer
architecture. arXiv preprint arXiv:2402.08164, 2024.
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A EMPIRICAL LOSS

A.1 EMPIRICAL TRAINING LOSS

With B samples in total, at each sample step b we sample {ĩnp
k,b

, l̃ab
k,b
}K,B
k=1,b=1 from Dtrain.

With the length of label l̃ab
k,b

defined as dk,b, the empirical training loss is formatted as

Ltrain := − 1

B

B∑
b=1

K−1∑
k=0

dk,b−1∑
t=1

log
(
Pmodel

(
l̃ab

k,b

t+1 | ĩnp
k,b

+ l̃ab
k,b

1:t

))
.

A.2 EMPIRICAL TESTING LOSS

With B samples in total, at each sample step b we sample {ĩnp
k,b

, l̃ab
k,b
}K,B
k=1,b=1 from Dtest. The

empirical testing loss with k-shot prompt is

Lk
test := −

1

B

B∑
b=1

1{dec(model(ĩnp
k,b

))=dec(l̃abk,b
)}.

B DETAILED DATA GENERATION

Step 0. Causal structure: The dataset is based on directed graph structures G = (V, E), where
V is a subset of the alphabet vocabulary Vall := {A,B, . . . , Z, a, b, . . . , z}. Each vertex v ∈ Vall
has a value q(v) from its set VALS(v) ⊂ Z. For any edge e := (v1, v2) ∈ E , v1 is the parent and
v2 is the child. Each edge e maps VALS(v1) to VALS(v2) via op(e) : VALS(v1) → VALS(v2),
satisfying q(v2) = op(e) ◦ q(v1). We assume op(e) represents operations like (+a) or (−b). The
set of chains T (G) := {[v1, v2, . . . , vn] | n ∈ N, (vi, vi+1) ∈ E} represents sequences of connected
vertices. The depth of G, denoted as N , is the length of the longest chain in T (G).
Step 1.1. Fragmented at Training: The training data consists of child chains sampled from T (G)
with length M < N as well as M ′ noise vertices sampled from Vall − V . Child chains are merged
with noise vertices while maintaining their relative order. Within the merged sequence, vertices
belonging to the child chains are assigned values following their defined operations, while noise
vertices are given random values. Suppose the child chain is s1 := [u1, · · · , uM ] ∈ T (G) and the
sequence of noise vertices is s2 := [u′

1, · · · , u′
M ′ ]. The merged sequence is [v1, · · · , vm], where

m = M +M ′, [vi1 , · · · , viM ] = s1 and [vj1 , · · · , vjM′ ] = s2. We then sample [q1, · · · , qm] as the
corresponding values of vertices. For [qi1 , · · · , qiM ] that corresponds to s1, it follows the operators
over the chain, where

qi1 ∼ Uniform(VALS(u1)) and qih = op((uh−1, uh)) ◦ qih−1
for h = 2, · · · ,M.

For [qj1 , · · · , qjM′ ] that corresponds to s2, they are just random noise so we have

qjh ∼ Uniform(VALS(u′
h)) for h = 1, · · · ,M ′.

The final sequence of vertex-value pairs is formatted as seq := [v1, q1, . . . , vm, qm], where m =
M +M ′.

Step 1.2. Chained at testing: In contrast to the training dataset, the testing data consists
of complete chains of length N from T (G) without noise vertices, formulating the sequence
seq := [v1, q1, . . . , vN , qN ], where (v1, . . . , vN ) ∈ T (G), q1 ∼ Uniform(VALS(v1)) and
qi = op((vi−1, vi)) ◦ qi−1 for i = 2, · · · , N
Step 2. Few-shot learning: For both training and testing datasets, multiple sequences with the
same vertices order are concatenated into few-shot document, which is formatted as

dock := [seq(1), \n, . . . , \n,seq(k)], where seq(i) := [v1, q
(i)
1 , . . . , vL, q

(i)
L ].

Here L is the number of vertex-value pairs that can be either m or N , and k is the shot numbers,
ranging from 0 to K. The k-shot input and label are formatted as

inpk := dock + [v1, q
(k+1)
1 ], labk := [v2, q

(k+1)
2 , . . . , vL, q

(k+1)
L ].
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Given the input inpk, the model is expected to autoregressively generate the label labk by referring
to the k-shot examples in dock. Especially, the zero-shot input inp0 requires reasoning without
any preceding examples.

Step 3. Downside processing: In order to make sentences resemble natural language, we apply
the following modifications: First, insert equation token oeq between each vertex vi and value qi.
Second, insert comma token ocm between each value qi and next vertex vi+1. Third, insert contextual
tokens [c(vi)1, . . . , c(vi)li ] before each vertex vi. Lastly, define the question token oqu and insert
[vL, o

eq, oqu] to the beginning of the sequence, indicating the final goal to be reasoned. For each
sequence seq = [v1, q1, . . . , vL, qL], the processed form of it is like

s̃eq := [vL, o
eq, oqu, c(v1)1, . . . , c(v1)l1 , v1, o

eq, q1, o
cm, . . . , ocm, c(vL)1, . . . , c(vL)lL , vL, o

eq, qL].

Similarly, with the processed document defined as d̃oc
k
:= {s̃eq(i)}ki=1, the processed input and

label are formatted as

ĩnp
k
:= d̃oc

k
+ [vL, o

eq, oqu, c(v1)
(k+1)
1 , . . . , c(v1)

(k+1)
l1

, v1, o
eq, q

(k+1)
1 , ocm]

l̃ab
k
:= [c(v2)

(k+1)
1 , . . . , c(v2)

(k+1)
l2

, v2, o
eq, q

(k+1)
2 , ocm, . . . , ocm, c(vL)

(k+1)
1 , . . . , c(vL)

(k+1)
lL

, vL, o
eq, q

(k+1)
L ]

The contextual tokens are sampled in the following way: For each vertex v ∈ Vall, we maintain
its context token set CONT(v). For any v1 ̸= v2, we regulate CONT(v1) ∩ CONT(v2) = ∅. For
each vertex vi in the sequence, its contextual tokens c(vi)1, · · · c(vi)li are sampled from CONT(vi)
without replacement, with li following the uniform distribution Uniform([|CONT(vi)|]).

C CONCRETE EXAMPLES OF SENTENCES IN FTCT

We provide concrete examples of sentences in the FTCT, using the causal structure illustrated in
Figure 1. Each vertex in Vall is associated with its own set of contextual tokens, represented as
follows:

A: {“intern”, “accomplishment”, “whistle”, “subsystem”, “Rewards”, “patents”, “ARCH” }
B: {“correl”, “register”, “044”, “ask”, “latex”, “Coins”, “google” }
C: {“ü”, “exc”, “increasing”, “REAM”, “she”, “-.”, “operated”}
Z: {“Influ”, “interf”, “Ideally”, “Pad”, “adders”, “confusion”, “XP”}
H: {“Higher”, “fren”, “romptu”, “smoke”, “shake”, “Frank”, “treasure”}
v: {“ACH”, “Catalyst”, “pens”, “emer”, “4000”, “ Cars”, “easiest”}

In this representation, [A, B, C] are knowledge points from V , and [Z, H, v] are random noise from
Vall−V . The contextual tokens carry no semantic meaning, and the contextual token sets for different
vertices do not overlap. The 3-shot training input containing [A, B] is like

“B=?: confusion Pad interf Ideallyadders XPZ=6, accomplishmentintern subsystemARCH
Rewards patentsA=120,romptuH=8,044 Coins google correl latexB=123

B=?: confusion Pad Ideally XPZ=7, accomplishment patents subsystem RewardsARCHA=122,
treasureFrankH=3, googleregister044 CoinsaskB=125

B=?: Pad Influ interfZ=5,”.

Its corresponding label is

“accomplishment subsystem whistle RewardsARCHinternA=147,smokeH=6, latexregister googleB=150”.

The 3-shot training input containing [B, C] is like

“C=?: correl044 latexregisterB=126, 4000v=6,increasingoperatedREAMC=135
C=?: Coins correlaskB=108, pens Catalystv=6, exc-.increasingC=117
C=?: correl Coins googleregisterB=144,”.

Its corresponding label is
“Carsemerv=5,-. excoperatedC=153”.

16



Published as a conference paper at ICLR 2025

Algorithm 1 Generalized Reasoning
1: Input: Causal graph G = (V, E), all vertices Vall, input sentence z1:T , shot number f ≥ 1.
2: if zT = ocm then
3: That means zT−3 must be a vertex vi. There are f vertices vi in the previous sentence.

Find all vi in the previous sentence and pay attention to there next vertex vi+1, deduce the
contextual information CONT(vi+1), return Uniform(CONT(vi+1)).

4: else if zT = c(vj)k then
5: That means zT−k+1:T = [c(vj)1, · · · , c(vj)k]. Pay attention to them and return

Uniform(CONT(vj) + {vj} − {c(vj)k′}kk′=1)
6: else if zT = vj then
7: return distribution P (·) where P (oeq) = 1.
8: else if zT = oeq then
9: Pay attention to its corresponding vertex vj = zT−1.

10: if vj ∈ V then
11: If vj is the first vertex from V that appears in the sentence, then return Uniform(VALS(vj)).

Otherwise, search in previous tokens and pay attention to the nearest vj1 , q
f
j1

that vj1 ∈ V .
Such a vj1 must be the parent of vj . Then return distribution P (·) where P (op(vj1 , vj) ◦
qj1) = 1.

12: else
13: Return Uniform(VALS(vj)).
14: end if
15: else if zT = qj then
16: Return distribution P (·) where P (ocm) = 1
17: end if

The 3-shot testing input is like

“C=?: accomplishment patents Rewards subsystemA=134, Coins correlB=137,-.REAM exc sheC=146
C=?: subsystem patents RewardsA=103, latex google correlB=106,REAM exc sheC=115
C=?: patents accomplishmentA=124,”

Its corresponding label is

“ask google044 correl CoinsB=127, sheincreasingREAM-.üoperatedC=136”.

D GENERALIZED PROGRAM

D.1 DETAILED ALGORITHM

The detailed algorithmic description of the generalized text generating program is shown in Algo-
rithm 1

D.2 PROOF OF LEMMA 5.1

For any sentence z1:T , its last token zT must be one of the tokens {ocm, c(vj)k, vj , oeq, qj}. Then
we discuss the distribution of the next token in Dtrain when zT is any one of them.

• When zT = ocm, that means zT−3 must be a vertex vi and the next token will be one of the
contextual tokens of vi+1. To determine which specific vertex vi+1 is, we can refer to previ-
ous examples to find what is the next vertex after every vi. After determining vi+1, inDtrain,
the next token follows the distribution of c(vi+1)1. Because c(vi+1)1, · · · , c(vi+1)li+1

are
sampled from CONT(vi+1) without replacement, so c(vi+1)1 ∼ Uniform(CONT(vi+1)),
deducing Ptrain(· | z1:T ) = Uniform(CONT(vi+1)).

• When zT = c(vj)h, the previous h − 1 tokens must be c(vj)1, · · · c(vj)h−1. Because
lj is sampled from Uniform(1, |CONT(vj)|), then we have P (lj = · | lj ≥ h) ∼
Uniform(h, |CONT(vj)|). So with probability 1/(|CONT(vj)| − h + 1) the next token is
vj , with probability (|CONT(vj)| − h)/(|CONT(vj)| − h + 1) the next token is sampled
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from Uniform(CONT(vj) − {c(vj)1, · · · , c(vj)h}). Combining them together, we have
that Ptrain(· | z1:T ) = Uniform(CONT(vj)

⋃
{vj} − {c(vj)1, · · · , c(vj)h}).

• When zT = vj , the next token is oeq, deducing Ptrain(o
eq | z1:T ) = 1.

• When zT = oeq, zT−1 must be a vertex vj and the next token must be a value qj . If
vj ∈ Vall − V , then qj is sampled from Uniform(VALS(vj)), deducing Ptrain(· | z1:T ) =
Uniform(VALS(vj)). If vj ∈ V and vj is not the first vertex from V in this sentence, there
must exist vj1 ∈ V which is the parent of vj previously. In this situation, qj = op(vj1 , vj)◦
qj1 with probability one, deducing Ptrain(op(vj1 , vj) ◦ qj1 | z1:T ) = 1. Otherwise, if vj
is the first vertex from V in this sentence, then qj is sampled from Uniform(VALS(vj)),
deducing Ptrain(· | z1:T ) = Uniform(VALS(vj)).

• When z = qj , the next token must be ocm, deducing Ptrain(o
cm | z1:T ) = 1.

In any situation, Pprog(· | z1:T ) always equals to Ptrain(· | z1:T ).

D.3 PROOF OF LEMMA 5.2

First write down ĩnp
k

and l̃ab
k
:

s̃eq = [vL, o
eq, oqu, c(v1)1, . . . , c(v1)l1 , v1, o

eq, q1, o
cm, . . . , ocm, c(vL)1, . . . , c(vL)lL , vL, o

eq, qL]

d̃oc
k
= [s̃eq(1)

, \n, . . . , \n, s̃eq(k)
]

ĩnp
k
= d̃oc

k
+ [\n] + [vL, o

eq, oqu, c(v1)
(k+1)
1 , . . . , c(v1)

(k+1)
l1

, v1, o
eq, q

(k+1)
1 , ocm]

l̃ab
k
= [c(v2)

(k+1)
1 , . . . , c(v2)

(k+1)
l2

, v2, o
eq, q

(k+1)
2 , ocm, . . . , ocm, c(vL)

(k+1)
1 , . . . , c(vL)

(k+1)
lL

, vL, o
eq, q

(k+1)
L ]

After decoding, we have dec(l̃ab
k
) = [v2, q

(k+1)
2 , · · · , vN , q

(k+1)
N ]. According to the program, we

have
Pprog(· | ĩnp

k
) = Uniform(CONT(v2)).

In this situation, the greedy decoding will randomly sample a c(v2)
k
1 uniformly and concatenate it

to the end of inpk, then we have that

Pprog(· | [ĩnp
k
, c(v2)

k
1 , · · · , c(v2)ki ]) = Uniform(CONT(v2) + {v2} − {c(v2)k1 , · · · , c(v2)ki }).

It will keep sampling elements from CONT(v2) until it samples the vertex v2. Suppose that it samples
rk2 times until it samples v2. Then we have that

argmaxPprog(· | [ĩnp
k
, c(v2)

(k+1)
1 , · · · , c(v2)(k+1)

rk+1
2

, v2]) = oeq

argmaxPprog(· | [ĩnp
k
, c(v2)

(k+1)
1 , · · · , c(v2)(k+1)

rk+1
2

, v2, o
eq]) = q

(k+1)
2

argmaxPprog(· | [ĩnp
k
, c(v2)

(k+1)
1 , · · · , c(v2)(k+1)

rf+1
2

, v2, o
eq, q

(k+1)
2 ]) = ocm

Following such routine, the greedy decoding on algorithm 1 we finally sample

prog(ĩnp
k
) = [c(v2)

(k+1)
1 , · · · , c(v2)(k+1)

rk+1
2

, v2, o
eq, q

(k+1)
2 , · · · , c(vN )

(k+1)
1 , · · · , c(vN )

(k+1)

rk+1
N

, vN , oeq, q
(k+1)
N ].

So we have
dec(prog(ĩnp

k
)) = [v2, q

(k+1)
2 , · · · , vN , q

(k+1)
N ] = dec(l̃ab

k
).

E TRANSFORMER ARCHITECTURE

Here we construct a simplified Transformer architecture that is convenient for theoretical analysis.
Denote the set A as the set of all possible tokens that may appear in our task. Given any input
sentence z1:T ∈ AT , it is processed by the following structures.
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E.1 EMBEDDINGS

Token Embeddings. The token embedding Wtok : A → Rdtok is a mapping that maps each
possible token z ∈ A to a dtok dimensional real vector Wtok(z).

Positional Embeddings. For each zt that is the tth token of the sentence, it has a dp dimensional
positional embedding pt ∈ Rdp .

Comprehensive Embeddings. The comprehensive embedding Wcomp : A × [Tmax] → Rdcomp

is a mapping that maps both the token information z and the positional information t to a dcomp
dimensional vectore Wcomp(z, t).

To simplify the analysis, we unify the dimensions of different embeddings as d1 := dtok = dp =
dcomp. Then we regulate that any two different embeddings are orthonormal3, which means that for
all e1, e2 ∈ {Wtok(z)}z∈A

⋃
{pt}t∈[Tmax]

⋃
{Wcomp(z, t)}z∈A,t∈[Tmax] and e1 ̸= e2, we have that

e⊤1 e1 = 1 and e⊤1 e2 = 0. Then for any token zt at the tth position of the input sentence z1:T , its
embedding is

WE(zt, t) := (W⊤
tok(zt) + p⊤t +W⊤

comp(zt, t)︸ ︷︷ ︸
d1

, 0, · · · , 0︸ ︷︷ ︸
4d1

)⊤

where the last 4d1 dimensional zero vector is for writing in additional information. For simplicity,
we denote xt := WE(zt, t) ∈ Rd where d = 5d1.

E.2 ATTENTION MECHANISM

For an L-layers H-heads Transformer, it has the set {(W l,h
Q ,W l,h

K ,W l,h
V )}L,H

l=1,h=1 as its query, key,
value matrices, where W l,h

Q ,W l,h
K ,W l,h

V ∈ Rd×d. It also has output matrices WO1
∈ R(|A|+d2)×d,

WO2
∈ R|A|×(|A|+d2) and bias WB ∈ R|A|+d2 to map the hidden state to the logits for output

tokens. Here d2 is an extra dimension for information writing in of MLP, whose specific value will
be given in appendix F.3. For each embedded input sentence x1:T , it goes through the following
attention mechanism:

x
(0)
1:T ← x1:T

x
(l)
t ← x

(l−1)
t +

H∑
h=1

W l,h
V x

(l−1)
1:t softmax

((
x
(l−1)
1:t

)⊤ (
W l,h

K

)⊤
W l,h

Q x
(l−1)
t

)

:= x
(l−1)
t +

H∑
h=1

attn(l,h)
(
x
(l−1)
1:t

)
, for t = 1, · · · , T , l = 1, · · · , L

xoutt ←WO2relu
(
WO1x

(L)
t +WB

)
:= MLP(x(L)

t ), for t = 1, · · · , T

Define the parameter vector θ := {(W l,h
Q ,W l,h

K ,W l,h
V )}L,H

l=1,h=1

⋃
{WO1 ,WO2 ,WB}. Given any

input sentence z1:T , the output probability of the Transformer with parameter θ is a distribution over
the indices set of all tokens A:

Pθ(· | z1:T ) := softmax(xoutT ).

Here we assume that the temperature of every softmax layer here tends to infinity, meaning that
softmax(x) = Uniform(argmax(x)).

At test time, the Transformer does greedy decoding, which outputs the token with the largest prob-
ability every time. Denoting the decoded sentence output by the Transformer as modelθ(z1:T ) :=
z′1,T1

, it follows

z′1 = argmaxPθ(· | z1:T ), z′i = argmaxPθ(· | [z1:T , z′1:i]) for i = 2, · · ·T1.

3In practice, the orthonormality can be approximated by randomly mapping embeddings to high-
dimensional Gaussian vectors with low variance (Bietti et al., 2024).
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F PROOF OF LEMMA 5.3

F.1 FIRST LAYER

We directly give the construction. We set W l,h
K = Id for all l, h, letting W l,h

Q plays the role of
both key and query. Moreover, we set Tmax as the maximum length of all possible input sentences.
Referring to (Bietti et al., 2024), we construct {W 1,h

Q }4h=1 as associative memory:

W 1,1
Q =

Tmax∑
t=4

(p⊤t−3,04d1
)⊤(Wcomp(o

cm, t)⊤,04d1
) +

Tmax∑
t=4

(p⊤t−3,04d1
)⊤(Wcomp(o

dlm, t)⊤,04d1
)︸ ︷︷ ︸

zT=ocm/odlm

+
∑
v∈Vall

(Wtok(o
eq)⊤,04d1

)⊤(Wtok(v)
⊤,04d1

)︸ ︷︷ ︸
zT∈Vall

+
∑

a∈A−Vall−{ocm,odlm}

(Wtok(o
qu)⊤,04d1

)⊤(Wtok(a)
⊤,04d1

)

︸ ︷︷ ︸
zT=others

W 1,2
Q =

∑
v∈Vall

∑
c1,c2∈CONT(v)

Tmax∑
t=1

|CONT(v)|∑
l=0

(Wcomp(c2, t− l)⊤,04d1)
⊤(Wcomp(c1, t)

⊤,04d1)︸ ︷︷ ︸
zT=contextual information

+
∑
v∈Vall

Tmax∑
t1=5

t1−4∑
t2=1

t2 · (Wcomp(v, t2)
⊤,04d1

)⊤(Wcomp(o
cm, t1)

⊤ +Wcomp(o
dlm, t1),04d1

)︸ ︷︷ ︸
zT=ocm/odlm

+
∑

a∈A−
⋃

v∈Vall

CONT(v)−{ocm,odlm}

(Wtok(o
qu)⊤,04d1

)⊤(Wtok(a)
⊤,04d1

)

︸ ︷︷ ︸
zT=others

W 1,3
Q =

Tmax∑
t=2

(p⊤t−1,04d1)
⊤(Wcomp(o

eq, t)⊤,04d1)︸ ︷︷ ︸
zT=oeq

+
∑

a∈A−{oeq}

(Wtok(o
qu)⊤,04d1)

⊤(Wtok(a)
⊤,04d1)︸ ︷︷ ︸

zT=others

W 1,4
Q =

∑
q∈

⋃
v∈Vall

VALS(v)

Tmax∑
t=3

(p⊤t−2,04d1
)⊤(Wcomp(q, t)

⊤,04d1
)

︸ ︷︷ ︸
zT=values

+
∑

a∈A−
⋃

v∈Vall

VALS(v)

(Wtok(o
qu)⊤,04d1

)⊤(Wtok(a)
⊤,04d1

)

︸ ︷︷ ︸
zT=others

We also construct {W 1,h
V }4h=1 as

W 1,1
V =

∑
v∈Vall

(0d1
,Wtok(v)

⊤,03d1
)⊤(Wtok(v)

⊤,04d1
) + (03d1

,Wtok(o
eq)⊤,0d1

)⊤(Wtok(o
eq)⊤,04d1

)

W 1,2
V =

∑
v∈Vall

∑
c∈CONT(v)

(03d1
,Wtok(c)

⊤,0d1
)⊤(Wtok(c)

⊤,04d1
) +

∑
v∈Vall

(02d1
,Wtok(v)

⊤,02d1
)⊤(Wtok(v)

⊤,04d1
)

W 1,3
V =

∑
v∈Vall

Tmax∑
t

(0d1
,Wcomp(v, t)

⊤,02d1
,Wtok(v)

⊤)⊤(Wcomp(v, t)
⊤,04d1

)

W 1,4
V =

∑
v∈Vall

Tmax∑
t

(02d1
,Wcomp(v, t)

⊤,02d1
)⊤(Wcomp(v, t)

⊤,04d1
)
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Using the above keys and values to calculate the hidden states directly is a little bit abstract. As a
result, we explain the intuition of our construction taking attn1,1 and attn1,2 as examples. For any
input sequence z1:T and its embedding x1:T , we first analyze attn1,1(x1:T ):

• If zT = ocm/odlm, it will be caught by the first two items in W 1,1
Q and attend to its

corresponding vertex zT−3 = vj−1. The value matrix W 1,1
V maps the value vector of

each vertex v ∈ Vall to (0d1 ,Wtok(v)
⊤,03d1)

⊤. Hence, we have that attn1,1(x1:T ) =
(0d1 ,Wtok(vj−1)

⊤,03d1)
⊤.

• If zT ∈ Vall, it will be caught by the third item in W 1,1
Q , attending to the equa-

tion token oeq. The value matrix W 1,1
V maps the value vector of each oeq in

the sentence to (0d1
,Wtok(o

eq)⊤,03d1
)⊤. Hence, we have that attn1,1(x1:T ) =

(0d1
,Wtok(o

eq)⊤,03d1
)⊤.

• If zT is other type of token, it will be caught by the last item in W 1,1
Q , attending to the

question mark oqu. The value matrix W 1,1
V maps oqu to zero vector (05d1

)⊤. Hence, we
have that attn1,1(x1:T ) = (05d1)

⊤.

Then we analyze attn1,2(x1:T ):

• If zT = c(vj)l, it will be caught by the first item in W 1,2
Q , attending to the previous con-

textual tokens that are also generated by vj including itself: {c(vj)l′}ll′=1. The value ma-
trix W 1,1

V maps every contextual token c to (03d1
,Wtok(c)

⊤,0d1
)⊤. Hence, we have that

attn1,2(x1:T ) = (03d1
, 1
l

∑l
l′=1 Wtok(c(vj)l′)

⊤,0d1
)⊤.

• If zT = ocm/odlm, it will be caught by the second item in W 1,2
Q , attending to all the pre-

vious tokens that are also vertices except for the nearest one vj−1 = zT−3. Each token
is multiplied by a weight t2, the nearer the token is to zT , the higher the weight will
be. Hence, as the temperature of the softmax goes to infinity, zT attends to the sec-
ond nearest vertex to it, which is denoted by vj−2. The value matrix W 1,2

V maps the
value vector of each vertex v ∈ Vall to (02d1

,Wtok(v)
⊤,02d1

)⊤. Hence, we have that
attn1,2(x1:T ) = (02d1

,Wtok(vj−2)
⊤,02d1

)⊤.

• If zT is other type of token, it will be caught by the last item in W 1,2
Q , attending to the

question mark oqu. The value matrix W 1,2
V maps oqu to zero vector (05d1

)⊤. Hence, we
have that attn1,2(x1:T ) = (05d1

)⊤.

The hidden states generated by attn1,3 and attn1,4 can be calculated following the same routine.
Finally we can summarize that for any input sequence z1:T and its embedding x1:T , we have

x
(1)
T = xT +

4∑
h=1

attn1,h (x1:T )

=



1.(WE(zT , T )
⊤,Wtok(vj−1)

⊤,Wtok(vj−2)
⊤,02d1

)⊤, if zT = ocm/odlm and zT−3 = vj−1

If j = 2, then vj−2 is the last vertex of the sentence, otherwise it is the vertex before vj−1.
2.(WE(zT , T )

⊤,02d1 ,
1
l

∑l
l′=1 Wtok(c(vj)l′)

⊤,0d1
)⊤, if zT = c(vj)l

3.(WE(zT , T )
⊤,02d1 ,Wtok(o

eq)⊤,0d1)
⊤, if zT = vj

4.(WE(zT , T )
⊤,Wcomp(vj , T − 1)⊤,02d1 ,Wtok(vj)

⊤)⊤, if zT = oeq and zT−1 = vj
5.(WE(zT , T )

⊤,0d1 ,Wcomp(vj , T − 2)⊤,02d1)
⊤, if zT = qj and zT−2 = vj .
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F.2 SECOND LAYER

Then we construct the second layer {W 2,h
Q ,W 2,h

V }2h=1. First is the queries:

W 2,1
Q =

∑
q∈

⋃
v∈Vall

VALS(v)

Tmax∑
t=1

(p⊤t ,04d1)
⊤(Wcomp(q, t)

⊤,04d1)

︸ ︷︷ ︸
zT=qj

+
∑
v∈Vall

(02d1 ,Wtok(v)
⊤,02d1)

⊤(0d1 ,Wtok(v)
⊤,03d1)︸ ︷︷ ︸

zT=ocm,odlm

+
∑

a∈A−
⋃

v∈Vall

VALS(v)−{ocm,odlm}

(Wtok(o
qu)⊤,04d1

)⊤(Wtok(a)
⊤,04d1

)

W 2,2
Q =

∑
v1 ̸=v2∈V

Tmax∑
t2=2

t2−1∑
t1=1

t1 · (Wcomp(o
dlm, t1)

⊤,0d1
,Wcomp(v1, t1)

⊤,02d1
)⊤(0d1

,Wcomp(v2, t2)
⊤,03d1

)︸ ︷︷ ︸
zT=oeq

+ (Wtok(o
qu)⊤,04d1)

⊤

 ∑
v∈Vall−V

Tmax∑
t=1

(0d1 ,Wcomp(v, t)
⊤,03d1) +

∑
a∈A−{oeq}

(Wtok(a)
⊤,04d1)


Then is the values:

W 2,1
V =

∑
q∈

⋃
v∈Vall

VALS(v)

(03d1
,Wtok(q)

⊤,0d1
)⊤(Wtok(q)

⊤,04d1
) +

∑
v∈Vall

(03d1
,Wtok(v)

⊤,0d1
)⊤(0d1

,Wtok(v)
⊤,03d1

)

W 2,2
V = (04d1

,
√
2Wtok(o

dlm)⊤)⊤(Wtok(o
dlm)⊤,04d1

) +
∑

q∈
⋃

v∈Vall

VALS(v)

Tmax∑
t=1

(04d1
,Wtok(q)

⊤)⊤(Wcomp(q, t)
⊤,04d1

)

+
∑
v∈Vall

Tmax∑
t=1

(04d1
,Wtok(v)

⊤)⊤(02d1
,Wcomp(v, t)

⊤,02d1
)

For any input sequence z1:T and its embedding x1:T , we first analyze attn2,1(x1:T ):

• If zT = qj , it will be caught by the first item in W 2,1
Q , attending to itself. The value

matrix W 2,1
V maps each q to the vector (03d1 ,Wtok(q)

⊤,0d1). Hence, we have that
attn2,1(x

(1)
1:T ) = (03d1

,Wtok(qj)
⊤,0d1

).

• If zT = ocm/odlm, it will be caught by the second item in W 2,1
Q . It attends to a previous

token zT1
whose value is equal to zT (which means it is also a comma or delimiter). Denote

vj−1 = zT−3 as the corresponding vertex of zT , what is special is that zT1−3 = vj . That
means that zT1 is the comma (or delimiter) of the next token of vj in a previous shot. The
reason why zT can attend to zT1 is because of their hidden states:

x
(1)
T = (WE(zT , T )

⊤,Wtok(vj−1)
⊤,Wtok(vj−2)

⊤,02d1
)⊤

x
(1)
T1

= (WE(zT1
, T1)

⊤,Wtok(vj)
⊤,Wtok(vj−1)

⊤,02d1
)⊤

That means (x
(1)
T )d1+1:2d1

= (x
(1)
T1

)2d1+1:3d1
, which is caught by the second item in

W 2,1
Q . Such a mechanism is known as induction head Giannou et al. (2023); Ols-

son et al. (2022); Bietti et al. (2024). The value matrix W 2,1
V maps each ocm/odlm to

(03d1 ,Wtok(vj−1)
⊤,0d1)

⊤, where vj−1 is its corresponding vertex. Hence, we have that
attn2,1(x(1)

1:T ) = (03d1 ,Wtok(vj)
⊤,0d1)

⊤.
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• If zT is other type of token, it will be caught by the last item in W 2,1
Q , attending to the

question mark oqu. The value matrix W 2,1
V maps oqu to zero vector (05d1

)⊤. Hence, we
have that attn2,1(x(1)

1:T ) = (05d1
)⊤.

Then we analyze attn2,2(x1:T ):

• If zT = oeq, it will be caught by the first item in W 2,2
Q . Denote the corresponding vertex

of zT as vj = zT−1. If vj ∈ Vall − V , then it attends to the question mark oqu, being same
as the second situation. If vj ∈ V , it attends to the nearest delimiter odlm or the nearest
value qj1 whose corresponding vertex vj1 ∈ V . If the nearest is odlm, that means vj has
no parent in the sentence, we have that attn2,2(x

(1)
1:T ) = (04d1 ,

√
2Wtok(o

dlm)⊤)⊤. If the
nearest is qj1 , that means vj has a parent vj1 in the sentence, we have that attn2,2(x

(1)
1:T ) =

(04d1 ,Wtok(vj1)
⊤ +Wtok(qj1)

⊤)⊤.

• If zT is other type of token, it will be caught by the last item in W 2,1
Q , attending to the

question mark oqu. The value matrix W 2,1
V maps oqu to zero vector (05d1)

⊤. Hence, we
have that attn2,1(x(1)

1:T ) = (05d1
)⊤.

To summarize, we have that

x
(2)
T = x

(1)
T +

2∑
h=1

attn(2,h)
(
x
(1)
1:T

)

=



1.(WE(o
cm, T )⊤,Wtok(vj−1)

⊤,Wtok(vj−2)
⊤,Wtok(vj)

⊤,0d1)
⊤, if zT = ocm and zT−3 = vj−1

2.(WE(c(vj)l, T )
⊤,02d1

, 1
l

∑l
l′=1 Wtok(c(vj)l′)

⊤,0d1
)⊤, if zT = c(vj)l

3.(WE(vj , T )
⊤,02d1

,Wtok(o
eq)⊤,0d1

)⊤, if zT = vj
4.1.(WE(o

eq, T )⊤,Wcomp(vj , T − 1)⊤,02d1
,Wtok(vj)

⊤ +
√
2Wtok(o

dlm)⊤)⊤

if zT = oeq and zT−1 = vj has no parent in the sentence
4.2.(WE(o

eq, T )⊤,Wcomp(vj , T − 1)⊤,02d1
,Wtok(vj)

⊤ +Wtok(vj1)
⊤ +Wtok(qj1)

⊤)⊤

if zT = oeq and vj1 is the parent of zT−1 = vj
5.(WE(qj , T )

⊤,0d1
,Wcomp(vj , T − 2)⊤,Wtok(qj)

⊤,0d1
)⊤, if zT = qj

F.3 OUTPUT LAYER

The output layer is a two-layer MLP whose input dimension is 5d1, hidden dimension is |A| + d2
and output dimension is |A|. Here the extra dimension d2 is for mapping elements in the set

B := V
⋃ ⋃

(v1,v2)∈E

⋃
q1∈VALS(v1)

{(v1, v2, q1)}

 ,

so d2 = |B|. For simplicity of the notation, we here introduce shorthands of several |A|-dimensional
vectors. There is an one-one mapping from the set of all tokensA to their indices [|A|]. Specifically,
each token a ∈ A has its unique index idx(a) ∈ [|A|]. Let e(i) be an |A|-dimensional vector
where a 1 at position i and 0 at other positions. With a slight misuse of the notation, we define
e(a) := e(idx(a)) for all a ∈ A. For any subset A′ ⊂ A, we denote the uniform logit on it as
euni(A′) :=

∑
a∈A′ e(a). For the extra set B, we define g(i) be a |B|-dimensional vector where a 1

at position i and 0 at other positions. Similarly, we can define g(b) := gidx(b) for all b ∈ B.
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Denoting the set of vertices in V which does not have parents as Vinit, we can define the output
matrices as

WO1 =
∑
v∈Vall

(euni(CONT(v))
⊤,0d2)

⊤(03d1 ,Wtok(v)
⊤,0d1)︸ ︷︷ ︸

1.zT=ocm

+
∑
v∈Vall

∑
c∈CONT(v)

(euni(CONT(v))
⊤ + e(v)⊤ − e(c)⊤,0d2)

⊤(03d1 ,Wtok(c)
⊤,0d1)︸ ︷︷ ︸

2.zT=c(vj)l

+ (e(oeq)⊤,0d2
)⊤(03d1

,Wtok(o
eq),0d1

)︸ ︷︷ ︸
3.zT∈V

+
∑

(v1,v2)∈E

∑
q1∈VALS(v1)

(0|A|, g((v1, v2, q1))
⊤)⊤(04d1 ,Wtok(v2)

⊤ +Wtok(v1)
⊤ +Wtok(q1)

⊤)

︸ ︷︷ ︸
4.zT=oeq

+
∑
v∈V

(0|A|, g(v)
⊤)⊤(04d1 ,Wtok(v)

⊤ +
√
2Wtok(o

dlm)⊤)︸ ︷︷ ︸
5.zT=oeq

+
∑

v∈Vall−V
(euni(VALS(v))

⊤,0d2)
⊤(04d1 ,Wtok(v)

⊤)︸ ︷︷ ︸
6.zT=oeq

+
∑

q∈
⋃

v∈Vall

VALS(v)

(e(ocm)⊤,0d2)
⊤(03d1 ,Wtok(q)

⊤,0d1)

︸ ︷︷ ︸
7.zT=qj

WB = (0|A|,−2d2
)

WO2
=

∑
v∈Vall

e(v)(e(v)⊤,0d2
) +

∑
c∈CONT(v)

e(c)⊤(e(c)⊤,0d2
)


+ e(oeq)(e(oeq)⊤,0d2)

+
∑

(v1,v2)∈E

∑
q1∈VALS(v1)

e(op(v1, v2) ◦ q1)(0|A|, g((v1, v2, q1))
⊤)

+
∑
v∈V

euni(VALS(v))(0|A|, g(v)
⊤)

+
∑

q∈
⋃

v∈Vall

VALS(v)

e(q)(e(q)⊤,0d2)

+ e(ocm)(e(ocm)⊤,0d2
)

Here we only explain the procedure of deriving MLP(x(2)
T ) when zT = oeq, the other situations are

straightforward. Denoting vj = zT−1 as its corresponding vertex, we have that

• If vj ∈ Vall−V , it will be caught by item 6 in WO1
. It is then easy to show that MLP(x(2)

T ) =
euni(VALS(vj)).

• If vj ∈ V but has no parents in previous sentence, it will be caught by item 4, 5 in WO1
.

We can calculate that

WO1x
(2)
T = 3(0|A|, g(vj)

⊤)⊤ +
∑

b∈B−{vj}

µb(0|A|, g(b)
⊤)⊤, where µb ≤ 2.
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That means all other g(b) will be filtered by the relu except for g(vj). Specifically we have
that relu(WO1

x
(2)
T +WB) = 3(0|A|, g(vj)

⊤)⊤. Then it will be caught by the 4th item in
WO2

, resulting in MLP(x(2)
T ) = euni(VALS(vj)).

• If vj ∈ V and has a parent vj1 , it will be caught by item 4, 5 in WO1
. We can calculate that

WO1
x
(2)
T = 3(0|A|, g((vj1 , vj , qj1))

⊤)⊤+
∑

b∈B−{(vj1 ,vj ,qj1 )}

µb(0|A|, g(b)
⊤)⊤, where µb ≤ 2.

Then we have relu(WO1
x
(2)
T +WB) = 3(0|A|, g((vj1 , vj , qj1))

⊤)⊤. It will be caught by
the 3rd item in WO2

, resulting in MLP(x(2)
T ) = e(op(vj1 , vj) ◦ qj1).

In summary, we have that

MLP(x(2)
T ) =



1.euni(CONT(vj)), if zT = ocm and zT−3 = vj−1

2.(euni(CONT(vj)) + e(vj)− 1
l

∑l
l′=1 e(c(vj)l′)), if zT = c(vj)l

3.e(oeq), if zT = vj
4.1.e(op(vj1 , vj) ◦ qj1), if zT = oeq and vj = zT−1 has a parent vj1 in previous sentence
4.2.euni(VALS(vj)), if zT = oeq and vj = zT−1 ∈ V but has no parents in previous sentence
4.3.euni(VALS(vj)), if zT = oeq and vj ∈ Vall − V
5.e(ocm), if zT = qj

As the temperature of the softmax goes to infinity, we have that

softmax
(

MLP(x(2)
T )

)

≈



1.Uniform(CONT(vj)), if zT = ocm and zT−3 = vj−1

2.Uniform(CONT(Vj) + {vj} − {c(vj)l′}ll′=1), if zT = c(vj)l
3.P (·) where P (oeq) = 1, if zT = vj
4.1.P (·) where P (op(vj1 , vj) ◦ qj1) = 1, if zT = oeq and vj = zT−1 has a parent vj1 in previous sentence
4.2.Uniform(VALS(vj)), if zT = oeq and vj = zT−1 ∈ V but has no parents in previous sentence
4.3.Uniform(VALS(vj)), if zT = oeq and vj ∈ Vall − V
5.P (·) where P (ocm) = 1, if zT = qj .

That is exactly the same distribution given by algorithm 1. Depending on how high the tempera-
ture of the softmax layer is, the Transformer structure can approximate algorithm 1 with arbitrary
preciseness.

G IMPLEMENTATION DETAILS

G.1 TRANSFORMER

Our Transformer model is based on the GPT-2 architecture as implemented by Hugging Face (Wolf
et al., 2020; Radford et al., 2019). We tested various combinations of layers and heads, as detailed in
Section 4. The model features 720-dimensional embeddings and a context window of 2048 tokens.
During encoding, we generate token indices directly and feed them into the model, adhering to the
mapping provided by GPT2Tokenizer for both encoding and decoding. The AdamW optimizer is
employed with a learning rate of 5e-5.

G.2 MLP FOR LEARNING FTCT

Given that a 1-shot CoT prompt suffices for optimal model performance and excessive input length
may degrade training efficiency and accuracy, we use sliding windows to cap input length. We
experimented with window sizes of 150, 200, and 300 tokens, selecting the size with the best per-
formance. Each sentence is represented by the concatenation of the one-hot encodings of its tokens,
where each token is represented in a 503-dimensional space. Thus, with a window size of 300, the
input dimension approximates 1e5. We evaluated MLPs with varying layer numbers and a hidden
size of 1000 dimensions, as described in Section 4.3. The MLP output dimension matches the 50257
tokens of GPT2Tokenizer, with unused tokens assigned near-zero weights. For MLP we also use the
AdamW optimizer with the learning rate 5e-5.
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G.3 LINEAR FUNCTION FOR PROBING

For the probing task, we use a single-layer linear neural network without activation, effectively func-
tioning as a matrix. The input size corresponds to the Transformer’s 720-dimensional embeddings,
and the output size matches the 50257 tokens of GPT2Tokenizer.

H TESTING PERFORMANCE CURVES

Figure 3: Testing performance of Transformers trained on FTCT with all combinations of causal
depths and child chain lengths. The performance is evaluated by all four criteria in Appendix H.1.

H.1 ALL TESTING PERFORMANCE CURVES

We summarize the criteria used to evaluate the compositional reasoning performance (including final
value accuracy) as follows:

Whole chain accuracy: Measures if the model’s generation contains all vertices and values

along the reasoning chain in a correct order. For (ĩnp
k
, l̃ab

k
) from Dtest, it measures whether

dec(model(ĩnp
k
)) contains all elements from dec(l̃ab

k
) in a correct order.

Final value accuracy: Measures if the model outputs the correct value of the last vertex.

Testing vertices accuracy: Measures if the model correctly outputs all vertices in dec(l̃ab
k
).

Testing values accuracy: Measures if the model outputs correct values of intermediate vertices,
given correct preceding reasoning paths from Dtest.

We trained 3-layer, 3-head GPT-2-like Transformers on the FTCT training set with varying graph
depths (N ) and maximum child chain lengths (M ). We test the performance of Transformers trained
on FTCT tasks with N = 5, 8, 10, 13, 15 and M = 2, 3, 4, 5, 6. For each (M,N) pair, we change
the causal structures for 5 times, calculating the average and standard deviation of the testing per-
formance of Transformers trained on them, recording the results in Figure 3.

From Figure 3 we observe that the curves of the final value accuracy mirrors the curves of whole
chain accuracy, underscoring the necessity of proper reasoning paths for correct final answers

H.2 TESTING PERFORMANCE WITH NOISY TOKENS

In the main text, we configured the training data to consist of child chains blurred by noisy tokens,
while the testing data comprised the longest chains without such noise. This setup simulates real-

26



Published as a conference paper at ICLR 2025

Figure 4: Testing performance of Transformers trained on FTCT where the testing data are blurred
by noisy tokens. The performance is evaluated by all four criteria in Section H.2.

world scenarios where the training corpus is typically affected by noise, while users offer high-
quality, noise-free prompts during testing. To demonstrate the robustness of our conclusion, we
evaluate the performance of Transformers on testing data that is also blurred by noisy tokens. The
key to constructing this noisy testing dataset is merging the longest chain in T (G) with randomly
sampled noisy tokens from Vall − V , while ensuring that (1) the order of the vertices in the chain is
preserved and (2) the last vertex of the chain remain as the last vertex in the merged sequence. For
the causal structure depicted in Figure 1, such a merged sequence might look like

[F, 9, A, 100, K, 6, B, 101, H, 1, C, 103]

where [A, B, C] is the longest chain in T (G) and [F, K, H] are noise randomly sampled from Vall−V .
After downstream processing, such sequnce is transformed to the input “C=?: ... F=9, ... A=100,”
and label “... K=6, ... B=101, ... H=1, ... C=103”. To assess compositional reasoning performance
on this dataset, we modify our evaluation criteria to focus only on the accuracy of non-noisy vertices
in the set of knowledge points V:

Whole chain accuracy: Measures if the model correctly predicts all vertices belonging to the set
of knowledge points V and their values along the reasoning chain.
Final value accuracy: Measures if the model outputs the correct value of the last vertex in V
within the sentence.

Testing vertices accuracy: Measures if the model correctly outputs all vertices in dec(l̃ab
k
)

which belong to V .
Testing values accuracy: Measures if the model outputs correct values of intermediate vertices
that belongs to V , given correct preceding reasoning paths from Dtest.

Figures 4 and 5 display the compositional reasoning capacity of Transformers trained on FTCT with
testing data blurred by noisy tokens. The results align with those from tests without noise, indicating
the robustness of our conclusions.

I LEAST VISITED TIMES OF ALL ADJACENT VERTICES AND THEIR VALUES

We define the set of all adjacent vertices and their values as

S(G) := {(vi, qi, vi+1, qi+1) | vi, vi+1 ∈ V, (vi, vi+1) ∈ E , qi ∈ VALS(vi), qi+1 = op(vi, vi+1)◦qi}.
Only when each element in S(G) has been visited for enough times in the training data, can we
ensure that the poor compositional reasoning ability of models trained on certain FTCT tasks is not
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Figure 5: The relationship between the relative knowledge ratio and Transformers’ compositional
reasoning ability tested on the data blurred by noisy tokens.

Depth 5 Depth 8 Depth 10 Depth 13 Depth 15

Child 2 194 109 76 55 46

Child 3 250 123 89 65 51

Child 4 — 140 91 67 57

Child 5 — — — 72 56

Child 6 — — — — 59

Table 4: Least visited times of training datasets generated on causal structures with various causal
depths and child chain lengths.

due to the insufficient data. For any training dataset D, we define tD(vi, qi, vi+1, qi+1) as the times
the tuple (vi, qi, vi+1, qi+1) is visited by the data in D. We define the least visited times of D as

T (D) := min{tD(vi, qi, vi+1, qi+1) | (vi, qi, vi+1, qi+1) ∈ S(G)}.

The least visited times measure the degree of how well the S(G) is visited by D. We demonstrate
the least visited times of all our training data in Table 4. The results suggest that all necessary
knowledge parts are covered sufficiently by our training dataset.

J PERFORMANCE OF LARGER TRANSFORMER MODELS

To assess the generalizability of our findings to more complex and sizable architectures, we trained
GPT2-small (12 layers, 12 heads, 117M parameters) and GPT2-large (36 layers, 20 heads, 774M
parameters) on FTCT tasks with varying causal depths and child chain lengths. We discovered that
the diversity of training data used for smaller models was insufficient to leverage the larger mod-
els’ generalized in-context learning ability. Consequently, we introduced auxiliary data to facilitate
this capability. Specifically, the auxiliary data comprises few-shot examples with vertices and val-
ues randomly sampled from Vall and Z, respectively. The testing performances of GPT2-small and
GPT2-large are depicted in Figures 6 and 8, with the performance’s relationship to relative knowl-
edge ratio illustrated in Figures 7 and 9. We continue to observe that compositional reasoning ability

28



Published as a conference paper at ICLR 2025

emerges with increased shot numbers and relative knowledge ratios. However, the performance of
these larger models is less stable compared to smaller ones, which may be attributed to overfitting.

Figure 6: Zero and few-shot testing performance of GPT2 small trained on FTCT with various
causal depths and child chain lengths.

Figure 7: The relationship between the relative knowledge ratio and the compositional reasoning
ability of GPT2 small.
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Figure 8: Zero and few-shot testing performance of GPT2 large trained on FTCT with various causal
depths and child chain lengths.

Figure 9: The relationship between the relative knowledge ratio and the compositional reasoning
ability of GPT2 large.

K EXPLAINING THE DECREASE OF PERFORMANCE WHEN SHOTS NUMBER
IS LARGER THAN ONE

In Figure 2 and Table 3, we observe a decrease in model performance when more than one few-
shot prompt is used, contrary to the typical expectation that additional examples enhance in-context
learning. While it is generally expected that more few-shot examples improve performance in in-
context learning, performance can fluctuate or even decline as additional examples are introduced
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(as noted in Figure 4b of (Garg et al., 2022) and Figures 7, 10 of (Xie et al., 2021)). Although
systematic explanations are limited, it is not uncommon for performance to drop when the number of
shots surpasses a particular threshold. (Agarwal et al., 2024) notably demonstrates that the optimal
shot count for peak performance is often less than the maximum a model can manage, indicating
that performance does not always increase monotonically with additional shots.

We propose that performance decreases when the number of shots exceeds one because additional
CoT examples increase the dissimilarity between training and testing data, thereby degrading perfor-
mance. To explain this, we begin by analyzing the difference between one-shot examples in testing
and training data. In testing, one-shot examples typically consist of the longest chains of length N ,
whereas in training, they are child chains of length M < N , with the primary difference being the
N −M missing vertices. As the number of shots increases, each shot introduces more instances
of these missing vertices, compounding the disparity between training and testing prompts. This
growing difference complicates the model’s ability to recognize patterns in the testing data, thus
impairing performance.

In our setup, a single shot during testing already provides ample information about the vertex order
needed for generating correct answers. For a k-shot testing example, the additional k − 1 shots
do not add valuable information and only exacerbate the divergence between training and testing
data. Consequently, we observe that testing performance peaks at 1-shot and diminishes thereafter,
aligning with our expectations.

When the differences between training and testing data are limited, we observe the expected pattern
of in-context learning, where performance improves with more shots and does not decline after
reaching its peak. From all FTCT tasks with various depth and child chain length combinations
shown in Figure 3, we select settings where performance decreases when shot numbers exceed
one. These settings include ”depth=8, child chain length=3,” ”depth=10, child chain length=3,”
”depth=13, child chain length=4,” and ”depth=15, child chain length=4.” Instead of testing models’
performance on the longest chains equal to their depth, we assess performance on causal chains
with lengths varying from the child chain length to the depth. For instance, for models trained on an
FTCT task with depth=8 and child chain length=3, we measure performance on chains with lengths
3, 4, 5, 6, and 8. The results in Figure 10 show that for tasks where test lengths are close to child
chain lengths, few-shot performance does not decrease. Notably, zero-shot performance increases
as test lengths near the child chain length. As the gap between child chain and test lengths widens,
the performance decrease after one shot becomes evident.

Figure 10: Performance of Transformers in reasoning causal chains with varying lengths.
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L EMPIRICAL EVIDENCE OF THE TRANSFORMER STRUCTURE

Figure 11 and 12 demonstrate the evidence of the induction head by attention heatmap.

Figure 11: Left: Average attention heatmap of induction heads at layer 1 (test). Right: Average
attention heatmap of induction heads at layer 2 (test).

Figure 12: Left: Average attention heatmap of induction heads at layer 1 (train). Right: Average
attention heatmap of induction heads at layer 2 (train).

M TESTING PERFORMANCE WITH INCOMPLETE INTERMEDIATE
REASONING STEPS

In this section, we evaluate the capability of Transformers trained on FTCT to perform reasoning
with missing intermediate steps. We conduct this test by removing intermediate vertices from the
testing data. For the testing sequence [A, B, C] illustrated in Figure 1, we remove vertex B, creating
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a test input formatted as “C=?: ... A=100, ... C=103 \n C=?: ... A=102,” with the test label being
“... C=105”. For causal structures with greater depth, we define the retaining ratio ρ as the ratio
of the count of remaining vertices to the causal structure’s depth. This ratio reflects the degree of
incompleteness in the reasoning path. For example, if the longest chain in the causal structure is [A,
B, C, F, G, I] and ρ is set to 0.5, then the number of remaining vertices is 6 * 0.5 = 3. Since we only
remove intermediate vertices, potential final sequences include [A, F, I] or [A, C, I], among others.
Our evaluation criteria remain the same as the original (Section 4.1), but now both testing inputs
and labels comprise incomplete reasoning paths. Given that Transformers trained on FTCT cannot
generate incomplete reasoning paths autonomously in a zero-shot setting, we assess performance
with 1 to 4 shots, each containing examples of incomplete reasoning paths.

Figure 13 illustrates the testing performance with retaining ratios of 0.3, 0.5, and 0.8. The results
indicate that Transformers trained on FTCT exhibit limited proficiency in reasoning with incomplete
intermediate steps. This limitation is likely due to training dataset bias, where adjacent vertices con-
sistently appear consecutively in training sequences. Nonetheless, this performance shortcoming
does not compromise our main findings, which demonstrate the Transformers’ compositional rea-
soning capabilities, because the testing data invariably contain longer causal chains than the training
data, regardless of whether the demonstrated reasoning path is complete or not.
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Figure 13: Testing performance of Transformers trained on FTCT with incomplete intermediate
reasoning steps (retaining ratio=0.3, 0.5 and 0.8 from up to down).
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