
Supplementary Material

A Missing Proofs

Lemma 2. Given a prediction P = {`v;uv}v2V for KNAPSACK-FP, we can create a prediction

P 0 = {`(v);u(v)}v2[vmin,vmax] for C-KNAPSACK-FP in polynomial time such that

1. An ↵-competitive algorithm for C-KNAPSACK-FP with prediction P 0
implies an (↵� vmax

vmin
·

|V | ·maxi si)-competitive algorithm for KNAPSACK-FP with prediction P .

2. If no algorithm has a competitive ratio better than ↵ for C-KNAPSACK-FP with prediction

P 0
, then no algorithm has a competitive ratio better than ↵+maxi si for KNAPSACK-FP

with prediction P .

Proof. We first describe how to create P 0 from P . We define a continuous piecewise- linear function
`(x) as follows. Consider each v 2 V . Let � be infinitesimally small. For x 2 [v � �, v + �], let
`(v � �) = `(v + �) = 0, `(v) = `v

� and interpolate the function values at v � �, v, v + � by linear
functions. It is an easy exercise to show that

R v+�
x=v�� `(x)dx = `v and lim�!0

R v+�
x=v�� x`(x)dx =

v`v. We analogously define u(x) such that u(v � �) = u(v + �) = 0, u(v) = uv
� . By construction,

we have that u(x)/`(x) has the same value for all x 2 (v � �, v + �); thus `(x)
`v

= u(x)
uv

for
all x 2 [v � �, v + �]. For all the other x values, let `(x) = 0. Note that `(x) = 0 for all
x 62 [vmin � �, vmax + �]. Define u(x) similarly. It is easy to see that `(x)  u(x) by definition.

To show the first claim, consider any ↵-competitive algorithm A0 for C-KNAPSACK-FP with predic-
tion P 0. Consider any instance I respecting P . An item i of size si and profit pi in I is converted into
si items of value approximately equal to v = pi/si in I 0. More precisely, we create si

`v
`(x) items

of value x for each x 2 [v � �, v + �]. Then, the resulting instance I 0 respects P 0. This is because
sv
`v
`(x) items of value x are created and sv

`v
`(x) � `(x), meaning that the lower bound frequency

predictions are respected. Similarly, as observed before, sv
`v
`(x) = sv

uv
u(x)  u(x).

Suppose A0 has accepted a0(v) items of value approximately equal to v 2 V —more precisely, in
[v � �, v + �] for some v 2 V . We define an algorithm A for KNAPSACK-FP trying to keep up with
A0. When an item i of value v arrives in I , corresponding items are created in I 0 and algorithm
A0 updates a0. Then, A accepts item i if it will have accepted at most a0(v) items of value v after
accepting it.

How much can A be behind A0? Let a(v) be the total size of items of value v accepted by A. It is
an easy exercise to see that a0(v)� smax  a(v)  a0(v), where smax := maxj sj is the maximum
item size in I . When � ! 0, A0 gets a0(v)v profit while as A gets a(v)v profit. Thus, A can be
behind A0 by at most

P
v2V vsmax  vmax · |V | · smax in terms of profit. Clearly, the optimum is at

least vmin, which implies an additive loss of at most vmax
vmin

· |V | · smax in the competitive ratio.

We shift to showing the second claim. We use the same P 0 and I 0 as above. For the sake of
contradiction, suppose there exists an algorithm A for KNAPSACK-FP that has a competitive ratio
of � > ↵ + smax. Consider the following algorithm A0 for C-KNAPSACK-FP: If A accepts an
item of value v and size s, we let A0 accept the corresponding items. It is easy to see that A and
A0 achieve the same profit Q at the end as � ! 0. But the optimum solution for I 0 has more profit
than the optimum solution for I because it can accept items fractionally. The optimum solution
for I 0 accepts items from the highest value until it saturates the knapsack capacity. Thus, the
corresponding solution for I accepts items integrally, possibly except one item of some value v0.
Therefore, OPT0 � v0smax  OPT  OPT0 and v0  OPT0 (when � ! 0), where OPT and OPT0 denote
the optimum for I and I 0, respectively. By definition, � = Q

OPT . Since Q
OPT �

Q
OPT0  Q·v0smax

OPT·OPT0  smax,
A’s competitive ratio is at least � � smax, a contradiction.

Lemma 7. For any given set {`(v), u(v)}v2[vmin,vmax] of frequency predictions, let ↵⇤
denote the

competitive ratio of the SENTINEL algorithm. Then no deterministic algorithm can obtain a competi-

tive ratio larger than ↵⇤
on all instances in the family {M(v)}v2[vmin,vmax].

12

Proof. Let A denote an arbitrary fixed deterministic algorithm. Abusing notation slightly, let A(v)
denote the total amount of items of value at most v that are accepted by the algorithm A and let
a(v) = d

dxA(x)|x=v. Let v1 be the smallest value v such that B(v) 6= A(v).v If there is no such
value, then consider the adversarial instance M(vmax). By Claim 5, it follows that the algorithm A
has competitive ratio exactly ↵⇤. Thus assuming that the value v1 exists, we now consider two cases.

Case 1. A(v1) < B(v1). In this case, the adversary stops the instance at M(v1). Note that v1 > v⇤

since B(v⇤) = 0 and B(v) is non-decreasing in v. Since the algorithm accepted a(x) = b(x) amount
of items for all values less than v1, less than b(v1) items of value v1, and at most l(v) items of each
value v > v1, the algorithm’s profit is upper bounded by
Z v1

x=vmin

x·a(x)dx+
Z vmax

x=v1

x·`(x)dx <

Z v1

x=vmin

x·b(x)dx+
Z vmax

x=v1

x·`(x)dx = ↵⇤ ·OPT(M(v1)),

where the last equality follows from Claim 5. Thus, the algorithm fails to achieve the competitive
ratio ↵⇤.

Case 2. A(v1) > B(v1). Recall that by definition of ↵⇤, we have B(vmax) = 1vi. As the
knapsack capacity is 1, we must have A(vmax)  1. Thus, there must exist v > v1 such that
A(v) = B(v). Let v2 be the minimum among all such values v. Note that v2 > v⇤ since B(v⇤) = 0
and B(v2) = A(v2) � A(v1) > B(v1) � 0. In this case, the adversary stops at v2 declaring M(v2)
as the final instance. By definition of v2, we have A(v2) = B(v2) and A(x) � B(x) for all x  v2.
Using integration by parts we have:

Z v2

x=vmin

x · a(x)dx = v2 ·A(v2)� vmin ·A(vmin)�
Z v2

x=vmin

A(x)dx

 v2 ·B(v2)� vmin ·B(vmin)�
Z v2

x=vmin

B(x)dx

=

Z v2

x=vmin

x · b(x)dx.

As before, the total profit of algorithm A is at most:
Z v2

x=vmin

x·a(x)dx+
Z vmax

x=v2

x·`(x)dx 
Z v2

x=vmin

x·b(x)dx+
Z vmax

x=v1

x·`(x)dx = ↵⇤ ·OPT(M(v2)).

Thus, in all cases, we have shown that no deterministic algorithm can have a competitive ratio better
than ↵.

Claim 9. No deterministic online algorithm that maintains a non-decreasing threshold function

 (z), where z is the knapsack capacity used, and accepts an item if and only if its value is higher

than (z) has a competitive ratio better than 4/5 for the family of instances I.

Proof. Since there are only two distinct item values, assume w.l.o.g. that we have the following
threshold function for some parameter �:

 (t) =

⇢
1 if t 2 [0,�]
2 if t 2 [�, 1].

We begin by considering the most interesting case when � 2 [1/3, 2/3]. Suppose � items of value 2
first arrive, and then, 2/3 items of value 1 arrive. Then, the algorithm gets profit 2� as it accepts no
item of value 1. On the other hand, the optimum solution can obtain profit 2�+ 1 · (1� �) = 1 + �.
The competitive ratio is upper bounded by 2�

1+�  4/5 where the equality holds when � = 2/3.

vStrictly speaking, this may not exist in general in the continuous setting, but we assume wlog that values are
sufficiently discretized to avoid such issues.

viThe only case that this it not true is that the knapsack is big enough to accept all the items, in which case
our algorithm has competitive ratio 1.

13

Next, suppose � 2 [0, 1/3]. If only items of value 1 arrive, by 2/3 amount, the algorithm gets profit
1/3, whereas the optimum profit is 2/3. Thus, in this case, the competitive ratio is only 1/2.

Finally, consider the case when � 2 [2/3, 1]. In this case, 2/3 amount of items of each value arrive
in non-decreasing order of their value. It is an easy exercise to see that the algorithm obtains profit
1 · (2/3) + 2 · (1/3) = 4/3, but the optimum is 5/3. Again, we only obtain a competitive ratio of
4/5.

Claim 10. For the instances in I, the algorithm Asentinel yields a competitive ratio of 6/7.

Proof. We consider the following algorithm: if the item’s value is 2, always accept it; otherwise, we
accept up to 4/7 items of value 1. Let A and OPT denote the profit achieved by the algorithm and the
optimum, respectively. Suppose x items of value 1 and y items of value 2 arrive. Then, we have,

OPT = 2 · y + 1 ·min{1� y, x}.

Clearly, the algorithm can suffer the most when given items of value 1 first. Then, we have

A = 2 ·min{y, 1�min{x, 4/7}}+ 1 ·min{x, 4/7}.

Note that x, y 2 [0, 2/3] in the instances that respect the given predictions.

We consider the following cases:

1. x+ y � 1: In this case note that x, y 2 [1/3, 2/3].
(a) x � 4/7:

i. y � 3/7:

A

OPT
=

1 · 4/7 + 2 · 3/7
1 + y

� 10/7

5/3
= 6/7, where the equality holds when y = 2/3.

ii. y < 3/7:
A

OPT
=

1 · 4/7 + 2 · y
1 + y

� 4/7 + 2/3

4/3
= 13/14,

where the last inequality follows from y � 1/3, which is the case because x 2
[0, 2/3] due to the given prediction.

(b) x < 4/7:
i. y � 1� x:

A

OPT
=

x+ 2(1� x)

1 + y
� 2� x

1 + 2/3
� 2� 4/7

5/3
= 6/7.

ii. y < 1� x: The inequalities are contradictory.
2. x+ y < 1:

(a) x � 4/7:
i. y � 3/7: The inequalities are contradictory.

ii. y < 3/7:
A

OPT
=

1 · 4/7 + 2y

x+ 2y
� 4/7

x
� 4/7

2/3
� 6/7

(b) x < 4/7:
i. y � 1� x: The inequalities are contradictory.

ii. y < 1� x:
A

OPT
=

x+ 2y

x+ 2y
= 1.

In all cases, we have A/OPT � 6/7, which establishes that the algorithm A is (6/7)-competitive for
the instance family I.

B SENTINEL Algorithm Description

We give a short summary of the SENTINEL algorithm here for clarity.

14

Algorithm 1 Algorithm SENTINEL for C-KNAPSACK-FP
Input: P = {`(v);u(v)}v2[vmin,vmax] as predictions

Compute v⇤↵, ⌧↵(·), b↵(·), and B↵(·), 8↵ 2 [0, 1] using Equations (1), (2), and (3)
Let ↵⇤ be such that B↵⇤(vmax) = 1
Initialize A(v) = 0, 8v 2 [vmin, vmax]
for each item that arrives online do

Let v denote value of the item
Let s denote size of the item (infinitesimal)
if A(x) < B↵⇤(x), 8x � v then

Accept item
Update A(x) A(x) + s, 8x � v

C Algorithm for Items with Discrete Values

In this section we describe the discrete version of our algorithm SENTINEL for KNAPSACK-FP,
while discussing some implementation issues. Recall that an item is assumed to have a value in
V = {vmin = v0, v1, . . . , vk�1 = vmax}. For simplicity, we will assume for a while that items can
be accepted fractionally; this assumption will be removed at the end of this section. If an item is
accepted fractionally, a partial profit is obtained in proportion to the fraction of the item accepted.
As before, we are given lv  uv for each v 2 V as prediction such that sv 2 [lv, uv]. For notational
convenience, we will let `i, ui, si denote `vi , uvi , svi , respectively.

As the following steps directly correspond to those of SENTINEL in Section 3, we do not repeat
the intuition behind them. Let M(vi,�) be an instance such that si0 = `i0 for all i0 > i, si =
`i + �(ui � `i), and si0 = ui0 for all i0 < i, where `i0 items of each value vi0 first arrive, and then
si0 � `i0 items of each value vi0 arrive in non-decreasing order of their value.

Step 1. Let vi⇤ denote the largest value in V such that for some � 2 [0, 1], (1 � �)`vi⇤ vi⇤ +Pk�1
i>i⇤ `vivi = ↵ · OPT(M(vi⇤ ,�)). Let �i⇤ denote the value of �.

Step 2. Set ⌧i⇤vi⇤ = ↵(OPT(M(vi⇤ , 1)) � OPT(M(vi⇤ ,�i⇤)) for i = i⇤ and ⌧ivi =
↵(OPT(M(vi, 1))� OPT(M(vi�1, 1)) for all i > i⇤.

Step 3. For any value i 2 0, 1, . . . , k � 1, we define a budget function as follows: bi = 0 8i < i⇤,
bi⇤ = (1� �i⇤)`vi⇤ + ⌧i⇤ , and bi = `i + ⌧i 8i > i⇤.

Step 4. Find the value of ↵⇤ 2 (0, 1] by binary search such that
Pk�1

k0=0 bk0 = 1 to an arbitrary
precision.

We accept an item of value v if Ai  Bi for all i 2 {0, 1, . . . , k � 1} after accepting it, where Ax is
the total size of items accepted so far. If items cannot be accepted fractionally, we may lose at most
smaxvi profit for each value vi 2 V where smax is the maximum item size. It is easy to see that the
resulting competitive ratio is at least ↵⇤ � |V | · smax · vmax/vmin following the proof of Lemma 2.

Finally, we discuss how to maintain the invariant Ai  Bi efficiently. Consider the following
equivalent way of enforcing the invariant: Initially, set b0j = bj for all j 2 {0, 1, 2, ..., k � 1}. When
an item of value vi and size s arrives, let j = argmaxi02[0,i](s  b0i). If j does not exist, then we
reject the item. Otherwise, we accept it and update b0j to be b0j � s. It is left as an exercise to verify
the equivalence if items have infinitesimal sizes. Using a (balanced) binary search tree, we can handle
each arriving item with O(log |V |) update time.

15

D Two-stage Knapsack without Predictions

D.1 Algorithm

As before let ↵⇤ be the optimal competitive ratio for the problem, which will be decided later. In
the absence of predictions, the optimal competitive ratio can be attained by a threshold algorithm.
In the first stage of the problem, the algorithm will maintain a threshold function depending on the
knapsack capacity used and accept an item if and only if its value is higher than the current threshold.
Finally, in the second stage, it is easy to observe that any reasonable algorithm accepts the highest
value items that can still be accommodated in the knapsack. We now show how to systematically
derive such an algorithm.

For any value v, let z(v) be the fraction of the knapsack capacity for which the algorithm maintains
the threshold at value v. To derive z(v) we will consider the following family of adversarial instances:
(i) items arrive in increasing order of value; (ii) there are enough items of each value to fill the entire
knapsack; and (iii) the adversary can stop releasing items at any point in time.

We construct z(v) that is continuous at all v 2 (vmin, vmax] as follows. First we set:

z(vmin) =
↵⇤ � �
1� � . (4)

This is because if the adversary only gives items of value vmin and they are enough to fill up the
knapsack, then by accepting z(vmin) of them in the first stage and more to the full capacity in the
second stage we obtain profit (z(vmin) + �(1� z(vmin)))vmin = ↵⇤vmin.

Now consider any value v > vmin. If the adversary stops the instance at value v, the profit obtained
by the algorithm is:

ALG(v) := vminz(vmin) +

Z

x2(vmin,v]
x · z(x)dx+ �v

⇣
1� z(vmin)�

Z

x2(vmin,v]
z(x)dx

⌘
.

Here, the first two terms denote the value earned by the algorithm in the first stage while the last term
denotes the profit gained in the second stage. In particular, (1� z(vmin)�

R v
x=vmin

z(x)dx) is the
amount of capacity left in the knapsack after the first stage and the algorithm will fill it with the best
items—of value v—and receive value of �v per each unit.

To maintain a competitive ratio of ↵⇤, we need to maintain for all v 2 (vmin, vmax],

vminz(vmin) +

Z

x2(vmin,v]
xz(x)dx+ �v

1� z(vmin)�

Z

x2(vmin,v]
z(x)dx

!
= ↵⇤v (5)

differentiating w.r.t. v,

vz(v) + �(1� z(vmin))� �(vz(v) +
Z

x2(vmin,v]
z(x)dx) = ↵⇤

rearranging,

vz(v)� (
�

1� �) ·
Z

x2(vmin,v]
z(x)dx =

↵⇤ � �
1� � +

�z(vmin)

1� � (6)

solving this ODE, for some c, we get

z(v) = cv
2��1
1�� n.

To determine ↵⇤ and c, by taking limv!vmin+ on (6), we have

c v
�

1��

min =
↵⇤ � �
1� � +

�z(vmin)

1� � =
↵⇤ � �
1� � +

↵⇤ � �
(1� �)2 , (7)

where the last equality follows from (4)

Further, we want to use the whole capacity. Thus, from z(vmin) +
R
x2(vmin,vmax]

z(x)dx = 1 and
(4), we have

↵⇤ � �
1� � + c

1� �
�

(v
�

1��
max � v

�
1��

min) = 1 (8)

16

We can determine the value of ↵⇤ and c from (7) and (8). Here, we do not explicitly show their closed
form as they are not very simple.

We are now ready to describe the algorithm. Set the threshold function (t) as follows:

 (t) =

(
vmin if 0  t  ↵⇤��

1��

Z�1(t) otherwise,
,

where Z(v) :=
R v
x=vmin

z(x)dx; this integral includes z(vmin). And if we see an item of value v in
the first phase when the knapsack is t-full, we accept it if v � (t). In other words, we keep the
threshold at vmin until the knapsack gets ↵⇤��

1�� -full; afterwards, keep the threshold at v for z(v) units.
In the second phase, we accept the highest valued remaining items to the full capacity.

D.2 Analysis

Suppose the last threshold value used by the algorithm was y. Let A1 and A2 denote the items we
accepted in the first and second phases, respectively. Let O be the items accepted by the optimum
solution. As the algorithm accepts the highest-valued remaining items in the second phase, it must be
that A2 ✓ O \A1. Let v(P) denote the total profit of items in P and s(P) the total size of items in
the same set. Then, the ratio of our algorithm’s objective to the optimum is

⇢ :=
v(A1 \O) + v(A1 \O) + � · v(A2)

v(A1 \O) + v(O \A1 \A2) + v(A2)
.

For the sake of contradiction suppose ⇢ < ↵⇤. Observe that all items of value greater than y are
accepted by the algorithm in the first phase, and also by the optimum solution. To draw a contradiction
we change the item values ensuring ⇢ < ↵⇤. First consider the items in A2. By definition of A2, all
items in A2 have value at most y. Due to the multiplier � of v(A2) in the numerator and the fact that
�  ↵⇤, we have

v(A1 \O) + v(A1 \O) + �y · s(A2)

v(A1 \O) + v(O \A1 \A2) + y · s(A2)
< ↵⇤,

which follows from the thought process of increasing the value of items in A2 to y.

As no items in O \A1 have value greater than y, by increasing the value of the items in O \A1 to y,
we can only decrease the ratio. Thus, we have,

v(A1 \O) + v(A1 \O) + �y · s(A2)

v(A1 \O) + y · s(O \A1 \A2) + y · s(A2)
< ↵⇤,

Finally, we decrease the value of each item in A1 to the threshold of our algorithm when it was
accepted. As the items in A1 \O appear in both the numerator and denominator and the ratio is less
than 1, decreasing the value of an item in A1 \ O can only decrease the ratio. Further, it is clear
that doing so for items in A1 \O decreases the ratio as they only appear in the numerator. Finally,
knowing that the threshold was always no greater than y, by increasing the value of the items in
A1 \O only in the denominator, we have,

vminz(vmin) +
R
x2(vmin,v]

y · z(y)dx+ �y · s(A2)

y · s(A1 \O) + y · s(O \A1 \A2) + y · s(A2)
< ↵⇤.

The numerator and denominator are ALG(y) and y respectively. Therefore, the ratio is exactly ↵⇤

due to (5), which is a contradiction.

D.3 Optimality

In this section we show that no algorithm can have a competitive ratio better than ↵⇤. We closely
follow the optimality proof in Section 3.1.1. We use the same adversarial instances as we used
to compute z(v) in Section 5.1. For easy reference, we restate them here: (i) all items arrive in
increasing order of their value; (ii) there are enough items of each value to fill up the entire knapsack;
and (iii) the adversary can stop releasing items at any point in time.

17

Fix any deterministic algorithm. Suppose it accepts a(v) items of value v. Let A(v) denote the total
size of items of value at most v accepted by the algorithm. If A(v) = Z(v) for all v, then it coincides
with our algorithm whose competitive ratio is ↵⇤. So, let v1 := argminx2[vmin,vmax] A(x) 6= Z(x).

If A(v1) < Z(v1), then the adversary stops at value v1. Then, the algorithm’s profit is less than
ALG(v1). This is because what the algorithm accepts is different from ALG(v1) only in that it accepts
more items of value v1 in the second stage. As ALG(v1) = ↵⇤v1 (from Eqn. (5)) and the optimum is
v1, the algorithm has a competitive less than ↵⇤.

In the other case that A(v1) > Z(v1), consider v2 := argminx2(v1,vmax] A(x) = Z(x). Note that
v2 must exist as A(vmax)  1 and Z(vmax) = 1. By definition of v2, we have A(v2) = Z(v2) and
A(x) � Z(x) for all x  v2. Using integration by parts we have:Z v2

x=vmin

x · a(x)dx = v2 ·A(v2)� vmin ·A(vmin)�
Z v2

x=vmin

A(x)dx

 v2 · Z(v2)� vmin · Z(vmin)�
Z v2

x=vmin

Z(x)dx

=

Z v2

x=vmin

x · z(x)dx.

What this means is that the algorithm has obtained less profit in the first stage as oppose to ALG(v2)
using the same capacity A(v2). Thus, the algorithm’s value is at most ALG(v2) = ↵⇤v2. As the
optimum is v2, the competitive ratio is no better than ↵⇤.

Using the same reasoning as we used before, we know that randomization does not help. Thus, we
have shown that no randomized online algorithm has a competitive ratio better than ↵⇤.

E Two-Stage Knapsack with Predictions

E.1 Algorithm

We now extend our algorithm for the two-stage knapsack problem to the setting where we are given
frequency predictions. As before, we will focus on the fully continuous version of the problem,
which is exactly C-KNAPSACK-FP except with two stages. We adopt the same notation as we used
in Section 3, with minor changes. Let OPT(I) be either the optimum solution or its profit for the
two-stage knapsack problem when I is the given input. Define OPT(I,) analogously but assuming
that the knapsack has a reduced capacity, .

Because we derive our algorithm closely following the steps we took in Sections 3 and 5.1, we will
omit details that are repeated. As before, we will find a competitive ratio that is close to the best
competitive ratio ↵⇤ to an arbitrary precision using a binary search over [�, 1]. We use the same
instance M(v) as defined in Section 3.

Step 1. Find v⇤ such thatZ vmax

x=v⇤
x · `(x)dx =

↵⇤ � �
1� � · OPT(M(v⇤)).

Under the assumptions we made for C-KNAPSACK-FP, it can be shown that v⇤ exists. Note that this
generalizes Step 1 for the single-stage knapsack with frequency predictions in Section 3 and we can
recover it when � = 0. The difference is that in addition to the value

R vmax

x=v⇤ x · `(x)dx, the algorithm
can accept �(OPT(M(v⇤))�

R vmax

x=v⇤ x · `(x)dx) extra profit in the second stage. Here, we used an
easy observation that OPT(M(v⇤)) includes all items of value greater than v⇤ in M(v⇤).

Step 2. In this step we define a function ⌧ : [v⇤, vmax] ! [0,1) to determine the additional
amount of items of a particular value that our algorithm would like to accept. Let R(v) denote an
instance consisting of u(x) � `(x) � ⌧(x) items of each value x 2 [v⇤, v] and u(x) items of each
value x 2 [vmin, v⇤]. Let B(v) :=

R v
x=v⇤ `(x) + ⌧(x)dx for v 2 [v⇤, vmax]; and B(v) = 0 for

v 2 [vmin, v⇤]. For each v 2 [v⇤, vmax], letZ vmax

x=v⇤
x · `(x)dx+

Z v

x=v⇤
x · ⌧(x)dx+ �OPT(R(v), 1�B(v)) = ↵⇤OPT(M(v)). (9)

18

Here, the first two terms in the left-hand-side are our algorithm’s profit in the first stage and the third
is that in the second stage. Taking derivatives w.r.t. v, we solve the equations.

Step 3. The previous steps are performed using the predictions {`(x);u(x)}x2[vmin,vmax] before
seeing the actual items. Then, when an item of value v arrives in the first stage, the algorithm accepts
it if and only if A1(x) < B(x), 8x � v, where A1(x) denotes the total amount of items of value at
most v that has been accepted by the online algorithm so far (in the first stage). In the second stage,
the algorithm accepts the highest-valued remaining items to the full residual capacity.

Step 4. As before, we can find the desired ↵⇤ such that B(vmax) = 1 by binary search over [�, 1].
A minor difference from the previous binary search is that if B(v) � 1 for some v in deriving B(·),
we stop and decrease the value of ↵. This is to avoid the residual capacity, i.e., 1�B(v), becoming
negative in Eqn. (9). However, for a fixed value v, we can still view B(v) as a function of ↵⇤ and
easily verify that it is continuous and mononotically increasing in ↵⇤ as long as B(v) < 1. Thus, this
modified binary search is well-defined.

E.2 Analysis

We show that the algorithm presented in the previous section indeed has a competitive ratio of ↵⇤ and
that it is the best possible one can hope for.

At the end of the algorithm’s execution, let y be the largest value v such that A1(v) = B(v). This
implies A1(v) < B(v) for all v > y. Let H denote all the items of value greater than y. Let G be a
set of items consisting of arbitrary `(v) items for each v 2 [vmin, vmax] among those that actually
arrive. It is an easy observation that all items in H are accepted by the algorithm in the first phase,
and also by the optimum solution. Let A1 and A2 denote the items we accepted in the first and second
phases, respectively, with the items in H excluded. Recall that A1(v) denotes the total size of items
of value at most v accepted by our algorithm in the first stage, and it is distinguished from A1. Let
O be the items not in H that are accepted by the optimum solution. As the algorithm accepts the
highest-valued remaining items in the second phase, it must be that A2 ✓ O \A1. Let v(P) denote
the total profit of items in P and s(P) the total size of items in the same set. Then, the ratio of our
algorithm’s profit to the optimum is the following:

⇢ :=
v(H \G) + v(H \G) + v(A1) + � · v(A2)

v(H \G) + v(H \G) + v(O)
.

For the sake of contradiction suppose ⇢ < ↵⇤. Recall that �  ↵⇤. Say our algorithm accepts a1(v)
and a2(v) items of value v in the first and second stages, respectively, and the optimum accepts o(v)
items of value v. Let a(v) = a1(v) + a2(v).

Our proof strategy is to make a sequence of changes to modify our algorithm’s solution and/or some
items’ value, ensuring (i) ⇢ never increases; (ii) the instance continues respecting the prediction; (iii)
the algorithm makes the optimal choices in the second stage regarding the remaining items; and (iv)
the optimum solution remains optimum. After all the changes, we will show that ⇢ = ↵⇤ to draw a
contradiction.

First Change. We first show that we can assume wlog that a1(x) = b(x) for all x 2 [v⇤, y] for
analysis. Observe that there exists y1 such that a(x) = s(x) for all x 2 (y1, v⇤) and a2(x) = 0 for
all x 2 [vmin, y1) due to the greedy behavior of our algorithm in the second stage and the fact that all
items in H are accepted in the first stage. Here, we only change a1, a2, therefore, the denominator
of ⇢, which is the optimum profit, will remain unchanged. Thus, (iv) will hold. We will consider a
sequence of changes that only decreases the numerator.

Assume a1(x) 6= b(x) for some x 2 [v⇤, y] since otherwise there is nothing to prove. Let v3 denote
the largest x 2 (v⇤, y) such that a1(x) > b(x); it is an easy exercise to show v3 exists from the
definition of y. Similarly, let v1 denote the smallest x 2 (v⇤, y) such that a1(x) < b(x). Note that
v1 < v3 from the fact that A1(y) = B(y) and A1(x)  B(x) for all x 2 [v⇤, y]; and A1(v⇤) = 0.

We consider two cases. First consider the case that v3 � y1. Let v2 := max{v1,min(A2)}, where
min(A2) denotes the min value of items in A2. By definition, v1  v2  v3. We make the
following changes: decrease a1(v3) by an infinitesimally small � > 0; increase a2(v3) by �; increase

19

a1(v1) by �; and decrease a2(v2) by �. Then, the numerator, the algorithm’s profit, changes by
�(�v3 + �v3 � �v2 + v1)  �(�v3 + �v3 � �v2 + v2) = �(v3 � v2)(�� 1)  0.

Now consider the other case that v3  y1. Then, this case is easier to track the changes as we do not
have to consider items in A2. In this case, we decrease a1(v3) by � and increase a1(v1) by �. It is
trivial to see that this change decreases the numerator, i.e., our algorithm’s profit.

We have shown (i). It is easy to see that (ii) and (iii) are never violated under the changes we have
made. As a result of the changes, we have a1(x) = b(x) for all x 2 [v⇤, y] and a2(x) = s(x)� b(x)
for all x 2 [y1, y] and a2(x) = 0 for all x 2 [vmin, y1].

Second Change. In this change, we increase the value of some items in A2 to make a(x) = s(x) =
u(x) if a2(x) > 0, and possibly change o(·) to keep satisfying (iv). To do this, we first increase the
value of items in A2 maximally up to value y ensuring (ii). Since A2 ✓ O, such items appear in
both the numerator and denominator. But, v(A2) has a multiplier � in the numerator. As discussed,
� < ↵⇤. Thus, if we make these changes, we will continue to have (i). It is trivial to see that (iii) holds
true. To satisfy (iv), we let the optimum solution accepts 1� s(H) highest valued items from the set
of items consisting of u(x) items x 2 [vmin, v⇤]; here, we let s(x) = u(x) for all x 2 [vmin, v⇤], and
this doesn’t change (iii). As this increases only the denominator, we still have (i). It is an exercise to
see that we made changes respecting the prediction, so we have (ii) as well.

As a result, we have s(x) = u(x) 8x 2 [vmin, v⇤], a1(x) = b(x) 8x 2 [v⇤, y], a2(x) = u(x)� b(x)
8x 2 [y1, y] and a2(x) = 0 8x 2 [vmin, y1].

Third Change. Here we decrease the value of some items in H \G. As both our algorithm and
the optimum solution accepts such items and get the full face value from them, it will only lower ⇢.
So, we will have (i). Specifically, we let s(x) = u(x) for all x 2 [v⇤, y2], and

R y2

v⇤ (s(x)� `(x))dx =
s(H \G). It is easy to check all (i)–(iv) hold true.

Fourth Change. Now we only change a1(x) and a2(x) for x 2 [y, y2]. Thus, this will only affect
the numerator. After the third change a1(x) = u(x) for all x 2 [y, y2]. For each x 2 [y, y2], we
set a1(x) = b(x) and a2(x) = u(x)� b(x). Clearly this can only decrease the numerator. And all
(i)–(iv) hold true.

After all the changes, the resulting instance is M(y2) and the algorithm’s solution has the following
form:

a1(x) =

8
<

:

`(x) x 2 [y2, vmax]
b(x) x 2 [v⇤, y2]
0 otherwise,

a2(x) =

8
<

:

0 x 2 [y2, vmax]
u(x)� b(x) x 2 [y1, y2]
0 otherwise,

which is exactly what our algorithm accepts for M(y2). Thus, the numerator of ⇢ is exactly the LHS
in Eqn. (9). Thus, we have shown that ⇢⇤ = ↵, which is a contradiction.

E.3 Optimality

We show that no algorithm can have a competitive ratio better than ↵⇤. The proof is very similar to
that for the case without predictions in Section D.3. We use the same adversarial instances {M(v)}
as we used to compute b(v) in Section 5.1; see Section 3.1.1 for the definition.

Consider any fixed deterministic algorithm A since randomization doesn’t help as observed before.
Adopting the notation we defined in Section E.2, let a1(v) denote the amount of items of value v
accepted by A in the first stage. Define o(v) analogously for the optimum solution. Let A1(v) denote
the total size of items of value at most v accepted by A in the first stage.

If A1(v) = B(v) for all v, then it coincides with our algorithm whose competitive ratio is ↵⇤. So, let
v1 := argminx2[vmin,vmax] A1(x) 6= B(x). We consider two cases as follows.

20

If A1(v1) < Z(v1), then the adversary declares that the instance is M(v1). Then, A gets less profit
than our algorithm because it produces an identical solution as ours except that it accepts more items
of value v1 in the second stage (but the same amount in both stages together). Thus, A obtains profit
less than the LHS in Eqn. (9) and the optimum is v1. This implies that A has a competitive ratio less
than ↵⇤.

Consider the other case, A1(v1) > B(v1). Let v2 := argminx2(v1,vmax] A1(x) = B(x). Note that
v2 must exist as A1(vmax)  1 and B(vmax) = 1. As before, we can show

R v2
x=vmin

x · a1(x)dx R v2
x=vmin

x · b(x)dx. But, we need a slightly stronger claim here. By definition of v2, we have
A1(v2) = B(v2) and A1(x) � B(x) for all x  v2. Then, we can define a one-to-one mapping
from the items accepted by A to the set consisting of b(x) items for x 2 [vmin, v2] such that item e
has no greater value than (e). This mapping can be constructed by considering items in decreasing
order of their value and mapping them sequentially.

What this means is the following. For the sake of analysis, pretend that A is given an option
immediately after the first stage to choose (e) over e it has accepted. It is an easy exercise to see
that A makes all the swaps it is allowed to increase its profit before the second stage starts. Thus, we
have shown that A obtains profit no greater than our algorithm does for M(v2). This implies that
A’s competitive ratio is at most ↵⇤.

21

