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APPENDIX

Roadmap.

We order the appendix as follows: In Section A, we provide the preliminaries to be used in our proofs,
such facts for basic algebras and inequalities. In Section B, we compute the gradient for our loss
function step by step and reform it for prooving its lipschitz. In Section C we prove that the gradient
for our loss function is lipschitz. In Section D, we compute the gradient of our loss function with
respect to Q and proved the lipschitz property for gradient. In Section E, we repeat the analysis for
Q and proved lipschitz property for gradient with respect to K. In Section F we provide systematic
analysis on logistic function and proved the lipschitz property for the gradient of the loss function
based on logistic function. In Section G, we prove our main results. In Section H, we provide a brief
analysis on the hessian of our loss function.

A PRELIMINARY

In this section, we provide the preliminaries to be used in our proofs. In Section A.1, we provide
some facts for exact computations. In Section A.2, we provide some inequalities with respect to
vector’s norms. In Section A.3, we provide some inequalities with respect to matrix’s norms. In
Section A.4, we provide some facts for computing gradient.

A.1 BASIC ALGEBRAS

Fact A.1. For vectors u, v, w ∈ Rn. We have

• ⟨u, v⟩ = ⟨u ◦ v,1n⟩

• ⟨u ◦ v, w⟩ = ⟨u ◦ v ◦ w,1n⟩

• ⟨u, v⟩ = ⟨v, u⟩

• ⟨u, v⟩ = u⊤v = v⊤u

Fact A.2. For any vectors u, v, w ∈ Rn, we have

• u ◦ v = v ◦ u = diag(u) · v = diag(v) · u

• u⊤(v ◦ w) = u⊤ diag(v)w

• u⊤(v ◦ w) = v⊤(u ◦ w) = w⊤(u ◦ v)

• u⊤ diag(v)w = v⊤ diag(u)w = u⊤ diag(w)v

• diag(u) · diag(v) · 1n = diag(u)v

• diag(u ◦ v) = diag(u) diag(v)

• diag(u) + diag(v) = diag(u+ v)

A.2 BASIC VECTOR NORM BOUNDS

Fact A.3. For vectors u, v ∈ Rn, we have

• ⟨u, v⟩ ≤ ∥u∥2 · ∥v∥2 (Cauchy-Schwarz inequality)

• ∥ diag(u)∥ ≤ ∥u∥∞

• ∥u ◦ v∥2 ≤ ∥u∥∞ · ∥v∥2

• ∥u∥∞ ≤ ∥u∥2 ≤
√
n · ∥u∥∞

• ∥u∥2 ≤ ∥u∥1 ≤
√
n · ∥u∥2
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• ∥ exp(u)∥∞ ≤ exp(∥u∥∞) ≤ exp(∥u∥2)

• Let α be a scalar, then ∥α · u∥2 = |α| · ∥u∥2

• ∥u+ v∥2 ≤ ∥u∥2 + ∥v∥2.

• For any u, v ∈ Rd such that ∥u∥2, ∥v∥2 ≤ R, we have ∥ exp(u)− exp(v)∥ ≤ exp(R)∥u−
v∥2

Proof. For all the other facts we omit the details. We will only prove the last fact.

We have

∥ exp(u)− exp(v)∥2 = ∥ exp(u) ◦ (1n − exp(v − u))∥2
≤ ∥ exp(u)∥2 · ∥1n − exp(v − u)∥∞
≤ ∥ exp(u)∥2 · 2∥u− v∥∞,

where the 1st step follows from definition of ◦ operation and exp(), the 2nd step follows from
Fact A.3, the 3rd step follows from | exp(x)− 1| ≤ 2x for all x ∈ (0, 0.1).

A.3 BASIC MATRIX NORM BOUNDS

Fact A.4. For matrices U, V , we have

• ∥U⊤∥ = ∥U∥

• ∥U∥ ≥ ∥V ∥ − ∥U − V ∥

• ∥U + V ∥ ≤ ∥U∥+ ∥V ∥

• ∥U · V ∥ ≤ ∥U∥ · ∥V ∥

• If U ⪯ α · V , then ∥U∥ ≤ α · ∥V ∥

• For scalar α ∈ R, we have ∥α · U∥ ≤ |α| · ∥U∥

• For any vector v, we have ∥Uv∥2 ≤ ∥U∥ · ∥v∥2.

• Let u, v ∈ Rn denote two vectors, then we have ∥uv⊤∥ ≤ ∥u∥2∥v∥2
Fact A.5. If ∥Q∥F ≤ R, then ∥Qei2e

⊤
k2
∥F = vec(ei2ek2Q) ≤ R.

If ∥K∥F ≤ R, then ∥ei2e⊤k2
K⊤∥F = ∥ vec(ei2e⊤k2

K⊤)∥2 ≤ R

If ∥Q∥F ≤ R, ∥K∥F ≤ R, then ∥QK∥F ≤ R2

A.4 BASIC CALCULUS

Fact A.6.
d2A(x)B(x)

dsdt
=

d2A(x)

dsdt
B(x) +

dA(x)

ds

dB(x)

dt
+

dA(x)

dt

dB(x)

ds
+

d2B(x)

dsdt
A(x)

Proof.

d2A(x)B(x)

dsdt
=

d

dt
(
d

ds
A(x)B(x))

=
d

dt
(
dA(x)

ds
B(x) +A(x)

dB(x)

ds
)

=
d2A(x)

dsdt
B(x) +

dA(x)

ds

dB(x)

dt
+

dA(x)

dt

dB(x)

ds
+

d2B(x)

dsdt
A(x)

where the first step is an expansion of hessian, the second step follows from differential chain rule,
the last step follows from differential chain rule.
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Fact A.7. Let A(x) ∈ R.

d2A(x)2

dtdt
= 2A(x)

d2A(x)

dt2
+ 2(

dA(x)

dt
)2

Proof.

d2A(x)2

dt
=

d

dt
(
dA(x)2

dt
)

=
d

dt
(2A(x)

dA(x)

dt
)

= 2A(x)
d2A(x)

dt2
+ 2(

dA(x)

dt
)2

where the first step is an expansion of hessian, the second step follows from basic derivative, the third
step follows from differential chain rule.

Fact A.8. Let A(x) ∈ R, then we have

d2A2(x)

dsdt
= 2

dA(x)

ds

dA(x)

dt
+ 2A(x)

d2A(x)

dsdt

Proof. We can show

d2A2(x)

dsdt
=

d

dt

dA2(x)

ds

=
d

dt
(2A(x)

dA(x)

ds
)

= 2
dA(x)

dt

dA(x)

ds
+ 2A(x)

d

dt
(
dA(x)

ds
)

= 2
dA(x)

ds

dA(x)

dt
+ 2A(x)

d2A(x)

dsdt

where the first step is an expansion of hessian, the second step follows from basic derivative, the third
step follows from differential chain rule, the last step follows from simple algebra.

B GRADIENT COMPUTATION

In this section, we compute the gradient for our loss function step by step. In Section B.1, we define
the definitions to be used in this section and the problem we would like to address in this section. In
Section B.2, we compute the gradient with respect to x step by step. In Section B.3, we compute the
gradient with respect to y step by step. In Section B.4, we reform the gradient with respect to x for
the convenience of proving its lipschitz property in Section C.

B.1 PROBLEM FORMULATION

Definition B.1. We define c(x, y)l0,j0,i0 ∈ R as follows

c(x, y)l0,j0,i0 := ⟨f(x)l0,j0︸ ︷︷ ︸
n×1

, h(y)l0,i0︸ ︷︷ ︸
n×1

⟩ − bl0,j0,i0

Definition B.2. If the following conditions hold

• Let c be defined as Definition B.1

For each l0 ∈ [m], j0 ∈ [n], i0 ∈ [d]. We define Ll0,j0,i0 as follows

L(x, y)l0,j0,i0 := 0.5c(x, y)2l0,j0,i0

15



Under review as a conference paper at ICLR 2024

Definition B.3. The final loss is

L(x, y) :=

m∑
l0=1

n∑
j0=1

d∑
i0=1

Ll0,j0,i0(x, y).

Not hard to see that L(x, y) is equivalent

∥D(X)−1 exp(A1XA⊤
2 )A3Y −B∥2F (1)

Let X ∈ Rd×d denote the matrix view of x ∈ Rd2

. Here X can be viewed as QK⊤ in attention
computation. Let yi0 ∈ Rd denote the i0-th column of Y ∈ Rd×d.

By using well-known tensor-trick, we can rewrite Eq. (1) in the following vector version

∥mat(D(x)−1 exp(Ax)) A3︸︷︷︸
n×d

Y︸︷︷︸
d×d

−B∥22

Here the diagonal matrix D(x) ∈ Rn2×n2

can be written as D(x) := D(X)⊗ In

We give our formal definition of the optimization formulation

Definition B.4. Let A1, A2 ∈ Rn×d. Let X ∈ Rd×d denote the matrix view of x ∈ Rd2

. We define
the optimization formulation as the following:

min
X∈Rd×d

L(X) = min
X∈Rd×d

∥D(X)−1 exp(A1XA⊤
2 )A3Y −B∥22

Definition B.5. Let A1, A2 ∈ Rn×d. Let A = A1 ⊗A2 ∈ Rn2×d2

. Let X ∈ Rd×d denote the matrix
view of x ∈ Rd2

. Let D(x) ∈ Rn2×n2

denote the diagonal matrix D(x) := D(X)⊗ In. We define
the vector version of optimization formulation as the following:

min
x∈Rd2

L(x) = min
x∈Rd2

∥mat(D(x)−1 exp(Ax))A3Y −B∥22

B.2 GRADIENT COMPUTATION WITH RESPECT TO x

Lemma B.6. If the following conditions hold

• Let f be defined in Definition 3.3

• Let h be defined in Definition 3.4

• Let α be defined in Definition 3.2

• Let c be defined in Definition B.1

• Let L be defined in Definition B.3

Then, we can show

• Part 1. For each i ∈ [d2]

dAl0,j0 x

dxi
= Al0,j0,i

• Part 2. For each i ∈ [d2]

d exp(Al0,j0x)

dxi
= exp(Al0,j0x) ◦ Al0,j0,i

• Part 4. For i ∈ [d2]

du(x)l0,j0
dxi

= u(x)l0,j0 ◦ Al0,j0,i
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• Part 5. For i ∈ [d2]

dα(x)l0,j0
dxi

= ⟨u(x)l0,j0 , Al0,j0,i⟩

• Part 6. For i ∈ [d2]

dα(x)−1
l0,j0

dxi
= −α(x)−1

l0,j0
· ⟨f(x)l0,j0 ,Al0,j0,i⟩

• Part 7. For each i ∈ [d2]

df(x)l0,j0
dxi

= f(x)l0,j0 ◦ Al0,j0,i +f(x)l0,j0 · ⟨f(x)l0,j0 ,Al0,j0,i⟩

• Part 8. For i ∈ [d2]

dc(x)l0,j0,i0
dxi

= ⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩ − ⟨f(x)l0,j0 , h(y)l0,i0⟩⟨f(x)l0,j0 ,Al0,j0,i⟩

(This is similar to Part 5 of Lemma 5.1 in page 16 of Gao et al. (2023a))

• Part 9. For each i ∈ [d2],

dLl0,j0,i0(x, y)

dxi
= c(x, y)l0,j0,i0(⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩ − ⟨f(x)l0,j0 , h(y)l0,i0⟩⟨f(x)l0,j0 ,Al0,j0,i⟩)

(This is similar to Part 6 of Lemma 5.1 in page 16 of Gao et al. (2023a))

• For each i ∈ [d2],

dL(x, y)

dxi
=

m∑
l0=1

n∑
j0=1

d∑
i0=1

c(x, y)l0,j0,i0(⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩ − ⟨f(x)l0,j0 , h(y)l0,i0⟩⟨f(x)l0,j0 ,Al0,j0,i⟩)

Proof. Proof of Part 1.

We have
d(Al0,j0x)

dxi
= Al0,j0,i

this follows from simple algebra.

Proof of Part 2.

We have
d exp(Al0,j0x)

dxi
= exp(Al0,j0x) ◦

d(Al0,j0x)

dxi

= exp(Al0,j0x) ◦ Al0,j0,i

where the first step follows from differential chain rule, the second step follows from Part 1.

Proof of Part 4. We have
du(x)l0,j0

dxi
=

d exp(Al0,j0 x)

dxi

= u(x)l0,j0 ◦ Al0,j0,i

where the first step follows from the definition of u(x)l0,j0 , the second step follows from basic
calculus.

Proof of Part 5.

Let j0 ∈ [n]. Let i ∈ [d2].
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We have

dα(x)l0,j0
dxi

=
d⟨exp(Al0,j0x),1n⟩

dxi

= ⟨d exp(Al0,j0x)

dxi
,1n⟩

= ⟨exp(Al0,j0x) ◦ (Al0,j0,i),1n⟩
= ⟨u(x)l0,j0 ,Al0,j0,i⟩

where the first step follows from the definition of α(x)l0,j0 , the second step follows from simple
algebra, the third step follows from Part 2, the last step follows from Fact A.1.

Proof of Part 6. We have

dα(x)−1
l0,j0

dxi
= − 1 · α(x)−2

l0,j0
· dα(x)l0,j0

dxi

= − α(x)−1
l0,j0

· ⟨f(x)l0,j0 ,Al0,j0,i⟩

where the first step follows from differential chain rule, the second step follows from Part 5.

Proof of Part 7.

We have

df(x)l0,j0
dxi

=
d(α(x)−1

l0,j0
u(x)l0,j0)

dxi

= α(x)−1
l0,j0

· du(x)l0,j0
dxi

+
dα(x)−1

l0,j0

dxi
u(x)l0,j0

= α(x)−1
l0,j0

· u(x)l0,j0 ◦ Al0,j0,i +
dα(x)−1

l0,j0

dxi
u(x)l0,j0

= α(x)−1
l0,j0

· u(x)l0,j0 ◦ Al0,j0,i −α(x)−1
l0,j0

· ⟨f(x)l0,j0 ,Al0,j0,i⟩ · u(x)l0,j0
= f(x)l0,j0 ◦ Al0,j0,i −f(x)l0,j0 · ⟨f(x)l0,j0 ,Al0,j0,i⟩

where the first step follows from Definition 3.3, the second step follows from differential chain rule,
the third step follows from Part 4, the fourth step follows from Part 6, the last step follows from
definition of function f .

Proof of Part 8.
dc(x)l0,j0,i0

dxi
=

d

dxi
(⟨f(x)l0,j0 , h(y)l0,i0⟩ − bl0,j0,i0)

=
d

dxi
⟨f(x)l0,j0 , h(y)l0,i0⟩

= ⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩ − ⟨f(x)l0,j0 , h(y)l0,i0⟩⟨f(x)l0,j0 ,Al0,j0,i⟩

where the first step follows from the definition of c(x), the second step follows from simple algebra
and the last step follows from Part 7.

Proof of Part 9.

dL(x, y)l0,j0,i0
dxi

=
d

dxi
0.5c(x, y)2l0,j0,i0

= c(x, y)l0,j0,i0
d

dxi
c(x, y)l0,j0,i0

= c(x, y)l0,j0,i0(⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩ − ⟨f(x)l0,j0 , h(y)l0,i0⟩⟨f(x)l0,j0 ,Al0,j0,i⟩)

where the first step follows from the definition of Ll0,j0,i0(x, y), the second step follows from simple
algebra, the third step follows from Part 8.
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Proof of Part 10

dL(x, y)

dxi
=

m∑
l0=1

n∑
j0=1

d∑
i0=1

c(x, y)l0,j0,i0(⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩ − ⟨f(x)l0,j0 , h(y)l0,i0⟩⟨f(x)l0,j0 ,Al0,j0,i⟩)

This trivially follows from Part 9.

B.3 GRADIENT COMPUTATION WITH RESPECT TO y

Lemma B.7. If the following conditions hold

• Let f be defined in Definition 3.3

• Let h be defined in Definition 3.4

• Let α be defined in Definition 3.2

• Let c be defined in Definition B.1

• Let L be defined in Definition B.3

For i1 ∈ [d], i0 ∈ [d], i2 ∈ [d] we have

• Part 1. i0 = i1

dh(y)l0,i0
dyi1,i2

= Al0,3,i2︸ ︷︷ ︸
n×1

where yi1,i2 is the i2-th entry in vector yi1 ∈ Rd

• Part 2. i0 ̸= i1

dh(y)l0,i0
dyi1,i2

= 0n

• Part 3. i0 = i1

d⟨f(x)l0,j0 , h(y)l0,i0⟩
dyi1,i2

= ⟨f(x)l0,j0 , Al0,3,i2⟩

• Part 4. i0 ̸= i1

d⟨f(x)l0,j0 , h(y)l0,i0⟩
dyi1,i2

= 0

• Part 5. i0 = i1

dc(x, y)l0,j0,i0
dyi1,i2

= ⟨f(x)l0,j0 , Al0,3,i2⟩

• Part 6. i0 ̸= i1

dc(x, y)l0,j0,i0
dyi1,i2

= 0

• Part 7. i0 = i1

dL(x, y)l0,j0,i0
dyi1,i2

= c(x, y)l0,j0,i0⟨f(x)l0,j0 , Al0,3,i2⟩
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• Part 8. i0 ̸= i1

dL(x, y)l0,j0,i0
dyi1,i2

= 0

Proof. Proof of Part 1. For ∀i1 ∈ [d], i2 ∈ [d],

dh(y)l0,i0
dyi1,i2

=
d

dyi1,i2
Al0,3yi0

= Al0,3,i2︸ ︷︷ ︸
n×1

where the first step follows from simple calculus.

Proof of Part 2.

For i1 ̸= i0,

dh(y)l0,i0
dyi1,i2

=
d

dyi1,i2
Al0,3yi0

= 0n︸︷︷︸
n×1

Proof of Part 3

d⟨f(x)l0,j0 , h(y)l0,i0⟩
dyi1,i2

= ⟨f(x)l0,j0 ,
h(y)l0,i0
dyi1,i2

⟩

= ⟨f(x)l0,j0 , Al0,3,i2⟩

where the first step follows from simple algebra, the second step follows from Part 1.

Proof of Part 4

d⟨f(x)l0,j0 , h(y)l0,i0⟩
dyi1,i2

= ⟨f(x)l0,j0 ,
h(y)l0,i0
dyi1,i2

⟩

= 0

where the first step follows from simple algebra, the second step follows from Part 2.

Proof of Part 5

dc(x, y)l0,j0,i0
dyi1,i2

=
⟨f(x)l0,j0 , h(y)l0,i0⟩ − bl0,j0,i0

dyi1,i2

=
d⟨f(x)l0,j0 , h(y)l0,i0⟩

dyi1,i2
= ⟨f(x)l0,j0 , Al0,3,i2⟩

where the first step follows from the definition of c(x, y)l0,j0,i0 , the second step follows from simple
algebra, the third step follows from Part 3.

Proof of Part 6

dc(x, y)l0,j0,i0
dyi1,i2

=
⟨f(x)l0,j0 , h(y)l0,i0⟩ − bl0,j0,i0

dyi1,i2

=
d⟨f(x)l0,j0 , h(y)l0,i0⟩

dyi1,i2
= 0n

where the first step follows from simple algebra, the second step follows from simple algebra, the
third step follows from Part 4.
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Proof of Part 7

dL(x, y)l0,j0,i0
dyi1,i2

=
d0.5c(x, y)2l0,j0,i0

dyi1,i2

= c(x, y)l0,j0,i0
dc(x, y)l0,j0,i0

dyi1,i2
= c(x, y)l0,j0,i0⟨f(x)l0,j0 , Al0,3,i2⟩

where the first step follows from simple algebra, the second step follows from simple algebra, the
third step follows from Part 5.

Proof of Part 8

dL(x, y)l0,j0,i0
dyi1,i2

=
d0.5c(x, y)2l0,j0,i0

dyi1,i2

= c(x, y)l0,j0,i0
dc(x, y)l0,j0,i0

dyi1,i2
= 0n

where the first step follows from simple algebra, the second step follows from simple algebra, the
third step follows from Part 6.

B.4 REFORMULATING GRADIENT WITH RESPECT TO x

Lemma B.8. If the following conditions hold

• dL(x,y)l0,j0,i0

dxi
= c(x, y)l0,j0,i0(⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩ −

⟨f(x)l0,j0 , h(y)l0,i0⟩⟨f(x)l0,j0 ,Al0,j0,i⟩)

Then we can rewrite dLl0,j0,i0
(x,y)

dxi
as follows:

dL(x, y)l0,j0,i0
dxi

= c(x, y)l0,j0,i0 A
⊤
l0,j0,i(f(x)l0,j0 − f(x)l0,j0f(x)

⊤
l0,j0)h(y)l0,i0

Proof. Note that by Fact A.1 we have

⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩ = A⊤
l0,j0,i diag(f(x)l0,j0)h(y)l0,i0

⟨f(x)l0,j0 , h(y)l0,i0⟩⟨f(x)l0,j0 ,Al0,j0,i⟩ = A⊤
l0,j0,i f(x)l0,j0f(x)

⊤
l0,j0h(y)l0,i0

By substitute the two terms above into dL(x,y)l0,j0,i0

dxi
, we completes the proof.

C GRADIENT LIPSCHITZ

In this section, we aim to prove the lipschitz property for the gradient of loss function defined in the
previous section. In Section C.1, we adopt a result from previous section to reform the gradient with
respect to x. In Section C.5, we reform the gradient with respect to y. In Section C.3, we prove the
lipschitz property for several basic terms. In Section C.4, we prove the lipschitz property of gradient
with respect to x. In Section C.5, we prove the lipschitz property of gradient with respect to y.

C.1 REFORMULATING GRADIENT FOR x

Lemma C.1. If the following conditions hold

• Let L(x, y)l0,j0,i0 be computed in Lemma B.6

• Let Al0,j0 ∈ Rn×d2

• Let f be defined in Definition 3.3
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• Let h be defined in Definition 3.4

• Let α be defined in Definition 3.2

• Let c be defined in Definition B.1

• Let L be defined in Definition 3.4

Then, we have

•

dL(x, y)l0,j0,i0
dx︸ ︷︷ ︸

d2×1

= c(x, y)l0,j0,i0︸ ︷︷ ︸
scalar

A⊤
l0,j0︸ ︷︷ ︸

d2×n

(diag(f(x)l0,j0)︸ ︷︷ ︸
n×n

− f(x)l0,j0︸ ︷︷ ︸
n×1

f(x)⊤l0,j0︸ ︷︷ ︸
1×n

)h(y)l0,i0︸ ︷︷ ︸
n×1

Proof. This trivially follows from Lemma B.8

C.2 REFORMULATING GRADIENT FOR y

Lemma C.2. Let dL(x,y)l0,j0,i0

dyi1,i2
be computed as in Lemma B.7.

For the case i1 = i0, we can rewrite dL(x,y)l0,j0,i0

dyi1
as

dL(x, y)l0,j0,i0
dyi1︸ ︷︷ ︸
d×1

= A⊤
l0,3︸ ︷︷ ︸

d×n

f(x)l0,j0︸ ︷︷ ︸
n×1

c(x, y)l0,j0,i0︸ ︷︷ ︸
scalar

For the case i1 ̸= i0, then it’s

dL(x, y)l0,j0,i0
dyi1︸ ︷︷ ︸
d×1

= 0d︸︷︷︸
d×1

.

Proof.

dL(x, y)l0,j0,i0
dyi1,i2

= c(x, y)l0,j0,i0⟨f(x)l0,j0 , Al0,3,i2⟩

= A⊤
l0,3,i2f(x)l0,j0c(x, y)l0,j0,i0

where the first step follows from Part 7 of Lemma B.7, the second step follows from simple algebra.

Thus, we know

dL(x, y)l0,j0,i0
dyi1

= A⊤
l0,3f(x)l0,j0c(x, y)l0,j0,i0

C.3 LIPSCHITZ FOR SOME BASIC TERMS

Lemma C.3. If the following conditions hold

• Let Al0,j0 ∈ Rn×d2

• Let bl0,j0,i0 ∈ Rn satisfy that ∥b∥1 ≤ 1

• Let β ∈ (0, 0.1)

• Let R ≥ 4
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• Let x, y ∈ Rd satisfy ∥Al0,j0 x∥2 ≤ R and ∥Al0,j0 y∥2 ≤ R

• ∥Al0,j0 ∥ ≤ R

• ⟨exp(Al0,j0 x),1n⟩ ≥ β

• ⟨exp(Al0,j0 y),1n⟩ ≥ β

• Let Rf := β−2n exp(3R2)

• Let α(x)l0,j0 be defined as Definition 3.2

• Let c(x, y)l0,j0,i0 be defined as Definition B.1

• Let f(x)l0,j0 be defined as Definition 3.3

We have

• Part 0. ∥ exp(Al0,j0 x)∥2 ≤
√
n exp(R2)

• Part 1. ∥ exp(Al0,j0 x)− exp(Al0,j0 y)∥2 ≤ R exp(R2) · ∥x− y∥2

• Part 2. |α(x)l0,j0 − α(y)l0,j0 | ≤
√
n · ∥ exp(Ax)− exp(Ay)∥2

• Part 3. |α(x)−1
l0,j0

− α(y)−1
l0,j0

| ≤ β−2 · |α(x)− α(y)|

• Part 4. ∥f(x)l0,j0 − f(y)l0,j0∥2 ≤ Rf · ∥x− y∥2

• Part 5. ∥c(x, z)l0,j0,i0 − c(y, z)l0,j0,i0∥2 ≤ R2β−2n exp(3R2)∥x− y∥2

• Part 6. ∥ diag(f(x)l0,j0)− diag(f(y)l0,j0)∥ ≤ β−2n exp(3R2)∥x− y∥2

• Part 7. ∥f(x)l0,j0∥2 ≤ β−1n exp(2R2)

• Part 8. f(x)l0,j0f(x)
⊤
l0,j0

− f(y)l0,j0f(y)l0,j0 ≤ 2β−3n2 exp(5R2)∥x− y∥2

• Part 9. ∥(diag(f(x)l0,j0)−f(x)l0,j0f(x)
⊤
l0,j0

)−(diag(f(y)l0,j0)−f(y)l0,j0f(y)
⊤
l0,j0

)∥ ≤
3β−2n2 exp(5R2)∥x− y∥2

• Part 10. ∥c(x, y)l0,j0,i0∥ ≤ Rβ−1n exp(2R2)

• Part 11. ∥c(x, z)l0,j0,i0(diag(f(x)l0,j0) − f(x)l0,j0f(x)
⊤
l0,j0

) −
c(y, z)l0,j0,i0(diag(f(y)l0,j0)− f(y)l0,j0f(x)

⊤
l0,j0

)∥ ≤ 6Rβ−3 exp(7R2)∥x− y∥2

Proof. Proof of Part 0.

We can show that

∥ exp(Al0,j0 x)∥2 ≤
√
n · ∥ exp(Al0,j0 x)∥∞

≤
√
n · exp(∥Al0,j0 x∥∞)

≤
√
n · exp(∥Al0,j0 x∥2)

≤
√
n · exp(R2),

where the first step follows from Part 4 of Fact A.3, the second step follows from Part6 of Fact A.3,
the third step follows from Fact A.3, and the last step follows from ∥Al0,j0 ∥ ≤ R and ∥x∥2 ≤ R.

Proof of Part 1. We have

∥ exp(Al0,j0 x)− exp(Al0,j0 y)∥2 ≤ exp(R2)∥Al0,j0 x− Al0,j0 y∥2
≤ exp(R2)∥Al0,j0 ∥∥x− y∥2
≤ R exp(R2)∥x− y∥2
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where the first step follows from Part 10 of Fact A.3, the second step follows from Part 4 of Fact A.4,
the third step follows from ∥Al0,j0 ∥ ≤ R.

Proof of Part 2.

|α(x)l0,j0 − α(y)l0,j0 | = |⟨exp(Al0,j0 x)− exp(Al0,j0 y),1n⟩|
≤ ∥ exp(Al0,j0 x)− exp(Al0,j0 y)∥2 ·

√
n

where the 1st step follows from the definition of α(x)l0,j0 , the 2nd step follows from Cauchy-Schwarz
inequality (Part 1 of Fact A.3).

Proof of Part 3.

We can show that

|α(x)−1
l0,j0

− α(y)−1
l0,j0

| = α(x)−1
l0,j0

α(y)−1
l0,j0

· |α(x)l0,j0 − α(y)l0,j0 |
≤ β−2 · |α(x)l0,j0 − α(y)l0,j0 |

where the 1st step follows from simple algebra, the 2nd step follows from α(x)l0,j0 , α(y)l0,j0 ≥ β.

Proof of Part 4.

We can show that

∥f(x)l0,j0 − f(y)l0,j0∥2
= ∥α(x)−1

l0,j0
exp(Al0,j0 x)− α(y)−1

l0,j0
exp(Al0,j0 y)∥2

≤ ∥α(x)−1
l0,j0

exp(Al0,j0 x)− α(x)−1
l0,j0

exp(Al0,j0 y)∥2 + ∥α(x)−1
l0,j0

exp(Al0,j0 y)− α(y)−1
l0,j0

exp(Al0,j0 y)∥2
≤ α(x)−1

l0,j0
∥ exp(Al0,j0 x)− exp(Al0,j0 y)∥2 + |α(x)−1

l0,j0
− α(y)−1

l0,j0
| · ∥ exp(Al0,j0 y)∥2

where the 1st step follows from the definition of f(x)l0,j0 and α(x)l0,j0 , the 2nd step follows from
triangle inequality (Part 3 of Fact A.4), the 3rd step follows from ∥αA∥ ≤ |α|∥A∥(Part 5 of
Fact A.4).

For the first term in the above, we have

α(x)−1
l0,j0

∥ exp(Al0,j0 x)− exp(Al0,j0 y)∥2 ≤ β−1∥ exp(Al0,j0 x)− exp(Al0,j0 y)∥2
≤ β−1 ·R exp(R2) · ∥x− y∥2 (2)

where the 1st step follows from α(x)l0,j0 ≥ β, the 2nd step follows from Part 1.

For the second term in the above, we have

|α(x)−1
l0,j0

− α(y)−1
l0,j0

| · ∥ exp(Al0,j0 y)∥2 ≤ β−2 · |α(x)l0,j0 − α(y)l0,j0 | · ∥ exp(Al0,j0 y)∥2
≤ β−2 · |α(x)l0,j0 − α(y)l0,j0 | ·

√
n exp(R2)

≤ β−2 ·
√
n · ∥ exp(Al0,j0 x)− exp(Al0,j0y)∥2 ·

√
n exp(R2)

≤ β−2 ·
√
n ·R exp(R2)∥x− y∥2 ·

√
n exp(R2)

= β−2 · nR exp(2R2)∥x− y∥2 (3)

where the 1st step follows from the result of Part 3, the 2nd step follows from Part 0, the 3rd step
follows from the result of Part 2, the 4th step follows from Part 1, and the last step follows from
simple algebra.

Combining Eq. (2) and Eq. (3) together, we have

∥fl0,j0(x)− fl0,j0(y)∥2 ≤ β−1 ·R exp(R2) · ∥x− y∥2 + β−2 · nR exp(2R2)∥x− y∥2
≤ 2β−2nR exp(2R2)∥x− y∥2
≤ β−2n exp(3R2)∥x− y∥2

where the 1st step follows from the bound of the first term and the second term, the 2nd step follows
from β−1 ≥ 1 and n > 1 trivially, the 3rd step follows from simple algebra.

Proof of Part 5. We have

∥c(x, z)l0,j0,i0 − c(y, z)l0,j0,i0∥2 = ∥⟨f(x)l0,j0 , h(z)l0,i0⟩ − ⟨f(y)l0,j0 , h(z)l0,i0⟩∥2
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= ∥⟨(f(x)l0,j0 − f(y)l0,j0), h(z)l0,i0⟩∥2
≤ ∥h(z)l0,i0∥2∥f(x)l0,j0 − f(y)l0,j0∥2
≤ ∥Al0,3 zi0∥2∥f(x)l0,j0 − f(y)l0,j0∥2
≤ ∥Al0,3 zi0∥2 · β−2n exp(3R2)∥x− y∥2
≤ ∥Al0,3 ∥∥zi0∥2β−2n exp(3R2)∥x− y∥2
≤ Rβ−2n exp(3R2)∥x− y∥2

where the first step follows from the definition of c(x, y)l0,j0,i0 , the second step follows from simple
algebra, the third step follows from Fact A.3, the fourth step follows from the definition of h(y)l0,i0 ,
the fifth step follows from Part 4, the sixth step follows from Fact A.4, the last step follows from
∥Al0,3∥ ≤ R and ∥zi0∥2 ≤ R.

Thus, we complete the proof.

Proof of Part 6

∥ diag(f(x)l0,j0)− diag(f(y)l0,j0)∥ = ∥ diag(f(x)l0,j0 − f(y)l0,j0)∥
≤ ∥f(x)l0,j0 − f(y)l0,j0∥∞
≤ ∥f(x)l0,j0 − f(y)l0,j0∥2
≤ β−2n exp(3R2)∥x− y∥2

where the first step follows from simple algebra, the second step follows from Fact A.3, the third step
follows from Fact A.3, the last step follows from Part 4.

Proof of Part 7

∥f(x)l0,j0∥2 = ∥α(x)−1
l0,j0

· u(x)l0,j0∥2
≤ ∥α(x)−1

l0,j0
∥2∥u(x)l0,j0∥2

≤ β∥α(x)l0,j0∥ exp(Al0,j0 x)∥2
≤ β−1∥⟨exp(Al0,j0 x),1n⟩∥2

√
n · exp(R2)

≤ β−1∥ exp(Al0,j0 x)∥2∥1n∥2
√
n · exp(R2)

≤ β−1
√
n · exp(R2)

√
n · exp(R2)

= β−1n exp(2R2)

where the first step follows from the definition of f(x)l0,j0 , the second step follows from Fact A.3,
the third step follows from ⟨exp(Al0,j0 x),1n⟩ ≥ β, the fourth step follows from Part 0, the fifth step
follows from Fact A.3, the sixth step follows from Part 0, the last step follows from simple algebra.

Proof of Part 8 For the simplicity of the proof, we define

C1 : = f(x)l0,j0f(x)
⊤
l0,j0 − f(x)l0,j0f(y)

⊤
l0,j0

C2 : = f(x)l0,j0f(y)
⊤
l0,j0 − f(y)l0,j0f(y)

⊤
l0,j0

Then it’s obvious that

∥f(x)l0,j0f(x)⊤l0,j0 − f(y)l0,j0f(y)
⊤
l0,j0∥ = ∥C1 + C2∥

Since C1 and C2 are similar, we only needs to bound ∥C1∥:

∥f(x)l0,j0f(x)⊤l0,j0 − f(x)l0,j0f(y)
⊤
l0,j0∥ = ∥f(x)l0,j0(f(x)l0,j0 − f(y)l0,j0)

⊤∥
≤ ∥f(x)l0,j0∥2∥f(x)l0,j0 − f(y)l0,j0∥2
≤ β−1n exp(2R2)β−2n exp(3R2)∥x− y∥2
= β−3n2 exp(5R2)∥x− y∥2

where the first step follows from simple algebra, the second step follows from Fact A.4, the third step
follows from Part 7 and Part 4, the last step follows from simple algebra.
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Thus, we know

∥f(x)l0,j0f(x)⊤l0,j0 − f(y)l0,j0f(y)
⊤
l0,j0∥ ≤ 2β−3n2 exp(5R2)∥x− y∥2

Proof of Part 9

∥(diag(f(x)l0,j0)− f(x)l0,j0f(x)
⊤
l0,j0)− (diag(f(y)l0,j0)− f(y)l0,j0f(y)

⊤
l0,j0)∥

= ∥(diag(f(x)l0,j0)− diag(f(y)l0,j0) + (f(y)l0,j0f(y)
⊤
l0,j0 − f(x)l0,j0f(x)

⊤
l0,j0)∥

≤ ∥diag(f(x)l0,j0)− diag(f(y)l0,j0∥+ ∥f(y)l0,j0f(y)⊤l0,j0 − f(x)l0,j0f(x)
⊤
l0,j0∥

≤ β−2n exp(3R2)∥x− y∥2 + 2β−3n2 exp(5R2)∥x− y∥2
≤ 3β−2n2 exp(5R2)∥x− y∥2

where the first step follows from simple algebra, the second step follows from Fact A.4, the third step
follows from Part 6 and Part 7, the last step follows from simple algebra.

Proof of Part 10

∥c(x, y)l0,j0,i0∥ = ∥⟨f(x)l0,j0 , h(y)l0,i0⟩∥
≤ ∥f(x)l0,j0∥2∥h(y)l0,i0∥2
≤ Rβ−1n exp(2R2)

where the first step follows from the definition of c(x, y)l0,j0,i0 , the second step follows from Fact A.3,
the third step follows from Part 7.

Proof of Part 11

Let

d(x) : = c(x, z)l0,j0,i0

e(x) : = diag(f(x)l0,j0)− f(x)l0,j0f(x)
⊤
l0,j0

Then it’s obvious that

∥d(x)e(x)− d(y)e(y)∥
= ∥c(x, z)l0,j0,i0(diag(f(x)l0,j0)− f(x)l0,j0f(x)

⊤
l0,j0)− c(y, z)l0,j0,i0(diag(f(y)l0,j0)− f(y)l0,j0f(x)

⊤
l0,j0)∥

Define

C1 : = d(x)e(x)− d(x)e(y)

C2 : = d(x)e(y)− d(y)e(y)

Thus, it’s apparent that

∥d(x)e(x)− d(y)e(y)∥ = ∥C1 + C2∥

Since C1 and C2 are similar, we only need to bound ∥C1∥:

∥d(x)e(x)− d(x)e(y)∥ = ∥d(x)(e(x)− e(y))∥
≤ ∥d(x)∥∥e(x)− e(y)∥
≤ Rβ−1n exp(2R2)3β−2n2 exp(5R2)∥x− y∥2
= 3Rβ−3 exp(7R2)∥x− y∥2

where the first step follows from simple algebra, the second step follows from Fact A.4, the third step
follows from Part 10 and Part 9.

Thus, we have

∥d(x)e(x)− d(y)e(y)∥ ≤ 6Rβ−3 exp(7R2)∥x− y∥2
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Lemma C.4. If the following conditions holds

• ∥Al0,j0 ∥ ≤ R

• ∥x∥2 ≤ R

• Let β be lower bound on ⟨exp(Al0,j0 x),1n⟩

Then we have

β ≥ exp(−R2)

Proof. We have

⟨exp(Al0,j0 x),1n⟩ ≥ max
i∈[n]

exp(−|(Al0,j0 x)i|)

≥ exp(−∥Al0,j0 x∥∞)

≥ exp(−∥Al0,j0 x∥2)
≥ exp(−R2)

the 1st step follows from simple algebra, the 2nd step follows from definition of ℓ∞ norm, the 3rd
step follows from Fact A.3.

C.4 LIPSCHITZ FOR ∇L(x, :)

Lemma C.5. If the following conditions hold

• Let Al0,j0 ∈ Rn×d2

• Let bl0,j0,i0 ∈ R

• Let β ∈ (0, 0.1)

• Let R ≥ 4

• Let x, y ∈ Rd satisfy ∥Al0,j0x∥ ≤ R and ∥Al0,j0y∥ ≤ R

• ∥Al0,j0 ∥ ≤ R

• ⟨exp(Al0,j0 x),1n⟩ ≥ β

• ⟨exp(Al0,j0 y),1n⟩ ≥ β

• Let Rf := β−2n exp(3R2)

• Let α(x)l0,j0 be defined as Definition 3.2

• Let c(x)l0,j0,i0 be defined as Definition B.1

• Let f(x)l0,j0 be defined as Definition 3.3

• Let ∇Ll0,j0,i0 be computed as in Lemma C.1

• Let L be defined as Definition B.3

Then we have

∥∇L(x, y)−∇L(x̂, y)∥ ≤ 6mndR2 exp(10R2)∥x− x̂∥2

Proof.

∥∇Ll0,j0,i0(x, y)−∇Ll0,j0,i0(x̂, y)∥
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= ∥c(x, y)l0,j0,i0 A
⊤
l0,j0(diag(f(x)l0,j0)− f(x)l0,j0f(x)

⊤
l0,j0)h(y)l0,i0

− c(x̂, y)l0,j0,i0 A
⊤
l0,j0(diag(f(x̂)l0,j0)− f(x̂)l0,j0f(x̂)

⊤
l0,j0)h(y)l0,i0∥

≤ ∥A⊤
l0,j0 ∥∥h(y)l0,i0∥

∥c(x, y)l0,j0,i0(diag(f(x)l0,j0)− f(x)l0,j0f(x)
⊤
l0,j0)− c(x̂, y)l0,j0,i0(diag(f(x̂)l0,j0)− f(x̂)l0,j0f(x̂)

⊤
l0,j0)∥

≤ R∥c(x, y)l0,j0,i0(diag(f(x)l0,j0)− f(x)l0,j0f(x)
⊤
l0,j0)− c(x̂, y)l0,j0,i0(diag(f(x̂)l0,j0)− f(x̂)l0,j0f(x̂)

⊤
l0,j0)∥

≤ 6R2β−3 exp(7R2)∥x− x̂∥2
where the first step follows from the definition of ∇Ll0,j0,i0(x, y), the second step follows from
simple algebra, the third step follows from ∥A⊤

l0,j0 ∥ ≤ R and ∥h(y)l0,i0∥ = Al0,3 yi0 ≤ R, the
fourth step follows from Part 10 of Lemma C.3.

Thus, we have

|∇L(x, y)−∇L(x̂, y)∥ = ∥
m∑

l0=1

n∑
j0=1

d∑
i0=1

(∇Ll0,j0,i0(x, y)−∇Ll0,j0,i0(x̂, y))∥

≤
m∑

l0=1

n∑
j0=1

d∑
i0=1

∥∇Ll0,j0,i0(x, y)−∇Ll0,j0,i0(x̂, y)∥

≤
m∑

l0=1

n∑
j0=1

d∑
i0=1

6R2β−3 exp(7R2)∥x− x̂∥2

= 6mndR2β−3 exp(7R2)∥x− x̂∥2
≤ 6mndR2 exp(10R2)∥x− x̂∥2

where the first step follows from the definition of L, the second step follows from Fact A.4, the third
step follows from the lipschitz of Ll0,j0,i0 , the fourth step follows from simple algebra, the last step
follows from plugging β from Lemma C.4.

C.5 LIPSCHITZ FOR ∇L(y)

Lemma C.6. If the following conditions hold

• Let Al0,j0 ∈ Rn×d2

• Let bl0,j0,i0 ∈ Rn satisfy that ∥b∥1 ≤ 1

• Let β ∈ (0, 0.1)

• Let R ≥ 4

• Let x, y ∈ Rd satisfy ∥Al0,j0 x∥2 ≤ R and ∥Al0,j0 y∥2 ≤ R

• ∥Al0,j0 ∥ ≤ R

• ⟨exp(Al0,j0 x),1n⟩ ≥ β

• ⟨exp(Al0,j0 y),1n⟩ ≥ β

• Let Rf := β−2n exp(3R2)

• Let α(x)l0,j0 be defined as Definition 3.2

• Let c(x, y)l0,j0,i0 be defined as Definition B.1

• Let f(x)l0,j0 be defined as Definition 3.3

Then we have

∥∇L(:, y)−∇(:, ŷ)∥ ≤ R2n2md exp(6R2)∥y − ŷ∥2
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Proof.

∥∇Ll0,j0,i0(:, y)−∇Ll0,j0,i0(:, ŷ)∥ = ∥A⊤
l0,3f(:)l0,j0c(:, y)l0,j0,i0 −A⊤

l0,3f(:)l0,j0c(:, ŷ)l0,j0,i0∥
= ∥A⊤

l0,3f(:)l0,j0(c(:, y)l0,j0,i0 − c(:, ŷ)l0,j0,i0)∥
≤ ∥Al0,3∥∥f(:)l0,j0∥2|c(:, y)l0,j0,i0 − c(:, ŷ)l0,j0,i0 |
≤ Rβ−1n exp(2R2)|c(:, y)l0,j0,i0 − c(:, ŷ)l0,j0,i0 |
= Rβ−1n exp(2R2)|⟨f(:)l0,j0 , h(y)l0,i0⟩ − ⟨f(:)l0,j0 , h(ŷ)l0,i0⟩|
= Rβ−1n exp(2R2)|f(:)⊤l0,j0(h(y)l0,i0 − h(ŷ)l0,i0)|
≤ Rβ−1n exp(2R2)∥f(:)⊤l0,j0∥2∥h(y)l0,i0 − h(ŷ)l0,i0∥2
≤ Rβ−2n exp(4R2)∥h(y)l0,i0 − h(ŷ)l0,i0∥2
= Rβ−2n exp(4R2)∥Al0,3y −Al0,3ŷ∥2
= Rβ−2n exp(4R2)∥Al0,3(y − ŷ)∥2
≤ Rβ−2n exp(4R2)∥Al0,3∥∥y − ŷ∥2
≤ R2β−2n exp(4R2)∥y − ŷ∥2

where the first step follows from Lemma C.2, the second step follows from simple algebra, the third
step follows from Fact A.3, the fourth step follows from Part 7 of Lemma C.3 and ∥Al0,3∥ ≤ R, the
fifth step follows from the definition of c(x, y)l0,j0,i0 , the sixth step follows from simple algebra, the
seventh step follows from Fact A.3, the eighth step follows from Part 7 of Lemma C.3, the ninth step
follows from the definition of h(y)l0,i0 , the tenth step follows from simple algebra, the eleventh step
follows from Fact A.4, the last step follows from ∥Al0,3∥ ≤ R.

Thus, we have

∥∇L(:, y)−∇(:, ŷ)∥ = ∥
m∑

l0=1

n∑
j0=1

d∑
i0=1

(∇Ll0,j0,i0(:, y)−∇Ll0,j0,i0(:, ŷ))∥

≤
m∑

l0=1

n∑
j0=1

d∑
i0=1

∥∇Ll0,j0,i0(:, y)−∇Ll0,j0,i0(:, ŷ)∥

≤
m∑

l0=1

n∑
j0=1

d∑
i0=1

R2β−2n exp(4R2)∥y − ŷ∥2

= R2nmdβ−2n exp(4R2)∥y − ŷ∥2
≤ R2n2md exp(6R2)∥y − ŷ∥2

where the first step follows from the definition of L, the second step follows from Fact A.3, the third
step follows from the lipschitz of ∇Ll0,j0,i0(:, x), the fourth step follows from simple algebra, the
last step follows from Lemma C.4.
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D GRADIENT FOR Q

In Section D.1, we define the basic definitions and problems to be used in this section. In Section D.2,
we compute the gradient with respect to Q step by step. In Section D.3, we reform the gradient in a
way that is easy for us to prove its lipschitz property. In Section D.4, we prove the lipschitz property
for several basic terms. In Section D.5, we state some intermediate steps for proving the lipschitz of
gradient. In Section D.6, we prove the lipschitz property of the gradient with respect to Q.

D.1 DEFINITIONS

Definition D.1. Let Al0,1, Al0,2 ∈ Rn×d. Let Al0 = Al0,1 ⊗ Al0,2 ∈ Rn2×d2

. Let Al0,j0 ∈ Rn×d2

denote the j0-th block of Al0 ∈ Rn2×d2

.

For each l0 ∈ [m], for each j0 ∈ [n].

We define u(Q)l0,j0 ∈ Rn as follows

u(Q)l0,j0︸ ︷︷ ︸
n×1

:= exp(Al0,j0︸ ︷︷ ︸
n×d2

vec(QK⊤)︸ ︷︷ ︸
d2×1

)

Definition D.2. For each l0 ∈ [m], for each j0 ∈ [n].

We define α(Q)l0,j0 ∈ R as follows
α(Q)l0,j0︸ ︷︷ ︸

scalar

:= ⟨u(Q)l0,j0︸ ︷︷ ︸
n×1

, 1n︸︷︷︸
n×1

⟩.

Definition D.3. Let Al0,1, Al0,2 ∈ Rn×d. Let Al0 = Al0,1 ⊗ Al0,2 ∈ Rn2×d2

. Let Al0,j0 ∈ Rn×d2

denote the j0-th block of Al0 ∈ Rn2×d2

.

We define f(Q)l0,j0 : Rd2 → Rn,

f(Q)l0,j0︸ ︷︷ ︸
n×1

:= α(Q)−1
l0,j0︸ ︷︷ ︸

scalar

·u(Q)l0,j0︸ ︷︷ ︸
n×1

Definition D.4. We define c(Q, y)j0,i0 ∈ R as follows
c(Q, y)l0,j0,i0︸ ︷︷ ︸

scalar

:= ⟨f(Q)l0,j0︸ ︷︷ ︸
n×1

, h(y)l0,i0︸ ︷︷ ︸
n×1

⟩ − bl0,j0,i0︸ ︷︷ ︸
scalar

Definition D.5. For each l0 ∈ [m], j0 ∈ [n], i0 ∈ [d]. We define Ll0,j0,i0 as follows

Ll0,j0,i0(Q, y)︸ ︷︷ ︸
scalar

:= 0.5 cl0,j0,i0(Q, y)2︸ ︷︷ ︸
scalar

Definition D.6. The final loss is

L(Q, y)︸ ︷︷ ︸
scalar

:=

m∑
l0=1

n∑
j0=1

d∑
i0=1

Ll0,j0,i0(Q, y)︸ ︷︷ ︸
scalar

.

Definition D.7. We define the diagonal matrix D ∈ Rn2×n2

as:

D(Q)︸ ︷︷ ︸
n2×n2

= diag(exp( A1︸︷︷︸
n2×d

Q︸︷︷︸
d×L

K⊤︸︷︷︸
L×d

A⊤
2 )1n)

We give our formal definition of the optimization formulation
Definition D.8. Let A1, A2 ∈ Rn×d. We define the optimization formulation as the following:

min
Q∈Rd×d

L(Q) = min
Q∈Rd×d

∥D(Q)−1 exp(A1QK⊤A⊤
2 )A3Y −B∥2F

Definition D.9. Let A1, A2 ∈ Rn×d. Let A = A1 ⊗A2 ∈ Rn2×d2

. Let D′(Q) ∈ Rn2×n2

denote the
diagonal matrix D′(Q) := D(Q)⊗ In. We define the vector version of optimization formulation as
the following:

min
Q∈Rd×d

L(Q) = min
Q∈Rd×d

∥mat(D′(Q)−1 exp(A · vec(QK⊤)))A3Y −B∥22
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D.2 GRADIENT

Lemma D.10. If the following conditions hold

• Let Qi2,k2
denote the i2-the row and k2-th column of Q ∈ Rd×L

Then, we have

• Part 1. For each i2 ∈ [d] and k2 ∈ [L], we have

d vec(QK⊤)

dQi2,k2

= vec( ei2︸︷︷︸
d×1

e⊤k2︸︷︷︸
1×L

K⊤︸︷︷︸
L×d

)

• Part 2. For each i2 ∈ [d] and k2 ∈ [L], we have

dAl0,j0 vec(QK⊤)

dQi2,k2

= Al0,j0︸ ︷︷ ︸
n×d2

vec(ei2e
⊤
k2
K⊤)︸ ︷︷ ︸

d2×1

• Part 3. For each i2 ∈ [d] and k2 ∈ [L], we have

du(Q)l0,j0
dQi2,k2

= u(Q)l0,j0︸ ︷︷ ︸
n×1

◦ (Al0,j0 vec(ei2e
⊤
k2
K⊤))︸ ︷︷ ︸

n×1

• Part 4. For each i2 ∈ [d] and k2 ∈ [L], we have

dα(Q)l0,j0
dQi2,k2

= ⟨u(Q)l0,j0︸ ︷︷ ︸
n×1

,Al0,j0︸ ︷︷ ︸
n×d2

vec(ei2e
⊤
k2
K⊤)︸ ︷︷ ︸

d2×1

⟩

• Part 5. For each i2 ∈ [d] and k2 ∈ [L], we have

dα(Q)−1
l0,j0

dQi2,k2

= −α(Q)−1
l0,j0︸ ︷︷ ︸

scalar

⟨f(Q)l0,j0︸ ︷︷ ︸
n×1

,Al0,j0︸ ︷︷ ︸
n×d2

vec(ei2e
⊤
k2
K⊤)︸ ︷︷ ︸

d2×1

⟩

• Part 6. For each i2 ∈ [d] and k2 ∈ [L], we have

df(Q)l0,j0
dQi2,k2

= f(Q)l0,j0︸ ︷︷ ︸
n×1

◦(Al0,j0︸ ︷︷ ︸
n×d2

vec(ei2e
⊤
k2
K⊤)︸ ︷︷ ︸

d2×1

)− f(Q)l0,j0︸ ︷︷ ︸
n×1

⟨f(Q)l0,j0︸ ︷︷ ︸
n×1

, vec(ei2e
⊤
k2
K⊤)︸ ︷︷ ︸

d2×1

)⟩

• Part 7. For each i2 ∈ [d] and k2 ∈ [L], we have

dc(Q, y)l0,j0,i0
dQi2,k2

= ⟨f(Q)l0,j0︸ ︷︷ ︸
n×1

◦(Al0,j0︸ ︷︷ ︸
n×d2

vec(ei2e
⊤
k2
K⊤)︸ ︷︷ ︸

d2×1

, h(y)l0,i0︸ ︷︷ ︸
n×1

⟩ − ⟨f(Q)l0,j0︸ ︷︷ ︸
n×1

, h(y)l0,i0︸ ︷︷ ︸
n×1

⟩⟨f(Q)l0,j0︸ ︷︷ ︸
n×1

,Al0,j0︸ ︷︷ ︸
n×d2

vec(ei2e
⊤
k2
K⊤)︸ ︷︷ ︸

d2×1

⟩

• Part 8. For each i2 ∈ [d] and k2 ∈ [L], we have

dLl0,j0,i0(Q, y)

dQi2,k2

= cl0,j0,i0(Q, y)︸ ︷︷ ︸
scalar

(⟨f(Q)l0,j0︸ ︷︷ ︸
n×1

◦(Al0,j0︸ ︷︷ ︸
n×d2

vec(ei2e
⊤
k2
K⊤)︸ ︷︷ ︸

d2×1

, h(y)l0,i0︸ ︷︷ ︸
n×1

⟩ − ⟨f(Q)l0,j0︸ ︷︷ ︸
n×1

, h(y)l0,i0︸ ︷︷ ︸
n×1

⟩⟨f(Q)l0,j0︸ ︷︷ ︸
n×1

,Al0,j0︸ ︷︷ ︸
n×d2

vec(ei2e
⊤
k2
K⊤)︸ ︷︷ ︸

d2×1

⟩)
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Proof. Proof of Part 1. For each i2 ∈ [d] and k2 ∈ [L],

d vec(QK⊤)

dQi2,k2

= vec(
dQ

dQi2,k2

K⊤)

= vec( ei2︸︷︷︸
d×1

e⊤k2︸︷︷︸
1×L

K⊤︸︷︷︸
L×d

)

where the first step simple algebra.

Proof of Part 2. For each i2 ∈ [d] and k2 ∈ [L],

dAl0,j0 vec(QK⊤)

dQi2,k2

= Al0,j0 vec(
dQ

dQi2,k2

K⊤)

= Al0,j0︸ ︷︷ ︸
n×d2

vec(ei2e
⊤
k2
K⊤)︸ ︷︷ ︸

d2×1

where the first step chain rule and the second step follows from Part 1.

Proof of Part 3. For each i2 ∈ [d] and k2 ∈ [L],

du(Q)l0,j0
dQi2,k2

=
d exp(Al0,j0 vec(QK⊤)

dQi2,k2

)

= u(Q)l0,j0︸ ︷︷ ︸
n×1

◦(Al0,j0︸ ︷︷ ︸
n×d2

vec(ei2e
⊤
k2
K⊤)︸ ︷︷ ︸

d2×1

)

where the first step follows from the definition of u and the second step follows from chain rule and
Part 2.

Proof of Part 4 For each i2 ∈ [d] and k2 ∈ [L]

dα(Q)l0,j0
dQi2,k2

=
d⟨u(Q)l0,j0 ,1n⟩.

dQi2,k2

= ⟨du(Q)l0,j0
dQi2,k2

,1n⟩

= ⟨u(Q)l0,j0︸ ︷︷ ︸
n×1

◦(Al0,j0︸ ︷︷ ︸
n×d2

vec(ei2e
⊤
k2
K⊤)︸ ︷︷ ︸

d2×1

),1n⟩

= ⟨u(Q)l0,j0︸ ︷︷ ︸
n×1

,Al0,j0︸ ︷︷ ︸
n×d2

vec(ei2e
⊤
k2
K⊤)︸ ︷︷ ︸

d2×1

⟩

where the first step follows from the definition of α(Q)l0,j0 , the second step follows from simple
algebra, the third step follows from Part 3.

Proof of Part 5 For each i2 ∈ [d] and k2 ∈ [L]

dα(Q)−1
l0,j0

dQi2,k2

= − α(Q)−2
l0,j0

dα(Q)l0,j0
dQi2,k2

= − α(Q)−2
l0,j0

⟨u(Q)l0,j0︸ ︷︷ ︸
n×1

,Al0,j0︸ ︷︷ ︸
n×d2

vec(ei2e
⊤
k2
K⊤)︸ ︷︷ ︸

d2×1

⟩

= − α(Q)−1
l0,j0︸ ︷︷ ︸

scalar

⟨f(Q)l0,j0︸ ︷︷ ︸
n×1

,Al0,j0︸ ︷︷ ︸
n×d2

vec(ei2e
⊤
k2
K⊤)︸ ︷︷ ︸

d2×1

⟩

where the first step follows from simple algebra, the second step follows from Part 4, the third step
follows from simple algebra and Fact A.1.

Proof of Part 6 For each i2 ∈ [d] and k2 ∈ [L],

df(Q)l0,j0
dQi2,k2

=
dα(Q)−1

l0,j0
· u(Q)l0,j0

dQi2,k2
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=
dα(Q)−1

l0,j0

dQi2,k2

u(Q)l0,j0 +
du(Q)l0,j0
dQi2,k2

α(Q)−1
l0,j0

= − f(Q)l0,j0︸ ︷︷ ︸
n×1

⟨f(Q)l0,j0︸ ︷︷ ︸
n×1

,Al0,j0︸ ︷︷ ︸
n×d2

vec(ei2e
⊤
k2
K⊤)︸ ︷︷ ︸

d2×1

⟩+ u(Q)l0,j0︸ ︷︷ ︸
n×1

◦(Al0,j0︸ ︷︷ ︸
n×d2

vec(ei2e
⊤
k2
K⊤)︸ ︷︷ ︸

d2×1

)α(Q)−1
l0,j0︸ ︷︷ ︸

scalar

= f(Q)l0,j0︸ ︷︷ ︸
n×1

◦(Al0,j0︸ ︷︷ ︸
n×d2

vec(ei2e
⊤
k2
K⊤)︸ ︷︷ ︸

d2×1

)− f(Q)l0,j0︸ ︷︷ ︸
n×1

⟨f(Q)l0,j0︸ ︷︷ ︸
n×1

,Al0,j0︸ ︷︷ ︸
n×d2

vec(ei2e
⊤
k2
K⊤)︸ ︷︷ ︸

d2×1

⟩

where the first step follows from the definition of f(Q)l0,j0 , the second step follows from differential
chain rule, the third step follows from Part 3 and Part 5, the last step follows from simple algebra.

Proof of Part 7 For each i2 ∈ [d] and k2 ∈ [L],

dc(Q, y)l0,j0,i0
dQi2,k2

=
d⟨f(Q)l0,j0 , h(y)l0,i0⟩ − bl0,j0,i0

dQi2,k2

=
d⟨f(Q)l0,j0 , h(y)l0,i0⟩

dQi2,k2

= ⟨df(Q)l0,j0
dQi2,k2

, h(y)l0,i0⟩

= h(y)⊤l0,i0︸ ︷︷ ︸
1×n

(f(Q)l0,j0︸ ︷︷ ︸
n×1

◦(Al0,j0︸ ︷︷ ︸
n×d2

vec(ei2e
⊤
k2
K⊤)︸ ︷︷ ︸

d2×1

)− f(Q)l0,j0︸ ︷︷ ︸
n×1

⟨f(Q)l0,j0︸ ︷︷ ︸
n×1

, vec(ei2e
⊤
k2
K⊤)︸ ︷︷ ︸

d2×1

)⟩)

= ⟨f(Q)l0,j0︸ ︷︷ ︸
n×1

◦(Al0,j0︸ ︷︷ ︸
n×d2

vec(ei2e
⊤
k2
K⊤)︸ ︷︷ ︸

d2×1

, h(y)l0,i0︸ ︷︷ ︸
n×1

)⟩ − ⟨f(Q)l0,j0︸ ︷︷ ︸
n×1

, h(y)l0,i0︸ ︷︷ ︸
n×1

⟩⟨f(Q)l0,j0︸ ︷︷ ︸
n×1

,Al0,j0︸ ︷︷ ︸
n×d2

vec(ei2e
⊤
k2
K⊤)︸ ︷︷ ︸

d2×1

⟩

where the first step follows from the definition of c(Q, y)l0,j0,i0 , the second step follows from bl0,j0,i0
is a constant, the third step follows from only f(Q)l0,j0 is dependent on Q, the fourth step follows
from Part 6,the last step follows from simple algebra.

Proof of Part 8 For each i2 ∈ [d] and k2 ∈ [L],

dLl0,j0,i0(Q, y)

dQi2,k2

=
d0.5cl0,j0,i0(Q, y)2

dQi2,k2

= cl0,j0,i0(Q, y)
dcl0,j0,i0(Q, y)

dQi2,k2

= cl0,j0,i0(Q, y)︸ ︷︷ ︸
scalar

(⟨f(Q)l0,j0︸ ︷︷ ︸
n×1

◦(Al0,j0︸ ︷︷ ︸
n×d2

vec(ei2e
⊤
k2
K⊤)︸ ︷︷ ︸

d2×1

), h(y)l0,i0︸ ︷︷ ︸
n×1

⟩ − ⟨f(Q)l0,j0︸ ︷︷ ︸
n×1

, h(y)l0,i0︸ ︷︷ ︸
n×1

⟩⟨f(Q)l0,j0︸ ︷︷ ︸
n×1

,Al0,j0︸ ︷︷ ︸
n×d2

vec(ei2e
⊤
k2
K⊤)︸ ︷︷ ︸

d2×1

⟩)

where the first step follows from the definition of Ll0,j0,i0(Q, y), the second step follows from simple
algebra, the third step follows from Part 7.

D.3 REFORMULATING GRADIENT

Lemma D.11. If the following conditions hold

• Let f(Q)l0,j0 be defined as Definition D.3

• Let dLl0,j0,i0
(Q,:)

dQi2,k2
be compute as Part 8 of Lemma D.10

• Let v1 := (Al0,j0 vec(ei2e
⊤
k2
K⊤)) ◦ h(y)l0,i0

• Let v2 := h(y)l0,i0
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• Let v3 := Al0,j0 vec(ei2e
⊤
k2
K⊤)

then dLl0,j0,i0
(Q,y)

dQi2,k2
can be rewrite as

cl0,j0,i0(Q, y)(⟨f(Q)l0,j0 , v1⟩ − ⟨f(Q)l0,j0 , v2⟩⟨f(Q)l0,j0 , v3⟩)

Proof. The proof trivially follows from Fact A.1.

D.4 LIPSCHITZ OF SEVERAL TERMS

Lemma D.12. If the following conditions hold

• Let Al0,j0 ∈ Rn×d2

• Let bl0,j0,i0 ∈ Rn satisfy that ∥b∥1 ≤ 1

• Let β ∈ (0, 0.1)

• Let R ≥ 4

• Let ∥ vec(QK⊤)∥2 ≤ R

• ∥Al0,j0 ∥ ≤ R

• ⟨exp(Al0,j0 vec(QK⊤)),1n⟩ ≥ β

• ⟨exp(Al0,j0 vec(Q̂K⊤)),1n⟩ ≥ β

• Let Rf := β−2n exp(3R2)

• Let α(Q)l0,j0 be defined as Definition D.2

• Let c(Q)l0,j0,i0 be defined as Definition D.4

• Let f(Q)l0,j0 be defined as Definition D.3

• Let v1 := (Al0,j0 vec(ei2e
⊤
k2
K⊤)h(y)l0,i0

• Let v2 := h(y)l0,i0

• Let v3 := Al0,j0 vec(ei2e
⊤
k2
K⊤)

Then we have

• Part 1. ∥ exp(Al0,j0 vec(QK⊤))∥2 ≤
√
n · exp(R2)

• Part 2. ∥f(Q)l0,j0∥2 ≤ β−1n exp(2R2)

• Part 3. |c(Q, :)l0,j0,i0 | ≤ Rβ−1n exp(2R2)

• Part 4. ∥v2∥2 ≤ R2

• Part 5. ∥v3∥2 ≤ R2

• Part 6. ∥v1∥2 ≤ R4

• Part 7. |(⟨f(Q)l0,j0 , v1⟩ − ⟨f(Q)l0,j0 , v2⟩⟨f(Q)l0,j0 , v3⟩)| ≤ β−1n2R4 exp(6R2)

• Part 8. β ≥ exp(−R2)

Proof. Proof of Part 1

∥ exp(Al0,j0 vec(QK⊤))∥2 ≤
√
n · ∥ exp(Al0,j0 vec(QK⊤)∥∞

34



Under review as a conference paper at ICLR 2024

≤
√
n · exp(∥Al0,j0 vec(QK⊤)∥∞)

≤
√
n · exp(∥Al0,j0 vec(QK⊤)∥2)

≤
√
n · exp(R2)

Proof of Part 2

∥f(Q)l0,j0∥2 = ∥α(Q)−1
l0,j0

· u(Q)l0,j0∥2
≤ ∥α(Q)−1

l0,j0
∥2∥u(Q)l0,j0∥2

≤ β−1∥ exp(Al0,j0 vec(QK⊤))∥2
≤ β−1

√
n · exp(R2)

where the first step follows from the definition of f(x)l0,j0 , the second step follows from Fact A.3,
the third step follows from ⟨exp(Al0,j0 vec(QK⊤)),1n⟩ ≥ β,the fourth step follows from Part 1.

Proof of Part 3

∥c(Q, y)l0,j0,i0∥ = ∥⟨f(Q)l0,j0 , h(y)l0,i0⟩∥
≤ ∥f(Q)l0,j0∥2∥h(y)l0,i0∥2
≤ Rβ−1n exp(2R2)

where the first step follows from the definition of c(Q, y)l0,j0,i0 , the second step follows from
Fact A.3, the third step follows from Part 2.

Proof of Part 4

∥h(y)l0,i0∥2 = ∥Al0,3yi0∥2
≤ ∥Al0,3∥∥yi0∥2
≤ R2

where the first step follows from the definition of h(y)l0,i0 , the second step follows from Fact A.4,
the third step follows from ∥Al0,3∥ and ∥yi0∥2 ≤ R.

Proof of Part 5

∥Al0,j0 vec(ei2e
⊤
k2
K⊤)∥2 ≤ ∥Al0,j0 ∥∥ vec(ei2e⊤k2

K⊤)∥2
≤ R2

where the first step follows from Fact A.4, the second step follows from ∥Al0,j0 ∥ ≤ R and Fact A.5.

Proof of Part 6

∥(Al0,j0 vec(ei2e
⊤
k2
K⊤)) ◦ h(y)l0,i0∥2 ≤ ∥Al0,j0 vec(ei2e

⊤
k2
K⊤)∥∞∥h(y)l0,i0∥2

≤ ∥Al0,j0 vec(ei2e
⊤
k2
K⊤)∥2∥h(y)l0,i0∥2

≤ R4

where the first step follows from Fact A.3, the second step follows from Fact A.3, the third step
follows from Part 4 and Part 5.

Proof of Part 7

|⟨f(Q)l0,j0 , (Al0,j0 vec(ei2e
⊤
k2
K⊤)h(y)l0,i0⟩ − ⟨f(Q)l0,j0 , h(y)l0,i0⟩⟨f(Q)l0,j0 ,Al0,j0 vec(ei2e

⊤
k2
K⊤)⟩|

≤ |⟨f(Q)l0,j0 , (Al0,j0 vec(ei2e
⊤
k2
K⊤)h(y)l0,i0⟩|+ |⟨f(Q)l0,j0 , h(y)l0,i0⟩⟨f(Q)l0,j0 ,Al0,j0 vec(ei2e

⊤
k2
K⊤)⟩|

≤ ∥f(Q)l0,j0∥2∥Al0,j0 vec(ei2e
⊤
k2
K⊤)h(y)l0,i0∥2 + ∥f(Q)l0,j0∥2∥h(y)l0,i0∥2∥f(Q)l0,j0∥2∥Al0,j0 vec(ei2e

⊤
k2
K⊤)∥2

≤ β−1n exp(2R2)∥Al0,j0 vec(ei2e
⊤
k2
K⊤)h(y)l0,i0∥2 + β−2n2 exp(4R2)∥h(y)l0,i0∥2∥Al0,j0 vec(ei2e

⊤
k2
K⊤)∥2

≤β−1n exp(2R2)∥Al0,j0 vec(ei2e
⊤
k2
K⊤)∥2∥h(y)l0,i0∥2 + β−2n2 exp(4R2)∥h(y)l0,i0∥2∥Al0,j0 vec(ei2e

⊤
k2
K⊤)∥2

≤ β−1n exp(2R2)R4 + β−2n2 exp(4R2)R4

≤ β−1n2R4 exp(6R2)
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where the first step follows from triangle inequality, the second step follows from Fact A.3, the third
step follows from Part 2, the fourth step follows from Fact A.3, the fifth step follows from Part 5
and Part 4, the last step follows from simple algebra.

Proof of Part 8 We have

⟨exp(Al0,j0 vec(QK⊤)),1n⟩ ≥ max
i∈[n]

exp(−|(Al0,j0 vec(QK⊤))i|)

≥ exp(−∥Al0,j0 vec(QK⊤)∥∞)

≥ exp(−∥Al0,j0 vec(QK⊤)∥2)
≥ exp(−R2)

where the 1st step follows from simple algebra, the 2nd step follows from definition of ℓ∞ norm, the
3rd step follows from Fact A.3.

Lemma D.13. If the following conditions hold

• Let Al0,j0 ∈ Rn×d2

• Let bl0,j0,i0 ∈ Rn satisfy that ∥b∥1 ≤ 1

• Let β ∈ (0, 0.1)

• Let R ≥ 4

• Let ∥ vec(QK⊤)∥2 ≤ R

• ∥Al0,j0 ∥ ≤ R

• ⟨exp(Al0,j0 vec(QK⊤)),1n⟩ ≥ β

• ⟨exp(Al0,j0 vec(Q̂K⊤)),1n⟩ ≥ β

• Let Rf := β−2n exp(3R2)

• Let α(Q)l0,j0 be defined as Definition D.2

• Let c(Q)l0,j0,i0 be defined as Definition D.4

• Let f(Q)l0,j0 be defined as Definition D.3

Then we have

• Part 1. ∥ exp(Al0,j0 vec(QK⊤))− exp(Al0,j0 vec(Q̂K⊤))∥2 ≤ R2 exp(R2)∥Q− Q̂∥F

• Part 2. |α(Q)l0,j0−α(Q̂)l0,j0 | ≤ ∥ exp(Al0,j0 vec(QK⊤))−exp(Al0,j0 vec(Q̂K⊤))∥2·
√
n

• Part 3. |α(Q)−1
l0,j0

− α(Q̂)−1
l0,j0

| ≤ β−2 · |α(Q)l0,j0 − α(Q̂)l0,j0 |

• Part 4. ∥f(Q)l0,j0 − f(Q)l0,j0∥2 ≤ β−2n exp(3R2)∥Q− Q̂∥F

• Part 5. ∥c(Q, :)l0,j0,i0 − c(Q̂, :)l0,j0,i0∥2 ≤ R2β−2n exp(3R2)∥Q− Q̂∥2

Note that ∥Q∥F = (
∑

i

∑
j Q

2
i,j)

1/2 = ∥ vec(Q)∥2

Proof. Proof of Part 1.

∥ exp(Al0,j0 vec(QK⊤))− exp(Al0,j0 vec(Q̂K⊤))∥2 ≤ exp(R2)∥Al0,j0 vec(QK⊤)− Al0,j0 vec(Q̂K⊤)∥2
≤ exp(R2)∥Al0,j0 ∥∥ vec(QK⊤)− vec(Q̂K⊤)∥2
= exp(R2)∥Al0,j0 ∥∥QK⊤ − Q̂K⊤∥F
≤ exp(R2)∥Al0,j0 ∥∥Q− Q̂∥F ∥K∥F
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≤ R2 exp(R2)∥Q− Q̂∥F

Proof of Part 2.

|α(x)l0,j0 − α(y)l0,j0 | = |⟨exp(Al0,j0 vec(QK⊤))− exp(Al0,j0 vec(Q̂K⊤)),1n⟩|
≤ ∥ exp(Al0,j0 vec(QK⊤))− exp(Al0,j0 vec(Q̂K⊤))∥2 ·

√
n

Proof of Part 3.

|α(Q)−1
l0,j0

− α(Q̂)−1
l0,j0

| = α(Q)−1
l0,j0

α(Q̂)−1
l0,j0

· |α(Q)l0,j0 − α(Q̂)l0,j0 |

≤ β−2 · |α(Q)l0,j0 − α(Q̂)l0,j0 |

Proof of Part 4. We can show that

∥f(Q)l0,j0 − f(Q̂)l0,j0∥2 = ∥α(Q)−1
l0,j0

exp(Al0,j0 vec(QK⊤))− α(Q̂)−1
l0,j0

exp(Al0,j0 vec(Q̂K⊤))∥2
≤ ∥α(Q)−1

l0,j0
exp(Al0,j0 vec(QK⊤))− α(Q)−1

l0,j0
exp(Al0,j0 vec(Q̂K⊤))∥2

+ ∥α(Q)−1
l0,j0

exp(Al0,j0 vec(Q̂K⊤))− α(Q̂)−1
l0,j0

exp(Al0,j0 vec(Q̂K⊤))∥2
≤ α(Q)−1

l0,j0
∥ exp(Al0,j0 vec(QK⊤))− exp(Al0,j0 vec(Q̂K⊤))∥2

+ |α(Q)−1
l0,j0

− α(Q̂)−1
l0,j0

| · ∥ exp(Al0,j0 vec(Q̂K⊤))∥2
where the 1st step follows from the definition of f(Q)l0,j0 and α(Q)l0,j0 , the 2nd step follows
from triangle inequality (Part 3 of Fact A.3), the 3rd step follows from ∥αA∥ ≤ |α|∥A∥(Part 5 of
Fact A.4).

For the first term in the above, we have

α(Q)−1
l0,j0

∥ exp(Al0,j0 vec(QK⊤))− exp(Al0,j0 vec(Q̂K⊤))∥2 (4)

≤ β−1∥ exp(Al0,j0 vec(QK⊤))− exp(Al0,j0 vec(Q̂K⊤))∥2
≤ β−1 ·R2 exp(R2) · ∥Q− Q̂∥F (5)

where the 1st step follows from α(x)l0,j0 ≥ β, the 2nd step follows from Part 1.

For the second term in the above, we have

|α(Q)−1
l0,j0

− α(Q̂)−1
l0,j0

| · ∥ exp(Al0,j0 vec(Q̂K⊤))∥2
≤ β−2 · |α(Q)l0,j0 − α(Q̂)l0,j0 | · ∥ exp(Al0,j0 vec(Q̂K⊤))∥2
≤ β−2 · |α(Q)l0,j0 − α(Q̂)l0,j0 | ·

√
n exp(R2)

≤ β−2 ·
√
n · ∥ exp(Al0,j0 vec(QK⊤))− exp(Al0,j0 vec(Q̂K⊤))∥2 ·

√
n exp(R2)

≤ β−2 ·
√
n ·R2 exp(R2)∥Q− Q̂∥F ·

√
n exp(R2)

= β−2 · nR2 exp(2R2)∥Q− Q̂∥F (6)

where the 1st step follows from the result of Part 3, the 2nd step follows from Part 1 of Lemma D.12,
the 3rd step follows from the result of Part 2, the 4th step follows from Part 1, and the last step
follows from simple algebra.

Combining Eq. (4) and Eq. (6) together, we have

∥fl0,j0(Q)− fl0,j0(Q̂)∥2 ≤ β−1 ·R2 exp(R2) · ∥Q− Q̂∥F + β−2 · nR2 exp(2R2)∥Q− Q̂∥F
≤ 2β−2nR2 exp(2R2)∥Q− Q̂∥F
≤ β−2n exp(3R2)∥Q− Q̂∥F

where the 1st step follows from the bound of the first term and the second term, the 2nd step follows
from β−1 ≥ 1 and n > 1 trivially, the 3rd step follows from simple algebra.

Proof of Part 5.

∥c(Q, :)l0,j0,i0 − c(Q̂, :)l0,j0,i0∥2 = ∥⟨f(Q)l0,j0 , h(:)l0,i0⟩ − ⟨f(Q̂)l0,j0 , h(:)l0,i0⟩∥2
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= ∥⟨(f(Q)l0,j0 − f(Q̂)l0,j0), h(:)l0,i0⟩∥2
≤ ∥h(:)l0,i0∥2∥f(Q)l0,j0 − f(Q̂)l0,j0∥2
≤ ∥Al0,3 yi0∥2∥f(Q)l0,j0 − f(Q̂)l0,j0∥2
≤ ∥Al0,3 yi0∥2 · β−2n exp(3R2)∥Q− Q̂∥F
≤ ∥Al0,3 ∥∥yi0∥2β−2n exp(3R2)∥Q− Q̂∥F
≤ Rβ−2n exp(3R2)∥Q− Q̂∥F

where the first step follows from the definition of c(x, y)l0,j0,i0 , the second step follows from simple
algebra, the third step follows from Fact A.3, the fourth step follows from the definition of h(y)l0,i0 ,
the fifth step follows from Part 4, the sixth step follows from Fact A.4, the last step follows from
∥Al0,3∥ ≤ R and ∥zi0∥2 ≤ R

D.5 SUMMARY OF 3 STEPS

Lemma D.14. If the following conditions hold

• Let f(Q)l0,j0 be defined as Definition D.3

• Let dLl0,j0,i0
(Q,:)

dQi2,k2
be compute as Part 8 of Lemma D.10

• Let v1 := (Al0,j0 vec(ei2e
⊤
k2
K⊤)) ◦ h(y)l0,i0

• Let v2 := h(y)l0,i0

• Let v3 := Al0,j0 vec(ei2e
⊤
k2
K⊤)

Then we have

• |⟨f(Q)l0,j0 , v1⟩ − ⟨f(Q̂)l0,j0 , v1⟩| ≤ β−2nR4 exp(3R2)∥Q− Q̂∥F

• |⟨f(Q)l0,j0 , v2⟩⟨f(Q)l0,j0 , v3⟩ − ⟨f(Q̂)l0,j0 , v2⟩⟨f(Q̂)l0,j0 , v3⟩| ≤
2β−3n exp(2R2)R6n exp(3R2)∥Q− Q̂∥F

• |dLl0,j0,i0
(Q,:)

dQi2,k2
− dLl0,j0,i0

(Q̂,:)

dQi2,k2
| ≤ β−3n3R7 exp(19R2)∥Q− Q̂∥F

Proof. Proof of Part 1.

|⟨f(Q)l0,j0 , v1⟩ − ⟨f(Q̂)l0,j0 , v1⟩| = |⟨f(Q)l0,j0 − f(Q̂)l0,j0 , v1⟩|
≤ ∥f(Q)l0,j0 − f(Q̂)l0,j0∥2∥v1∥2
≤ β−2n exp(3R2)∥Q− Q̂∥F ∥(Al0,j0 vec(ei2e

⊤
k2
K⊤)) ◦ h(y)l0,i0∥2

≤ β−2nR4 exp(3R2)∥Q− Q̂∥F
where the first step follows from simple algebra, the second step follows from Fact A.3, the third step
follows from Part 4 of Lemma D.13, the fourth step follows from Part 6 of Lemma D.12.

Proof of Part 2. For convenience, we define

C1 : = ⟨f(Q)l0,j0 , v2⟩⟨f(Q)l0,j0 , v3⟩ − ⟨f(Q̂)l0,j0 , v2⟩⟨f(Q)l0,j0 , v3⟩
C2 : = ⟨f(Q̂)l0,j0 , v2⟩⟨f(Q)l0,j0 , v3⟩ − ⟨f(Q̂)l0,j0 , v2⟩⟨f(Q̂)l0,j0 , v3⟩

Then it’s apparent that

|C1 + C2| = |⟨f(Q)l0,j0 , v2⟩⟨f(Q)l0,j0 , v3⟩ − ⟨f(Q̂)l0,j0 , v2⟩⟨f(Q̂)l0,j0 , v3⟩|

Since C1 and C2 are similar, we only need to bound |C1|:

|C1| = |⟨f(Q)l0,j0 , v2⟩⟨f(Q)l0,j0 , v3⟩ − ⟨f(Q̂)l0,j0 , v2⟩⟨f(Q)l0,j0 , v3⟩|
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= |⟨f(Q)l0,j0 , v3⟩(⟨f(Q)l0,j0 , v2⟩ − ⟨f(Q̂)l0,j0 , v2⟩)|
≤ |⟨f(Q)l0,j0 , v3⟩||⟨f(Q)l0,j0 , v2⟩ − ⟨f(Q̂)l0,j0 , v2⟩|
= |⟨f(Q)l0,j0 , v3⟩||⟨f(Q)l0,j0 − f(Q̂)l0,j0 , v2⟩|
≤ ∥f(Q)l0,j0∥2∥v3∥2∥f(Q)l0,j0 − f(Q̂)l0,j0∥2∥v2∥2
≤ β−1n exp(2R2)∥v3∥2β−2n exp(3R2)∥Q− Q̂∥F ∥v2∥2
≤ β−3n2R6 exp(5R2)∥Q− Q̂∥F

where the first step follows from the definition of C1, the second step follows from simple algebra,
the third step follows from triangular inequality, the fourth step follows from simple algebra, the fifth
step follows from Fact A.3, the sixth step follows from Part 4 of Lemma D.13, the last step follows
from Part 4 and Part 5 of Lemma D.12.

Thus, we obtained the bound for |⟨f(Q)l0,j0 , v2⟩⟨f(Q)l0,j0 , v3⟩ − ⟨f(Q̂)l0,j0 , v2⟩⟨f(Q̂)l0,j0 , v3⟩|:

|⟨f(Q)l0,j0 , v2⟩⟨f(Q)l0,j0 , v3⟩ − ⟨f(Q̂)l0,j0 , v2⟩⟨f(Q̂)l0,j0 , v3⟩| ≤ 2β−3n2R6 exp(5R2)∥Q− Q̂∥F

Proof of Part 3 By Lemma D.11, we know that dLl0,j0,i0
(Q,:)

dQi2,k2
can be written as

dLl0,j0,i0(Q, :)

dQi2,k2

= cl0,j0,i0(Q, y)(⟨f(Q)l0,j0 , v1⟩ − ⟨f(Q)l0,j0 , v2⟩⟨f(Q)l0,j0 , v3⟩)

For convenience, we define

s(Q) : = cl0,j0,i0(Q, y)

t(Q) : = (⟨f(Q)l0,j0 , v1⟩ − ⟨f(Q)l0,j0 , v2⟩⟨f(Q)l0,j0 , v3⟩)

Thus dLl0,j0,i0
(Q,:)

dQi2,k2
can be rewrite as

dLl0,j0,i0(Q, :)

dQi2,k2

= s(Q)t(Q)

Then the lipschitz of dLl0,j0,i0
(Q,:)

dQi2,k2
can be expressed as

|dLl0,j0,i0(Q, :)

dQi2,k2

− dLl0,j0,i0(Q̂, :)

dQi2,k2

| = |s(Q)t(Q)− s(Q̂)t(Q̂)|

Use the same techinque in the proof of Part 2, we define

C1 : = s(Q)t(Q)− s(Q)t(Q̂)

C2 : = s(Q)t(Q̂)− s(Q̂)t(Q̂)

Then it’s apparent that

|s(Q)t(Q)− s(Q̂)t(Q̂)| = |C1 + C2|

First, we upper bound |C1| as follows:

|C1| = |s(Q)t(Q)− s(Q)t(Q̂)|
= |s(Q)(t(Q)− t(Q̂))|
≤ |s(Q)||t(Q)− t(Q̂)|
= |s(Q)||(⟨f(Q)l0,j0 , v1⟩ − ⟨f(Q)l0,j0 , v2⟩⟨f(Q)l0,j0 , v3⟩)− (⟨f(Q̂)l0,j0 , v1⟩ − ⟨f(Q̂)l0,j0 , v2⟩⟨f(Q̂)l0,j0 , v3⟩)|
= |s(Q)||(⟨f(Q)l0,j0 , v1⟩ − ⟨f(Q̂)l0,j0 , v1⟩) + (⟨f(Q̂)l0,j0 , v2⟩⟨f(Q̂)l0,j0 , v3⟩ − ⟨f(Q)l0,j0 , v2⟩⟨f(Q)l0,j0 , v3⟩)|
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≤ |s(Q)|(|⟨f(Q)l0,j0 , v1⟩ − ⟨f(Q̂)l0,j0 , v1⟩|+ |⟨f(Q̂)l0,j0 , v2⟩⟨f(Q̂)l0,j0 , v3⟩ − ⟨f(Q)l0,j0 , v2⟩⟨f(Q)l0,j0 , v3⟩|)
≤ |s(Q)|(β−2nR4 exp(3R2)∥Q− Q̂∥F ∥+ 2β−3n2R6 exp(5R2)∥Q− Q̂∥F )
≤ |s(Q)| · β−2n2R6 exp(8R2)∥Q− Q̂∥F
≤ β−3n3R7 exp(10R2)∥Q− Q̂∥F

where the first step follows from the definition of C1, the second step follows from simple algebra,
the third step follows from Fact A.3, the fourth step follows from the definition of t(Q), the fifth
step follows from simple algebra, the sixth step follows from triangular inequality, the seventh step
follows from Part 3 and Part 4 the last step follows from Part 3 of Lemma D.12.

Next, we upper bound |C2|:

|C2| = |s(Q)t(Q̂)− s(Q̂)t(Q̂)|
= |(s(Q)− s(Q̂))t(Q̂)|
≤ |s(Q)− s(Q̂)||t(Q̂|
≤ R2β−2n exp(3R2)∥Q− Q̂∥F |t(Q̂|
≤ R6β−3n3 exp(9R2)∥Q− Q̂∥F

where the first step follows from the definition of C2, the second step follows from simple algebra,
the third step follows from simple algebra, the fourth step follows from Part 5 of Lemma D.13, the
last step follows from Part 7 of Lemma D.12.

Thus, we can obtain the upper bound for |s(Q)t(Q)− s(Q̂)t(Q̂)|:

|s(Q)t(Q)− s(Q̂)t(Q̂)| = |C1 + C2|
≤ β−3n3R7 exp(10R2)∥Q− Q̂∥F +R6β−3n3 exp(9R2)∥Q− Q̂∥F
≤ β−3n3R7 exp(19R2)∥Q− Q̂∥F

where the first step follows from simple algebra, the second step follows from the upper bound of
|C1| and |C2|, the last step follows from simple algebra.

D.6 LIPSCHITZ OF ∇Ll0,j0,i0(Q, :)

Lemma D.15. If the following conditions hold

• Let f(Q)l0,j0 be defined as Definition D.3

• Let dLl0,j0,i0
(Q,:)

dQi2,k2
be compute as Part 8 of Lemma D.10

• Let v1 := (Al0,j0 vec(ei2e
⊤
k2
K⊤)) ◦ h(y)l0,i0

• Let v2 := h(y)l0,i0

• Let v3 := Al0,j0 vec(ei2e
⊤
k2
K⊤)

Then we have

∥ dL(Q, :)

d vec(Q)
− dL(Q̂, :)

d vec(Q)
∥2 ≤ dLn3R7 exp(22R2)∥Q− Q̂∥F

Proof.

∥ dL(Q, :)

d vec(Q)
− dL(Q̂, :)

d vec(Q)
∥2 ≤

d∑
i2=1

L∑
k2=1

|dL(Q, :)

dQi2,k2

∣∣
Q=Q

− dL(Q, :)

dQi2,k2

∣∣
Q=Q̂

|

≤
d∑

i2=1

L∑
k2=1

β−3n3R7 exp(19R2)∥Q− Q̂∥F
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= β−3dLn3R7 exp(19R2)∥Q− Q̂∥F
≤ dLn3R7 exp(22R2)∥Q− Q̂∥F

where the first step follows from Fact A.3, the second step follows from Part 3 of Lemma D.14, the
fourth step follows from simple algebra, the last step follows from Part 8 of Lemma D.12.
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E GRADIENT FOR K

In Section E.1, we define the basic definitions and problems to be used in this section. In Section E.2,
we compute the gradient with respect to K step by step. In Section E.3, we reform the gradient in a
way that is easy for us to prove its lipschitz property. In Section E.5, we prove the lipschitz property
for several basic terms. In Section E.6, we state some intermediate steps for proving the lipschitz of
gradient. In Section E.7, we prove the lipschitz property of the gradient with respect to K.

E.1 DEFINITIONS

Definition E.1. Let Al0,1, Al0,2 ∈ Rn×d. Let Al0 = Al0,1 ⊗ Al0,2 ∈ Rn2×d2

. Let Al0,j0 ∈ Rn×d2

denote the j0-th block of Al0 ∈ Rn2×d2

.

For each l0 ∈ [m], for each j0 ∈ [n].

We define u(K)l0,j0 ∈ Rn as follows

u(K)l0,j0 := exp(Al0,j0︸ ︷︷ ︸
n×d2

vec(QK⊤)︸ ︷︷ ︸
d2×1

)

Definition E.2. For each l0 ∈ [m], for each j0 ∈ [n].

We define α(K)l0,j0 ∈ R as follows

α(K)l0,j0 := ⟨u(K)l0,j0 ,1n⟩.

Definition E.3. Let Al0,1, Al0,2 ∈ Rn×d. Let Al0 = Al0,1 ⊗ Al0,2 ∈ Rn2×d2

. Let Al0,j0 ∈ Rn×d2

denote the j0-th block of Al0 ∈ Rn2×d2

.

We define f(K)l0,j0 : Rd2 → Rn,

f(K)l0,j0 := α(K)−1
l0,j0

· u(K)l0,j0

Definition E.4. We define c(K, y)j0,i0 ∈ R as follows

c(K, y)l0,j0,i0 := ⟨f(K)l0,j0 , h(y)l0,i0⟩ − bl0,j0,i0

Definition E.5. For each l0 ∈ [m], j0 ∈ [n], i0 ∈ [d]. We define Ll0,j0,i0 as follows

Ll0,j0,i0(K, y) := 0.5cl0,j0,i0(K, y)2

Definition E.6. The final loss is

L(K, y) :=

m∑
l0=1

n∑
j0=1

d∑
i0=1

Ll0,j0,i0(K, y).

Definition E.7. We define the diagonal matrix D ∈ Rn2×n2

as:

D(K) = diag(exp(A1QK⊤A⊤
2 )1n)

We give our formal definition of the optimization formulation

Definition E.8. Let A1, A2 ∈ Rn×d. We define the optimization formulation as the following:

min
Q∈Rd×d

L(Q) = min
Q∈Rd×d

∥D(Q)−1 exp(A1QK⊤A⊤
2 )A3Y −B∥2F

Definition E.9. Let A1, A2 ∈ Rn×d. Let A = A1 ⊗A2 ∈ Rn2×d2

. Let D′(Q) ∈ Rn2×n2

denote the
diagonal matrix D′(Q) := D(Q)⊗ In. We define the vector version of optimization formulation as
the following:

min
Q∈Rd×d

L(Q) = min
Q∈Rd×d

∥mat(D′(Q)−1 exp(A · vec(QK⊤)))A3Y −B∥22
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E.2 GRADIENT

Lemma E.10. If the following conditions hold

• Let Ki2,k2
denote the i2-the row and k2-th column of Q ∈ Rd×L

Then, we have

• Part 1. For each i2 ∈ [d] and k2 ∈ [L], we have

d vec(QK⊤)

dKi2,k2

= vec( Q︸︷︷︸
d×L

ek2︸︷︷︸
L×1

e⊤i2︸︷︷︸
1×d

)

• Part 2. For each i2 ∈ [d] and k2 ∈ [L], we have

dAl0,j0 vec(QK⊤)

dKi2,k2

= Al0,j0︸ ︷︷ ︸
n×d2

vec(Qek2
e⊤i2)︸ ︷︷ ︸

d2×1

• Part 3. For each i2 ∈ [d] and k2 ∈ [L], we have

du(K)l0,j0
dKi2,k2

= u(K)l0,j0︸ ︷︷ ︸
n×1

◦ (Al0,j0 vec(ei2e
⊤
k2
K⊤))︸ ︷︷ ︸

n×1

• Part 4. For each i2 ∈ [d] and k2 ∈ [L], we have

dα(K)l0,j0
dKi2,k2

= ⟨u(K)l0,j0︸ ︷︷ ︸
n×1

,Al0,j0︸ ︷︷ ︸
n×d2

vec(Qek2
e⊤i2)︸ ︷︷ ︸

d2×1

⟩

• Part 5. For each i2 ∈ [d] and k2 ∈ [L], we have

dα(K)−1
l0,j0

dKi2,k2

= −α(K)−1
l0,j0︸ ︷︷ ︸

scalar

⟨f(K)l0,j0︸ ︷︷ ︸
n×1

,Al0,j0︸ ︷︷ ︸
n×d2

vec(Qek2
e⊤i2)︸ ︷︷ ︸

d2×1

⟩

• Part 6. For each i2 ∈ [d] and k2 ∈ [L], we have

df(K)l0,j0
dKi2,k2

= f(K)l0,j0︸ ︷︷ ︸
n×1

◦(Al0,j0︸ ︷︷ ︸
n×d2

vec(Qek2e
⊤
i2)︸ ︷︷ ︸

d2×1

)− f(K)l0,j0︸ ︷︷ ︸
n×1

⟨f(K)l0,j0︸ ︷︷ ︸
n×1

,Al0,j0︸ ︷︷ ︸
n×d2

vec(Qek2e
⊤
i2)︸ ︷︷ ︸

d2×1

)⟩

• Part 7. For each i2 ∈ [d] and k2 ∈ [L], we have

dc(K, y)l0,j0,i0
dKi2,k2

= ⟨f(K)l0,j0︸ ︷︷ ︸
n×1

◦(Al0,j0︸ ︷︷ ︸
n×d2

vec(Qek2
e⊤i2)︸ ︷︷ ︸

d2×1

, h(y)l0,i0︸ ︷︷ ︸
n×1

⟩ − ⟨f(K)l0,j0︸ ︷︷ ︸
n×1

, h(y)l0,i0︸ ︷︷ ︸
n×1

⟩⟨f(K)l0,j0︸ ︷︷ ︸
n×1

,Al0,j0︸ ︷︷ ︸
n×d2

vec(Qek2
e⊤i2)︸ ︷︷ ︸

d2×1

⟩

• Part 8. For each i2 ∈ [d] and k2 ∈ [L], we have

dLl0,j0,i0(K, y)

dKi2,k2

= cl0,j0,i0(K, y)︸ ︷︷ ︸
scalar

(⟨f(K)l0,j0︸ ︷︷ ︸
n×1

◦(Al0,j0︸ ︷︷ ︸
n×d2

vec(Qek2
e⊤i2)︸ ︷︷ ︸

d2×1

, h(y)l0,i0︸ ︷︷ ︸
n×1

⟩ − ⟨f(K)l0,j0︸ ︷︷ ︸
n×1

, h(y)l0,i0︸ ︷︷ ︸
n×1

⟩⟨f(K)l0,j0︸ ︷︷ ︸
n×1

,Al0,j0︸ ︷︷ ︸
n×d2

vec(Qek2
e⊤i2)︸ ︷︷ ︸

d2×1

⟩)
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Proof. Proof of Part 1. For each i2 ∈ [d] and k2 ∈ [L],

d vec(QK⊤)

dKi2,k2

= vec(Q(
dK

Ki2,k2

)⊤)

= vec( Q︸︷︷︸
d×L

ek2︸︷︷︸
L×1

e⊤i2︸︷︷︸
1×d

)

where the first step simple algebra

Proof of Part 2. For each i2 ∈ [d] and k2 ∈ [L],

dAl0,j0 vec(QK⊤)

dKi2,k2

= Al0,j0 vec(
dQ

dKi2,k2

K⊤)

= Al0,j0︸ ︷︷ ︸
n×d2

vec(Qek2e
⊤
i2)︸ ︷︷ ︸

d2×1

where the first step chain rule and the second step follows from Part 1.

Proof of Part 3. For each i2 ∈ [d] and k2 ∈ [L],

du(K)l0,j0
dKi2,k2

=
d exp(Al0,j0 vec(QK⊤)

dKi2,k2

)

= u(K)l0,j0︸ ︷︷ ︸
n×1

◦(Al0,j0︸ ︷︷ ︸
n×d2

vec(Qek2e
⊤
i2)︸ ︷︷ ︸

d2×1

)

where the first step follows from the definition of u and the second step follows from chain rule and
Part 2.

Proof of Part 4 For each i2 ∈ [d] and k2 ∈ [L]

dα(K)l0,j0
dKi2,k2

=
d⟨u(K)l0,j0 ,1n⟩.

dKi2,k2

= ⟨du(K)l0,j0
dKi2,k2

,1n⟩

= ⟨u(K)l0,j0︸ ︷︷ ︸
n×1

◦(Al0,j0︸ ︷︷ ︸
n×d2

vec(Qek2e
⊤
i2))︸ ︷︷ ︸

d2×1

, 1n︸︷︷︸
n×1

⟩

= ⟨u(K)l0,j0︸ ︷︷ ︸
n×1

,Al0,j0︸ ︷︷ ︸
n×d2

vec(Qek2
e⊤i2)︸ ︷︷ ︸

d2×1

⟩

where the first step follows from the definition of α(K)l0,j0 , the second step follows from simple
algebra, the third step follows from Part 3.

Proof of Part 5 For each i2 ∈ [d] and k2 ∈ [L]

dα(K)−1
l0,j0

dKi2,k2

= − α(K)−2
l0,j0

dα(K)l0,j0
dKi2,k2

= − α(K)−2
l0,j0︸ ︷︷ ︸

scalar

⟨u(K)l0,j0︸ ︷︷ ︸
n×1

,Al0,j0︸ ︷︷ ︸
n×d2

vec(Qek2e
⊤
i2)︸ ︷︷ ︸

d2×1

⟩

= − α(K)−1
l0,j0︸ ︷︷ ︸

scalar

⟨f(K)l0,j0︸ ︷︷ ︸
n×1

,Al0,j0︸ ︷︷ ︸
n×d2

vec(Qek2
e⊤i2)︸ ︷︷ ︸

d2×1

⟩

where the first step follows from simple algebra, the second step follows from Part 4, the third step
follows from simple algebra and Fact A.1.

Proof of Part 6 For each i2 ∈ [d] and k2 ∈ [L],

df(K)l0,j0
dKi2,k2

=
dα(K)−1

l0,j0
· u(K)l0,j0

dKi2,k2
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=
dα(K)−1

l0,j0

dKi2,k2

u(K)l0,j0 +
du(K)l0,j0
dKi2,k2

α(K)−1
l0,j0

= − f(K)l0,j0︸ ︷︷ ︸
n×1

⟨f(K)l0,j0︸ ︷︷ ︸
n×1

,Al0,j0︸ ︷︷ ︸
n×d2

vec(Qek2
e⊤i2)︸ ︷︷ ︸

d2×1

⟩+ u(K)l0,j0︸ ︷︷ ︸
n×1

◦(Al0,j0︸ ︷︷ ︸
n×d2

vec(Qek2
e⊤i2)︸ ︷︷ ︸

d2×1

α(K)−1
l0,j0︸ ︷︷ ︸

scalar

)

= f(K)l0,j0︸ ︷︷ ︸
n×1

◦(Al0,j0︸ ︷︷ ︸
n×d2

vec(Qek2e
⊤
i2)︸ ︷︷ ︸

d2×1

)− f(K)l0,j0︸ ︷︷ ︸
n×1

⟨f(K)l0,j0︸ ︷︷ ︸
n×1

,Al0,j0︸ ︷︷ ︸
n×d2

vec(Qek2e
⊤
i2)︸ ︷︷ ︸

d2×1

)⟩

where the first step follows from the definition of f(K)l0,j0 , the second step follows from differential
chain rule, the third step follows from Part 3 and Part 5, the last step follows from simple algebra.

Proof of Part 7 For each i2 ∈ [d] and k2 ∈ [L],

dc(K, y)l0,j0,i0
dKi2,k2

=
d⟨f(K)l0,j0 , h(y)l0,i0⟩ − bl0,j0,i0

dKi2,k2

=
d⟨f(K)l0,j0 , h(y)l0,i0⟩

dKi2,k2

= ⟨df(K)l0,j0
dKi2,k2

, h(y)l0,i0⟩

= h(y)⊤l0,i0︸ ︷︷ ︸
1×n

(f(K)l0,j0︸ ︷︷ ︸
n×1

◦(Al0,j0︸ ︷︷ ︸
n×d2

vec(Qek2
e⊤i2)︸ ︷︷ ︸

d2×1

)− f(K)l0,j0︸ ︷︷ ︸
n×1

⟨f(K)l0,j0︸ ︷︷ ︸
n×1

,Al0,j0︸ ︷︷ ︸
n×d2

vec(Qek2
e⊤i2)︸ ︷︷ ︸

d2×1

⟩)

= ⟨f(K)l0,j0︸ ︷︷ ︸
n×1

◦(Al0,j0︸ ︷︷ ︸
n×d2

vec(Qek2
e⊤i2)︸ ︷︷ ︸

d2×1

, h(y)l0,i0︸ ︷︷ ︸
n×1

⟩ − ⟨f(K)l0,j0︸ ︷︷ ︸
n×1

, h(y)l0,i0︸ ︷︷ ︸
n×1

⟩⟨f(K)l0,j0︸ ︷︷ ︸
n×1

,Al0,j0︸ ︷︷ ︸
n×d2

vec(Qek2
e⊤i2)︸ ︷︷ ︸

d2×1

⟩

where the first step follows from the definition of c(K, y)l0,j0,i0 , the second step follows from bl0,j0,i0
is a constant, the third step follows from only f(K)l0,j0 is dependent on Q, the fourth step follows
from Part 6, the last step follows from simple algebra.

Proof of Part 8 For each i2 ∈ [d] and k2 ∈ [L],

dLl0,j0,i0(K, y)

dKi2,k2

=
d0.5cl0,j0,i0(K, y)2

dKi2,k2

= cl0,j0,i0(K, y)
dcl0,j0,i0(K, y)

dKi2,k2

= cl0,j0,i0(K, y)︸ ︷︷ ︸
scalar

(⟨f(K)l0,j0︸ ︷︷ ︸
n×1

◦(Al0,j0︸ ︷︷ ︸
n×d2

vec(Qek2
e⊤i2)︸ ︷︷ ︸

d2×1

, h(y)l0,i0︸ ︷︷ ︸
n×1

⟩ − ⟨f(K)l0,j0︸ ︷︷ ︸
n×1

, h(y)l0,i0︸ ︷︷ ︸
n×1

⟩⟨f(K)l0,j0︸ ︷︷ ︸
n×1

,Al0,j0︸ ︷︷ ︸
n×d2

vec(Qek2
e⊤i2)︸ ︷︷ ︸

d2×1

⟩)

where the first step follows from the definition of Ll0,j0,i0(K, y), the second step follows from simple
algebra, the third step follows from Part 7.

E.3 REFORMULATING GRADIENT

Lemma E.11. If the following conditions hold

• Let f(K)l0,j0 be defined as Definition E.3

• Let dLl0,j0,i0
(:,K)

dQi2,k2
be compute as Part 8 of Lemma E.10

• Let v1 := (Al0,j0 vec(Qek2
e⊤i2)) ◦ h(y)l0,i0

• Let v2 := h(y)l0,i0
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• Let v3 := Al0,j0 vec(Qek2
e⊤i2)

then dLl0,j0,i0
(x,K)

dQi2,k2
can be rewrite as

cl0,j0,i0(x,K)(⟨f(K)l0,j0 , v1⟩ − ⟨f(K)l0,j0 , v2⟩⟨f(K)l0,j0 , v3⟩)

Proof. The proof trivially follows from Fact A.1.

E.4 LIPSCHITZ OF SEVERAL TERMS

Lemma E.12. If the following conditions hold

• Let Al0,j0 ∈ Rn×d2

• Let bl0,j0,i0 ∈ Rn satisfy that ∥b∥1 ≤ 1

• Let β ∈ (0, 0.1)

• Let R ≥ 4

• Let ∥ vec(QK⊤)∥2 ≤ R

• ∥Al0,j0 ∥ ≤ R

• ⟨exp(Al0,j0 vec(QK⊤)),1n⟩ ≥ β

• ⟨exp(Al0,j0 vec(Q̂K⊤)),1n⟩ ≥ β

• Let Rf := β−2n exp(3R2)

• Let α(K)l0,j0 be defined as Definition E.2

• Let c(K)l0,j0,i0 be defined as Definition E.4

• Let f(K)l0,j0 be defined as Definition E.3

• Let v1 := (Al0,j0 vec(Qek2e
⊤
i2
)h(y)l0,i0

• Let v2 := h(y)l0,i0

• Let v3 := Al0,j0 vec(Qek2e
⊤
i2
)

Then we have

• Part 1. ∥ exp(Al0,j0 vec(QK⊤))∥2 ≤
√
n · exp(R2)

• Part 2. ∥f(K)l0,j0∥2 ≤ β−1n exp(2R2)

• Part 3. |c(:,K)l0,j0,i0 | ≤ Rβ−1n exp(2R2)

• Part 4. ∥v2∥2 ≤ R2

• Part 5. ∥v3∥2 ≤ R2

• Part 6. ∥v1∥2 ≤ R4

• Part 7. |(⟨f(K)l0,j0 , v1⟩ − ⟨f(K)l0,j0 , v2⟩⟨f(K)l0,j0 , v3⟩)| ≤ β−1n2R4 exp(6R2)

• Part 8. β ≥ exp(−R2)

Proof. Proof of Part 1

∥ exp(Al0,j0 vec(QK⊤))∥2 ≤
√
n · ∥ exp(Al0,j0 vec(QK⊤)∥∞
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≤
√
n · exp(∥Al0,j0 vec(QK⊤)∥∞)

≤
√
n · exp(∥Al0,j0 vec(QK⊤)∥2)

≤
√
n · exp(R2)

Proof of Part 2

∥f(K)l0,j0∥2 = ∥α(K)−1
l0,j0

· u(K)l0,j0∥2
≤ ∥α(K)−1

l0,j0
∥2∥u(K)l0,j0∥2

≤ β−1∥ exp(Al0,j0 vec(QK⊤))∥2
≤ β−1

√
n · exp(R2)

where the first step follows from the definition of f(x)l0,j0 , the second step follows from Fact A.3,
the third step follows from ⟨exp(Al0,j0 vec(QK⊤)),1n⟩ ≥ β,the fourth step follows from Part 1.

Proof of Part 3

∥c(K, y)l0,j0,i0∥ = ∥⟨f(K)l0,j0 , h(y)l0,i0⟩∥
≤ ∥f(K)l0,j0∥2∥h(y)l0,i0∥2
≤ Rβ−1n exp(2R2)

where the first step follows from the definition of c(Q, y)l0,j0,i0 , the second step follows from
Fact A.3, the third step follows from Part 2.

Proof of Part 4

∥h(y)l0,i0∥2 = ∥Al0,3yi0∥2
≤ ∥Al0,3∥∥yi0∥2
≤ R2

where the first step follows from the definition of h(y)l0,i0 , the second step follows from Fact A.4,
the third step follows from ∥Al0,3∥ and ∥yi0∥2 ≤ R.

Proof of Part 5

∥Al0,j0 vec(Qek2
e⊤i2)∥2 ≤ ∥Al0,j0 ∥∥ vec(Qek2

e⊤i2)∥2
≤ R2

where the first step follows from Fact A.4, the second step follows from ∥Al0,j0 ∥ ≤ R and Fact A.5.

Proof of Part 6

∥(Al0,j0 vec(Qek2
e⊤i2)) ◦ h(y)l0,i0∥2 ≤ ∥Al0,j0 vec(Qek2

e⊤i2)∥∞∥h(y)l0,i0∥2
≤ ∥Al0,j0 vec(Qek2

e⊤i2)∥2∥h(y)l0,i0∥2
≤ R4

where the first step follows from Fact A.3, the second step follows from Fact A.3, the third step
follows from Part 4 and Part 5.

Proof of Part 7

|⟨f(K)l0,j0 , (Al0,j0 vec(Qek2e
⊤
i2)h(y)l0,i0⟩ − ⟨f(K)l0,j0 , h(y)l0,i0⟩⟨f(K)l0,j0 ,Al0,j0 vec(Qek2e

⊤
i2)⟩|

≤ |⟨f(K)l0,j0 , (Al0,j0 vec(Qek2
e⊤i2)h(y)l0,i0⟩|+ |⟨f(K)l0,j0 , h(y)l0,i0⟩⟨f(K)l0,j0 , vec(Qek2

e⊤i2)⟩|
≤ ∥f(K)l0,j0∥2∥Al0,j0 vec(Qek2

e⊤i2)h(y)l0,i0∥2 + ∥f(K)l0,j0∥2∥h(y)l0,i0∥2∥f(K)l0,j0∥2∥Al0,j0 vec(Qek2
e⊤i2)∥2

≤ β−1n exp(2R2)∥Al0,j0 vec(Qek2e
⊤
i2)h(y)l0,i0∥2 + β−2n2 exp(4R2)∥h(y)l0,i0∥2∥Al0,j0 vec(Qek2e

⊤
i2)∥2

≤β−1n exp(2R2)∥Al0,j0 vec(Qek2
e⊤i2)∥2∥h(y)l0,i0∥2 + β−2n2 exp(4R2)∥h(y)l0,i0∥2∥Al0,j0 vec(Qek2

e⊤i2)∥2
≤ β−1n exp(2R2)R4 + β−2n2 exp(4R2)R4

≤ β−1n2R4 exp(6R2)
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where the first step follows from triangle inequality, the second step follows from Fact A.3, the third
step follows from Part 2, the fourth step follows from Fact A.3, the fifth step follows from Part 5
and Part 4, the last step follows from simple algebra.

Proof of Part 8 We have

⟨exp(Al0,j0 vec(QK⊤)),1n⟩ ≥ max
i∈[n]

exp(−|(Al0,j0 vec(QK⊤))i|)

≥ exp(−∥Al0,j0 vec(QK⊤)∥∞)

≥ exp(−∥Al0,j0 vec(QK⊤)∥2)
≥ exp(−R2)

where the 1st step follows from simple algebra, the 2nd step follows from definition of ℓ∞ norm, the
3rd step follows from Fact A.3.

E.5 LIPSCHITZ FOR SEVERAL BASIC TERMS

Lemma E.13. If the following conditions hold

• Let Al0,j0 ∈ Rn×d2

• Let bl0,j0,i0 ∈ Rn satisfy that ∥b∥1 ≤ 1

• Let β ∈ (0, 0.1)

• Let R ≥ 4

• Let ∥ vec(QK⊤)∥2 ≤ R

• ∥Al0,j0 ∥ ≤ R

• ⟨exp(Al0,j0 vec(QK⊤)),1n⟩ ≥ β

• ⟨exp(Al0,j0 vec(Q̂K⊤)),1n⟩ ≥ β

• Let Rf := β−2n exp(3R2)

• Let α(Q)l0,j0 be defined as Definition D.2

• Let c(Q)l0,j0,i0 be defined as Definition D.4

• Let f(Q)l0,j0 be defined as Definition D.3

Then we have

• Part 1. ∥ exp(Al0,j0 vec(QK⊤))− exp(Al0,j0 vec(QK̂⊤))∥2 ≤ R2 exp(R2)∥K − K̂∥F

• Part 2. |α(K)l0,j0 − α(K̂)l0,j0 | ≤ ∥ exp(Al0,j0 vec(QK⊤))− exp(Al0,j0 vec(QK̂⊤))∥2 ·√
n

• Part 3. |α(K)−1
l0,j0

− α(K̂)−1
l0,j0

| ≤ β−2 · |α(K)l0,j0 − α(K̂)l0,j0 |

• Part 4. ∥f(K)l0,j0 − f(K̂)l0,j0∥2 ≤ β−2n exp(3R2)∥K − K̂∥F

• Part 5. ∥c(K, :)l0,j0,i0 − c(K̂, :)l0,j0,i0∥2 ≤ R2β−2n exp(3R2)∥K − K̂∥2

Note that ∥K∥F = (
∑

i

∑
j K

2
i,j)

1/2 = ∥ vec(K)∥2

Proof. Proof of Part 1.

∥ exp(Al0,j0 vec(QK⊤))− exp(Al0,j0 vec(QK̂⊤))∥2 ≤ exp(R2)∥Al0,j0 vec(QK⊤)− Al0,j0 vec(QK̂⊤)∥2
≤ exp(R2)∥Al0,j0 ∥∥ vec(QK⊤)− vec(QK̂⊤)∥2
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= exp(R2)∥Al0,j0 ∥∥QK⊤ −QK̂⊤∥F
≤ exp(R2)∥Al0,j0 ∥∥Q∥F ∥K − K̂∥F
≤ R2 exp(R2)∥K − K̂∥F

Proof of Part 2.

|α(K)l0,j0 − α(K̂)l0,j0 | = |⟨exp(Al0,j0 vec(QK⊤))− exp(Al0,j0 vec(QK̂⊤)),1n⟩|
≤ ∥ exp(Al0,j0 vec(QK⊤))− exp(Al0,j0 vec(QK̂⊤))∥2 ·

√
n

Proof of Part 3.

|α(K)−1
l0,j0

− α(K̂)−1
l0,j0

| = α(K)−1
l0,j0

α(K̂)−1
l0,j0

· |α(K)l0,j0 − α(K̂)l0,j0 |

≤ β−2 · |α(K)l0,j0 − α(K̂)l0,j0 |

Proof of Part 4. We can show that

∥f(K)l0,j0 − f(K̂)l0,j0∥2 = ∥α(K)−1
l0,j0

exp(Al0,j0 vec(QK⊤))− α(K̂)−1
l0,j0

exp(Al0,j0 vec(QK̂⊤))∥2
≤ ∥α(K)−1

l0,j0
exp(Al0,j0 vec(QK⊤))− α(K)−1

l0,j0
exp(Al0,j0 vec(QK̂⊤))∥2

+ ∥α(K)−1
l0,j0

exp(Al0,j0 vec(QK̂⊤))− α(K̂)−1
l0,j0

exp(Al0,j0 vec(QK̂⊤))∥2
≤ α(K)−1

l0,j0
∥ exp(Al0,j0 vec(QK⊤))− exp(Al0,j0 vec(QK̂⊤))∥2

+ |α(K)−1
l0,j0

− α(K̂)−1
l0,j0

| · ∥ exp(Al0,j0 vec(QK̂⊤))∥2

where the 1st step follows from the definition of f(K)l0,j0 and α(K)l0,j0 , the 2nd step follows
from triangle inequality (Part 3 of Fact A.3), the 3rd step follows from ∥αA∥ ≤ |α|∥A∥(Part 5 of
Fact A.4).

For the first term in the above, we have

α(K)−1
l0,j0

∥ exp(Al0,j0 vec(QK⊤))− exp(Al0,j0 vec(QK̂⊤))∥2 (7)

≤ β−1∥ exp(Al0,j0 vec(QK⊤))− exp(Al0,j0 vec(QK̂⊤))∥2
≤ β−1 ·R2 exp(R2) · ∥K − K̂∥F (8)

where the 1st step follows from α(K)l0,j0 ≥ β, the 2nd step follows from Part 1.

For the second term in the above, we have

|α(K)−1
l0,j0

− α(K̂)−1
l0,j0

| · ∥ exp(Al0,j0 vec(QK̂⊤))∥2
≤ β−2 · |α(K)l0,j0 − α(K̂)l0,j0 | · ∥ exp(Al0,j0 vec(QK̂⊤))∥2
≤ β−2 · |α(K)l0,j0 − α(K̂)l0,j0 | ·

√
n exp(R2)

≤ β−2 ·
√
n · ∥ exp(Al0,j0 vec(QK⊤))− exp(Al0,j0 vec(QK̂⊤))∥2 ·

√
n exp(R2)

≤ β−2 ·
√
n ·R2 exp(R2)∥K − K̂∥F ·

√
n exp(R2)

= β−2 · nR2 exp(2R2)∥K − K̂∥F (9)

where the 1st step follows from the result of Part 3, the 2nd step follows from Part 1 of Lemma D.12,
the 3rd step follows from the result of Part 2, the 4th step follows from Part 1, and the last step
follows from simple algebra.

Combining Eq. (7) and Eq. (9) together, we have

∥fl0,j0(K)− fl0,j0(K̂)∥2 ≤ β−1 ·R2 exp(R2) · ∥K − K̂∥F + β−2 · nR2 exp(2R2)∥K − K̂∥F
≤ 2β−2nR2 exp(2R2)∥K − K̂∥F
≤ β−2n exp(3R2)∥K − K̂∥F
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where the 1st step follows from the bound of the first term and the second term, the 2nd step follows
from β−1 ≥ 1 and n > 1 trivially, the 3rd step follows from simple algebra.

Proof of Part 5.

∥c(K, :)l0,j0,i0 − c(K̂, :)l0,j0,i0∥2 = ∥⟨f(K)l0,j0 , h(:)l0,i0⟩ − ⟨f(K̂)l0,j0 , h(:)l0,i0⟩∥2
= ∥⟨(f(K)l0,j0 − f(K̂)l0,j0), h(:)l0,i0⟩∥2
≤ ∥h(:)l0,i0∥2∥f(K)l0,j0 − f(K̂)l0,j0∥2
≤ ∥Al0,3 yi0∥2∥f(K)l0,j0 − f(K̂)l0,j0∥2
≤ ∥Al0,3 yi0∥2 · β−2n exp(3R2)∥K − K̂∥F
≤ ∥Al0,3 ∥∥yi0∥2β−2n exp(3R2)∥K − K̂∥F
≤ Rβ−2n exp(3R2)∥K − K̂∥F

where the first step follows from the definition of c(x, y)l0,j0,i0 , the second step follows from simple
algebra, the third step follows from Fact A.3, the fourth step follows from the definition of h(y)l0,i0 ,
the fifth step follows from Part 4, the sixth step follows from Fact A.4, the last step follows from
∥Al0,3∥ ≤ R and ∥zi0∥2 ≤ R

E.6 SUMMARY OF 3 STEPS

Lemma E.14. If the following conditions hold

• Let f(K)l0,j0 be defined as Definition E.3

• Let dLl0,j0,i0
(K,:)

dKi2,k2
be compute as Part 8 of Lemma E.10

• Let v1 := (Al0,j0 vec(Qek2
e⊤i2)) ◦ h(y)l0,i0

• Let v2 := h(y)l0,i0

• Let v3 := Al0,j0 vec(Qek2
e⊤i2)

Then we have

• |⟨f(K)l0,j0 , v1⟩ − ⟨f(K̂)l0,j0 , v1⟩| ≤ β−2nR4 exp(3R2)∥K − K̂∥F

• |⟨f(K)l0,j0 , v2⟩⟨f(K)l0,j0 , v3⟩ − ⟨f(K̂)l0,j0 , v2⟩⟨f(K̂)l0,j0 , v3⟩| ≤
2β−3n exp(2R2)R6n exp(3R2)∥K − K̂∥F

• |dLl0,j0,i0
(K,:)

dKi2,k2

∣∣
K=K

− dLl0,j0,i0
(K,:)

dKi2,k2

∣∣
K=K̂

| ≤ β−3n3R7 exp(19R2)∥K − K̂∥F

Proof. Proof of Part 1.

|⟨f(K)l0,j0 , v1⟩ − ⟨f(K̂)l0,j0 , v1⟩| = |⟨f(K)l0,j0 − f(K̂)l0,j0 , v1⟩|
≤ ∥f(K)l0,j0 − f(K̂)l0,j0∥2∥v1∥2
≤ β−2n exp(3R2)∥K − K̂∥F ∥(Al0,j0 vec(Qek2

e⊤i2)) ◦ h(y)l0,i0∥2
≤ β−2nR4 exp(3R2)∥K − K̂∥F

where the first step follows from simple algebra, the second step follows from Fact A.3, the third step
follows from Part 4 of Lemma E.13, the fourth step follows from Part 6 of Lemma D.12.

Proof of Part 2. For convenience, we define

C1 : = ⟨f(K)l0,j0 , v2⟩⟨f(K)l0,j0 , v3⟩ − ⟨f(K̂)l0,j0 , v2⟩⟨f(K)l0,j0 , v3⟩
C2 : = ⟨f(K̂)l0,j0 , v2⟩⟨f(K)l0,j0 , v3⟩ − ⟨f(K̂)l0,j0 , v2⟩⟨f(K̂)l0,j0 , v3⟩
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Then it’s apparent that

|C1 + C2| = |⟨f(K)l0,j0 , v2⟩⟨f(K)l0,j0 , v3⟩ − ⟨f(K̂)l0,j0 , v2⟩⟨f(K̂)l0,j0 , v3⟩|

Since C1 and C2 are similar, we only need to bound |C1|:

|C1| = |⟨f(K)l0,j0 , v2⟩⟨f(K)l0,j0 , v3⟩ − ⟨f(K̂)l0,j0 , v2⟩⟨f(K)l0,j0 , v3⟩|
= |⟨f(K)l0,j0 , v3⟩(⟨f(K)l0,j0 , v2⟩ − ⟨f(K̂)l0,j0 , v2⟩)|
≤ |⟨f(K)l0,j0 , v3⟩||⟨f(K)l0,j0 , v2⟩ − ⟨f(K̂)l0,j0 , v2⟩|
= |⟨f(K)l0,j0 , v3⟩||⟨f(K)l0,j0 − f(K̂)l0,j0 , v2⟩|
≤ ∥f(K)l0,j0∥2∥v3∥2∥f(K)l0,j0 − f(K̂)l0,j0∥2∥v2∥2
≤ β−1n exp(2R2)∥v3∥2β−2n exp(3R2)∥K − K̂∥F ∥v2∥2
≤ β−3n2R6 exp(5R2)∥K − K̂∥F

where the first step follows from the definition of C1, the second step follows from simple algebra,
the third step follows from triangular inequality, the fourth step follows from simple algebra, the fifth
step follows from Fact A.3, the sixth step follows from Part 4 of Lemma E.13, the last step follows
from Part 4 and Part 5 of Lemma E.12.

Thus, we obtained the bound for |⟨f(K)l0,j0 , v2⟩⟨f(K)l0,j0 , v3⟩ − ⟨f(K̂)l0,j0 , v2⟩⟨f(K̂)l0,j0 , v3⟩|:

|⟨f(K)l0,j0 , v2⟩⟨f(K)l0,j0 , v3⟩ − ⟨f(K̂)l0,j0 , v2⟩⟨f(K̂)l0,j0 , v3⟩| ≤ 2β−3n2R6 exp(5R2)∥K − K̂∥F

Proof of Part 3 By Lemma E.11, we know that dLl0,j0,i0
(K,:)

dKi2,k2
can be written as

dLl0,j0,i0(K, :)

dQi2,k2

= cl0,j0,i0(K, y)(⟨f(K)l0,j0 , v1⟩ − ⟨f(K)l0,j0 , v2⟩⟨f(K)l0,j0 , v3⟩)

For convenience, we define

s(K) : = cl0,j0,i0(K, y)

t(K) : = (⟨f(K)l0,j0 , v1⟩ − ⟨f(K)l0,j0 , v2⟩⟨f(K)l0,j0 , v3⟩)

Thus dLl0,j0,i0
(K,:)

dKi2,k2
can be rewrite as

dLl0,j0,i0(K, :)

dKi2,k2

= s(K)t(K)

Then the lipschitz of dLl0,j0,i0
(K,:)

dKi2,k2
can be expressed as

|dLl0,j0,i0(K, :)

dKi2,k2

− dLl0,j0,i0(K̂, :)

dKi2,k2

| = |s(K)t(K)− s(K̂)t(K̂)|

Use the same techinque in the proof of Part 2, we define

C1 : = s(K)t(K)− s(K)t(K̂)

C2 : = s(K)t(K̂)− s(K̂)t(K̂)

Then it’s apparent that

|s(K)t(K)− s(K̂)t(K̂)| = |C1 + C2|

First, we upper bound |C1| as follows:

|C1|
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= |s(K)t(K)− s(K)t(K̂)|
= |s(K)(t(K)− t(K̂))|
≤ |s(K)||t(K)− t(K̂)|
= |s(K)||(⟨f(K)l0,j0 , v1⟩ − ⟨f(K)l0,j0 , v2⟩⟨f(K)l0,j0 , v3⟩)− (⟨f(K̂)l0,j0 , v1⟩ − ⟨f(K̂)l0,j0 , v2⟩⟨f(K̂)l0,j0 , v3⟩)|
= |s(K)||(⟨f(K)l0,j0 , v1⟩ − ⟨f(K̂)l0,j0 , v1⟩) + (⟨f(K̂)l0,j0 , v2⟩⟨f(K̂)l0,j0 , v3⟩ − ⟨f(K)l0,j0 , v2⟩⟨f(K)l0,j0 , v3⟩)|
≤ |s(K)|(|⟨f(K)l0,j0 , v1⟩ − ⟨f(K̂)l0,j0 , v1⟩|+ |⟨f(K̂)l0,j0 , v2⟩⟨f(K̂)l0,j0 , v3⟩ − ⟨f(K)l0,j0 , v2⟩⟨f(K)l0,j0 , v3⟩|)
≤ |s(K)|(β−2nR4 exp(3R2)∥K − K̂∥F ∥+ 2β−3n2R6 exp(5R2)∥K − K̂∥F )
≤ |s(K)| · β−2n2R6 exp(8R2)∥K − K̂∥F
≤ β−3n3R7 exp(10R2)∥K − K̂∥F
where the first step follows from the definition of C1, the second step follows from simple algebra,
the third step follows from Fact A.3, the fourth step follows from the definition of t(K), the fifth
step follows from simple algebra, the sixth step follows from triangular inequality, the seventh step
follows from Part 3 and Part 4 the last step follows from Part 3 of Lemma D.12.

Next, we upper bound |C2|:

|C2| = |s(K)t(K̂)− s(K̂)t(K̂)|
= |(s(K)− s(K̂))t(K̂)|
≤ |s(K)− s(K̂)||t(K̂|
≤ R2β−2n exp(3R2)∥K − K̂∥F |t(K̂|
≤ R6β−3n3 exp(9R2)∥K − K̂∥F

where the first step follows from the definition of C2, the second step follows from simple algebra,
the third step follows from simple algebra, the fourth step follows from Part 5 of Lemma E.13, the
last step follows from Part 7 of Lemma E.12.

Thus, we can obtain the upper bound for |s(K)t(K)− s(K̂)t(K̂)|:

|s(K)t(K)− s(K̂)t(K̂)| = |C1 + C2|
≤ β−3n3R7 exp(10R2)∥K − K̂∥F +R6β−3n3 exp(9R2)∥K − K̂∥F
≤ β−3n3R7 exp(19R2)∥K − K̂∥F

where the first step follows from simple algebra, the second step follows from the upper bound of
|C1| and |C2|, the last step follows from simple algebra.

E.7 LIPSCHITZ OF ∇Ll0,j0,i0(K, :)

Lemma E.15. If the following conditions hold

• Let f(Q)l0,j0 be defined as Definition E.3

• Let dLl0,j0,i0
(K,:)

dKi2,k2
be compute as Part 8 of Lemma E.10

• Let v1 := (Al0,j0 vec(Qek2
e⊤i2)) ◦ h(y)l0,i0

• Let v2 := h(y)l0,i0

• Let v3 := Al0,j0 vec(Qek2
e⊤i2)

Then we have

∥ dL(K, :)

d vec(K)
− dL(K̂, :)

d vec(K)
∥2 ≤ dLn3R7 exp(22R2)∥K − K̂∥F
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Proof.

∥ dL(K, :)

d vec(K)
− dL(K̂, :)

d vec(K)
∥2 ≤

d∑
i2=1

L∑
k2=1

|dL(K, :)

dKi2,k2

∣∣∣∣
K=K

− dL(K, :)

dKi2,k2

∣∣∣∣
K=K̂

|

≤
d∑

i2=1

L∑
k2=1

β−3n3R7 exp(19R2)∥K − K̂∥F

= β−3dLn3R7 exp(19R2)∥K − K̂∥F
≤ dLn3R7 exp(22R2)∥K − K̂∥F

where the first step follows from Fact A.3, the second step follows from Part 3 of Lemma E.14, the
fourth step follows from simple algebra, the last step follows from Part 8 of Lemma E.12.
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F ANALYSIS ON LOGISTIC FUNCTION

In this section, we provide systematic analysis on logistic function. In Section F.1, we compute the
gradient of the loss function based on logistic function. In Section F.2, we prove the lipschitz property
of gradient.

F.1 GRADIENT WITH RESPECT TO x

Fact F.1. If the following conditions hold

• Let g(x) : R → R be defined in Definition 3.5

Then we have

dg(x)

dx
=

exp(−x)

(1 + exp(−x))2

Further more, we have

dg(x)

dx
= g(x)(1− g(x))

Lemma F.2 (Formal version of Lemma 3.11). If the following conditions hold

• Let L(x, y)l0,j0,i0 be defined as Definition 3.6

• Let f(x)l0,j0 be defined in Definition 3.3

• Let h(y)l0,i0 be defined in Definition 3.4

Then we have

dL(x, y)l0,j0,i0
dxi

= g(⟨f(x)l0,j0 , h(y)l0,i0⟩)(1− g(⟨f(x)l0,j0 , h(y)l0,i0⟩))bl0,j0,i0
· (⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩ − ⟨f(x)l0,j0 , h(y)l0,i0⟩⟨f(x)l0,j0 ,Al0,j0,i⟩)

Proof. For ∀i ∈ [d2],

dL(x, y)l0,j0,i0
dxi

=
d

dxi
g(⟨f(x)l0,j0 , h(y)l0,i0⟩bl0,j0,i0)

=
dg(⟨f(x)l0,j0 , h(y)l0,i0⟩bl0,j0,i0)

d⟨f(x)l0,j0 , h(y)l0,i0⟩
d⟨f(x)l0,j0 , h(y)l0,i0⟩bl0,j0,i0

dxi

= g(⟨f(x)l0,j0 , h(y)l0,i0⟩)(1− g(⟨f(x)l0,j0 , h(y)l0,i0⟩))bl0,j0,i0
· (⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩ − ⟨f(x)l0,j0 , h(y)l0,i0⟩⟨f(x)l0,j0 ,Al0,j0,i⟩)

where the first step follows from the definition of L(x, y)l0,j0,i0 , the second step follows from
differential chain rule, the last step follows from Lemma F.1 and the computations in Part 8 of
Lemma B.6.

F.2 GRADIENT LIPSCHITZ WITH RESPECT TO x

Lemma F.3. If the following conditions hold

• Let g(x) be defined in Definiton 3.5

• Let |x| ≤ R

• Let R ≥ 4

Then we have
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• Part 1. |g(x)− g(x̂)| ≤ exp(R)|x− x̂|

• Part 2. |g2(x)− g2(x̂)| ≤ 2 exp(2R)|x− x̂|

• Part 3. |g′(x)− g′(x̂)| ≤ 3 exp(2R)|x− x̂|

Proof. Proof of Part 1

|g(x)− g(x̂)| = | 1

1 + exp(−x)
− 1

1 + exp(−x̂)
|

= | exp(−x̂)− exp(−̂x)

1 + exp(−x̂) + exp(−x) + exp(−x− x̂)
|

≤ | exp(−x̂)− exp(−x)|
≤ | exp(−x)||x− x̂|
≤ exp(R)|x− x̂|

where the first step follows from the definition of g(x), the second step follows from simple algebra,
the third step follows from simple algebra, the fourth step follows from Fact A.3, the fifth step follows
from |x| ≤ R.

Proof of Part 2
|g2(x)− g2(x̂)| = |g(x)− g(x̂)||g(x) + g(x̂)|

≤ exp(R)|x− x̂|2 exp(R)

= 2 exp(2R)|x− x̂|
where the first step follows from simple algebra, the second step follows from Part 1 and |x| ≤ R,
the last step follows from simple algebra.

Proof of Part 3
|g′(x)− g′(x̂)| = |(g(x)− g2(x))− (g(x̂)− g2(x̂))|

= |(g(x)− g(x̂)) + (g2(x̂)− g2(x))|
≤ |g(x)− g(x̂)|+ |g2(x)− g2(x̂)|
≤ 3 exp(2R)|x− x̂|

where the first step follows from simple algebra, the second step follows from simple algebra, the
third step follows from triangular inequality, the last step follows from Part 1 and Part 2.

Lemma F.4 (Formal version of Lemma 3.12). If the following conditions hold

• Let g(x) be defined in Definition 3.5

Then we have

|g′(x)− g′(x̂)| ≤ |x− x̂|

Proof. We can easily bound g′′(x) as follows:

g′′(x) = (g(x)− g(x)2)′

= g′(x)− 2g(x)g′(x)

= g(x)− g2(x)− 2g(x)(g(x)− g2(x))

= g(x)− g2(x)− (2g2(x)− 2g3(x))

= g(x)− 3g2(x) + 2g3(x)

≤ 1

Then by Lagrange’s mean value theorem, we have

|g′(x)− g′(x̂)| ≤ 1 · |x− x̂|
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Lemma F.5. If the following conditions hold

• Let f(x)l0,j0 be defined in Definition 3.3

• Let h(y)l0,i0 be defined in Definition 3.4

• Let d(x) := ⟨f(x)l0,j0 , h(y)l0,i0⟩

• Let R ≥ 4

• Let x, y ∈ Rd satisfy ∥Al0,j0 x∥2 ≤ R and ∥Al0,j0 y∥2 ≤ R

• ∥Al0,j0 ∥ ≤ R

Then we have
|d(x)− d(x̂)| ≤ nR2 exp(5R2)∥x− x̂∥2

Proof.
|d(x)− d(x̂)| = |⟨f(x)l0,j0 , h(y)l0,i0⟩ − ⟨f(x̂)l0,j0 , h(y)l0,i0⟩|

= |⟨f(x)l0,j0 − f(x̂)l0,j0 , h(y)l0,i0⟩|
≤ ∥h(y)l0,i0∥2∥f(x)l0,j0 − f(x̂)l0,j0∥2
≤ ∥Al0,3yi0∥2β−2n exp(3R2)∥x− x̂∥2
≤ R2β−2n exp(3R2)∥x− x̂∥2
≤ R2n exp(5R2)∥x− x̂∥2

where the first step follows from the definition of d(x), the second step follows from simple algebra,
the third step follows from Fact A.3, the fourth step follows from the definition of h(y)l0,i0 and Part
4 of Lemma C.3, the fifth step follows from ∥Al0,3∥ ≤ R and ∥y∥2 ≤ R, the last step follows from
Lemma C.4.

Lemma F.6. If the following conditions hold

• Let f(x)l0,j0 be defined in Definition 3.3

• Let h(y)l0,i0 be defined in Definition 3.4

• Let L(x, y)l0,j0,i0 be defined as Definition 3.6

• Let ∇L be computed as Lemma F.2

Then we can rewrite ∇L as
g′(⟨f(x)l0,j0 , h(y)l0,i0⟩)bl0,j0,i0 · (⟨f(x)l0,j0 , v1⟩ − ⟨f(x)l0,j0 , v2⟩⟨f(x)l0,j0 , v3⟩)

where
v1 : = h(y)l0,i0 ◦ Al0,j0,i

v2 : = h(y)l0,i0
v3 : = Al0,j0,i

Proof.
g(⟨f(x)l0,j0 , h(y)l0,i0⟩)(1− g(⟨f(x)l0,j0 , h(y)l0,i0⟩))bl0,j0,i0
· (⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩ − ⟨f(x)l0,j0 , h(y)l0,i0⟩⟨f(x)l0,j0 ,Al0,j0,i⟩)

= g′(⟨f(x)l0,j0 , h(y)l0,i0⟩)bl0,j0,i0
· (⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩ − ⟨f(x)l0,j0 , h(y)l0,i0⟩⟨f(x)l0,j0 ,Al0,j0,i⟩)

= g′(⟨f(x)l0,j0 , h(y)l0,i0⟩)bl0,j0,i0
· (⟨f(x)l0,j0 , h(y)l0,i0 ◦ Al0,j0,i⟩ − ⟨f(x)l0,j0 , h(y)l0,i0⟩⟨f(x)l0,j0 ,Al0,j0,i⟩)

= g′(⟨f(x)l0,j0 , h(y)l0,i0⟩)bl0,j0,i0 · (⟨f(x)l0,j0 , v1⟩ − ⟨f(x)l0,j0 , v2⟩⟨f(x)l0,j0 , v3⟩)
where the first step follows from simple derivative, the second step follows from simple algebra, the
third step follows from the definition of v1, v2 and v3.
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Lemma F.7. If the following conditions hold

• Let f(x)l0,j0 be defined in Definition 3.3

• Let h(y)l0,i0 be defined in Definition 3.4

• Let R ≥ 4

• Let x, y ∈ Rd satisfy ∥Al0,j0 x∥2 ≤ R and ∥Al0,j0 y∥2 ≤ R

• ∥Al0,j0 ∥ ≤ R

• Let v1 := h(y)l0,i0 ◦ Al0,j0,i

• Let v2 := h(y)l0,i0

• Let v3 := Al0,j0,i

Then we have

• Part 1. ∥v2∥2 ≤ R2

• Part 2. ∥v3∥2 ≤ R

• Part 3. ∥v1∥2 ≤ R3

• Part 4. ∥ exp(Al0,j0 x)∥2 ≤
√
n exp(R2)

• Part 5. ∥f(x)l0,j0∥2 ≤ β−1n exp(2R2)

Proof. Proof of Part 1

∥v2∥ = ∥h(y)l0,i0∥2
= ∥Al0,3yi0∥
≤ ∥Al0,3∥∥yi0∥2
≤ R2

where the first step folllows from the definition of v2, the second step follows from the definition of
h(y)l0,i0 , the third step follows from Fact A.4, the last step follows from ∥Al0,3∥ ≤ R and ∥y∥2 ≤ R.

Proof of Part 2 This trivially follows from ∥Al0,3∥ ≤ R.

Proof of Part 3

∥v1∥2 = ∥h(y)l0,i0 ◦ Al0,j0,i ∥2
≤ ∥h(y)l0,i0∥2∥Al0,j0,i ∥2
≤ R3

where the first step follows from the definition of v1, the second step follows from Fact A.3, the third
step follows from Part 1 and ∥Al0,j0,i ∥ ≤ R.

Proof of Part 4 We can show that

∥ exp(Al0,j0 x)∥2 ≤
√
n · ∥ exp(Al0,j0 x)∥∞

≤
√
n · exp(∥Al0,j0 x∥∞)

≤
√
n · exp(∥Al0,j0 x∥2)

≤
√
n · exp(R2),

where the first step follows from Part 4 of Fact A.3, the second step follows from Part6 of Fact A.3,
the third step follows from Fact A.3, and the last step follows from ∥Al0,j0 ∥ ≤ R and ∥x∥2 ≤ R.
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Proof of Part 5
∥f(x)l0,j0∥2 = ∥α(x)−1

l0,j0
· u(x)l0,j0∥2

≤ ∥α(x)−1
l0,j0

∥2∥u(x)l0,j0∥2
≤ β∥α(x)l0,j0∥ exp(Al0,j0 x)∥2
≤ β−1∥⟨exp(Al0,j0 x),1n⟩∥2

√
n · exp(R2)

≤ β−1∥ exp(Al0,j0 x)∥2∥1n∥2
√
n · exp(R2)

≤ β−1
√
n · exp(R2)

√
n · exp(R2)

= β−1n exp(2R2)

where the first step follows from the definition of f(x)l0,j0 , the second step follows from Fact A.3,
the third step follows from ⟨exp(Al0,j0 x),1n⟩ ≥ β, the fourth step follows from Part 4, the fifth
step follows from Fact A.3, the sixth step follows from Part 4, the last step follows from simple
algebra.

Lemma F.8. If the following conditions hold

• Let f(x)l0,j0 be defined in Definition 3.3

• Let h(y)l0,i0 be defined in Definition 3.4

• Let R ≥ 4

• Let x, y ∈ Rd satisfy ∥Al0,j0 x∥2 ≤ R and ∥Al0,j0 y∥2 ≤ R

• ∥Al0,j0 ∥ ≤ R

• Let v1 := h(y)l0,i0 ◦ Al0,j0,i

• Let v2 := h(y)l0,i0

• Let v3 := Al0,j0,i

• Let s(x) := ⟨f(x)l0,j0 , v1⟩

• Let t(x) := ⟨f(x)l0,j0 , v2⟩⟨f(x)l0,j0 , v3⟩

Then we have

• Part 1. |s(x)− s(x̂)| ≤ nR2 exp(5R2)∥x− y∥2

• Part 2. |t(x)− t(x̂)| ≤ 2n2R4 exp(8R2)∥x− y∥2

• Part 3. |(s(x)− t(x))− (s(x̂)− t(x̂))| ≤ n2R4 exp(13R2)∥x− y∥2

Proof. Proof of Part 1
|s(x)− s(x̂)| = |⟨f(x)l0,j0 , v1⟩ − ⟨f(x̂)l0,j0 , v1⟩|

= |⟨f(x)l0,j0 − f(x̂)l0,j0 , v1⟩|
≤ ∥f(x)l0,j0 − f(x̂)l0,j0∥2∥v1∥2
≤ nR2 exp(5R2)∥x− y∥2

where the first step follows from the definition of s(x), the second step follows from simple algebra,
the third step follows from Fact A.3, the last step follows from combining Part 4 of Lemma C.3,
Lemma C.4 and Part 1 of Lemma F.7.

Proof of Part 2 First, note that

|t(x)− t(x̂)| = |⟨f(x)l0,j0 , v2⟩⟨f(x)l0,j0 , v3⟩ − ⟨f(x̂)l0,j0 , v2⟩⟨f(x̂)l0,j0 , v3⟩|

For convenience, we define

C1 : = ⟨f(x)l0,j0 , v2⟩⟨f(x)l0,j0 , v3⟩ − ⟨f(x̂)l0,j0 , v2⟩⟨f(x)l0,j0 , v3⟩
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C2 : = ⟨f(x̂)l0,j0 , v2⟩⟨f(x)l0,j0 , v3⟩ − ⟨f(x̂)l0,j0 , v2⟩⟨f(x̂)l0,j0 , v3⟩

Then, it’s easy to know

|t(x)− t(x̂)| = |C1 + C2|

Since C1 and C2 are symmetry, we only need to upper bound |C1|:

|C1| = |⟨f(x)l0,j0 , v2⟩⟨f(x)l0,j0 , v3⟩ − ⟨f(x̂)l0,j0 , v2⟩⟨f(x)l0,j0 , v3⟩|
= |⟨f(x)l0,j0 − f(x̂)l0,j0 , v2⟩||⟨f(x)l0,j0 , v3⟩|
≤ ∥f(x)l0,j0 − f(x̂)l0,j0∥2∥v2∥2∥f(x)l0,j0∥2∥v3∥2
≤ n2R4 exp(8R2)∥x− y∥2

where the first step follows from the definition of C1, the second step follows from simple algebra,
the third step follows from Fact A.3, the fourth step follows from combining Part 4 of Lemma C.3,
Part 5, Part 1 and Part 3 of Lemma F.7.

Thus, we obtained the bound:

|t(x)− t(x̂)| = |C1 + C2|
≤ 2n2R4 exp(8R2)∥x− y∥2

Proof of Part 3

|(s(x)− t(x))− (s(x̂)− t(x̂))| = |(s(x)− s(x̂) + (t(x̂)− t(x)))|
≤ |s(x)− s(x̂)|+ |t(x̂)− t(x)|
≤ n2R4 exp(13R2)∥x− y∥2

where the first step follows from simple algebra, the second step follows from triangular inequality,
the last step follows from Part 2 and Part 3.

Lemma F.9 (Formal version of Lemma 3.13). If the following conditions hold

• Let f(x)l0,j0 be defined in Definition 3.3

• Let h(y)l0,i0 be defined in Definition 3.4

• Let d(x) := ⟨f(x)l0,j0 , h(y)l0,i0⟩

• Let R ≥ 4

• Let x, y ∈ Rd satisfy ∥Al0,j0 x∥2 ≤ R and ∥Al0,j0 y∥2 ≤ R

• ∥Al0,j0 ∥ ≤ R

• Let L(x, y)l0,j0,i0 be defined in Definition 3.5

• Let w(x) := ⟨f(x)l0,j0 , v1⟩ − ⟨f(x)l0,j0 , v2⟩⟨f(x)l0,j0 , v3⟩

Then we have

|∇L(x, :)l0,j0,i0 −∇L(x̂, :)l0,j0,i0 | ≤ 3n3R7 exp(13R2)∥x− x̂∥2

Proof.

|∇L(x, :)l0,j0,i0 −∇L(x̂, :)l0,j0,i0 |
= |g′(⟨f(x)l0,j0 , h(y)l0,i0⟩)bl0,j0,i0 · w(x)− g′(⟨f(x̂)l0,j0 , h(y)l0,i0⟩)bl0,j0,i0 · w(x̂)|
≤ bl0,j0,i0 |g′(⟨f(x)l0,j0 , h(y)l0,i0⟩)w(x)− g′(⟨f(x̂)l0,j0 , h(y)l0,i0⟩)w(x̂)|

where the first step follows from Lemma F.6 and the definition of w(x), the second step follows from
simple algebra.
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For convenience, we define

C1 : = g′(⟨f(x)l0,j0 , h(y)l0,i0⟩)w(x)− g′(⟨f(x̂)l0,j0 , h(y)l0,i0⟩)w(x)
C2 : = g′(⟨f(x̂)l0,j0 , h(y)l0,i0⟩)w(x)− g′(⟨f(x̂)l0,j0 , h(y)l0,i0⟩)w(x̂)

First, we upper bound |C1| as follows:

|C1| = |g′(⟨f(x)l0,j0 , h(y)l0,i0⟩)w(x)− g′(⟨f(x̂)l0,j0 , h(y)l0,i0⟩)w(x)|
≤ |g′(⟨f(x)l0,j0 , h(y)l0,i0⟩)− g′(⟨f(x̂)l0,j0 , h(y)l0,i0⟩)||w(x)|
≤ |⟨f(x)l0,j0 , h(y)l0,i0⟩ − ⟨f(x̂)l0,j0 , h(y)l0,i0⟩||w(x)|
≤ nR2 exp(5R2)∥x− x̂∥2|⟨f(x)l0,j0 , v1⟩ − ⟨f(x)l0,j0 , v2⟩⟨f(x)l0,j0 , v3⟩|
≤ nR2 exp(5R2)∥x− x̂∥2(|⟨f(x)l0,j0 , v1⟩|+ |⟨f(x)l0,j0 , v2⟩⟨f(x)l0,j0 , v3⟩|)
≤ nR2 exp(5R2)∥x− x̂∥2(∥f(x)l0,j0∥2∥v1|2 + ∥f(x)l0,j0∥2∥v2∥2∥f(x)l0,j0∥2∥v3∥2)
≤ nR2 exp(5R2)∥x− x̂∥22n2R4 exp(6R2)

= 2n3R6 exp(11R2)∥x− x̂∥2
where the first step follows from the definition of C1, the second step follows from Fact A.3, the
third step follows from Lemma F.4, the fourth step follows from the definition of w(x), the fifth step
follows from triangular inequality, the sixth step follows from Fact A.3, the seventh step follows from
Lemma F.7, the last step follows from simple algebra.

Then, we upper bound |C2| as follows:

|C2| = |g′(⟨f(x̂)l0,j0 , h(y)l0,i0⟩)w(x)− g′(⟨f(x̂)l0,j0 , h(y)l0,i0⟩)w(x̂)|
≤ |g′(⟨f(x̂)l0,j0 , h(y)l0,i0⟩)||w(x)− w(x̂)|
≤ n2R4 exp(13R2)∥x− y∥2

where the first step follows from the definition of C2, the second step follows from simple algebra,
the third step follows from Part 3 of Lemma F.8 and g(x)(1− g(x)) ≤ 1.

Thus, we obtained the bound:

|g′(⟨f(x)l0,j0 , h(y)l0,i0⟩)w(x)− g′(⟨f(x̂)l0,j0 , h(y)l0,i0⟩)w(x̂)| = |C1 + C2|
≤ |C1|+ |C2|
≤ 3n3R6 exp(13R2)∥x− x̂∥2

Finally, we have

bl0,j0,i0 |g′(⟨f(x)l0,j0 , h(y)l0,i0⟩)w(x)− g′(⟨f(x̂)l0,j0 , h(y)l0,i0⟩)w(x̂)| ≤ R · 3n3R6 exp(13R2)∥x− x̂∥2

60



Under review as a conference paper at ICLR 2024

G MAIN RESULTS

Lemma G.1 (Lemma 8 of Tarzanagh et al. (2023a)). By Lemma F.9, if η ≤ 1/Lx, then for any
initialization x(0), Algorithm W-GD (Definition 3.7) satisfies

L(x(k + 1))− L(x(k)) ≤ −η

2
∥∇L(x(k))∥2F

for ∀k ≥ 0. Additionally, it holds that
∞∑
k=0

∥∇L(x(k))∥2F <∞

lim
k→∞

∥∇L(x(k))∥2F = 0

Proof. The proof is similar to Lemma 5 of Tarzanagh et al. (2023b).

Lemma G.2 (Lemma 9 of Tarzanagh et al. (2023a)). Let Wmm be the SVM solution of ATT-
SVM(Tarzanagh et al. (2023a)). Assumption 3.10 hold. Then, for ∀W ∈ Rd×d, the training loss
W-ERM(Tarzanagh et al. (2023a)) obyes ⟨∇L(W ),Wmm⟩ ≤ −c < 0, for some constant c > 0 (see
Eq. (16)) depending on the data, the head v, and a loss derivative bound.

Proof. Let

hi : = UiX
mmzi

γi : = Vi · Uiv

hi : = UiXzi

which implies that

⟨∇L(X), Xmm⟩ = 1

m

m∑
i=1

l′(γ⊤
i S(hi)) · ⟨U⊤

i S′(hi)γiz
⊤
i , Xmm⟩

=
1

m

m∑
i=1

l′i · tr[(Xmm)⊤U⊤
i S(hi)γiz

⊤
i ]

=
1

m

m∑
i=1

l′i · h
⊤
i S′(hi)γi

=
1

m

m∑
i=1

l′i · (h
⊤
i diag(si)γi − h

⊤
i sis

⊤
i γi) (10)

Here, let l′i := l′(γ⊤
i S(hi)), si = S(hi), the third step follows from tr[ba⊤] = a⊤b

In order to move forward, we will establish the following result, with a focus on the equal score
condition (the second assumption in Assumption 3.10): Let γ = γt≥2 be a constant, and let γ1 and
h1 represent the largest indices of vectors γ and h respectively. For ∀s that satisfies

∑
t∈[T ] cst = 1

and st > 0, we aim to prove that h
⊤
diag(s)γ − h

⊤
ss⊤γ > 0. To demonstrate this, we proceed by

writing the following:

h
⊤
diag(s)γ − h

⊤
ss⊤γ =

n∑
t=1

htγtst −
n∑

t=1

htst

n∑
t=1

γtst

= (h1(γ1 − γ)s1(1− s1))− (γ1 − γ)s1

n∑
t≥2

htst

= (γ1 − γ)(1− s1)s1[h1 −
∑n

t≥2 htst∑n
t≥2 st

]

≥ (γ1 − γ)(1− s1)s1(h1 −max
t≥2

ht) (11)
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To proceed, we define

γi
gap : = γiopti − max

t ̸=opti

γit

h
i

gap : = hiopti
− max

t ̸=opti

hit

With these, we obtain

h
⊤
i diag(si)γi − h

⊤
i sis

⊤
i γi ≥ γi

gaph
i

gap(1− siopti)siopti (12)

Note that

h
i

gap = min
i ̸=opti

(xiopti
− xit)

⊤Wmmzi > 1

γi
gap = min

i ̸=opti

γiopti − γit > 0

siopti(1− siopti) > 0

Hence,

c0 := min
i∈[n]

{( min
i ̸=opti

(xiopti
− xit)

⊤Wmmzi) · ( min
i̸=opti

γiopti − γit) · siopti(1− siopti)} > 0 (13)

It follows from Eq. (12) and Eq. (13) that

min
i∈[n]

{h⊤
i diag(si)γi − h

⊤
i sis

⊤
i γi} ≥ c0 ≥ 0 (14)

Since l′i < 0, l′ is continuous and the domain is bounded, the maximum is attained and negative, and
thus

−c1 = max
x

l′(x), for some c1 > 0 (15)

Hence, using Eq. (15) and Eq. (14) in Eq. (10), we obtain

⟨∇L(X), Xmm⟩ ≤ −c < 0 (16)

where

c = c1 · c0

In the scenario that the second assumption in Assumption 3.10 holds (all tokens are support),
ht = x⊤

itW
mmzi is constant for ∀t ≥ 2. Hence, following similar steps as in Eq. (11) completes the

proof.

Lemma G.3 (Lemma 10 of Tarzanagh et al. (2023a)). Let xmm be the SVM solution of the problem
Att-SVM (Tarzanagh et al. (2023a)). Suppose L(·) is strictly decreasing and differentiable. For any
choice of π > 0, there exists R := Rπ such that, for any x with ∥x∥F ≥ R, we have

⟨∇L(x),
x

∥x∥F
⟩ ≥ (1 + π)⟨∇L(x),

xmm

∥xmm∥F
⟩

Proof. We define

x : =
∥xmm∥Fx

∥x∥F
M : = sup

i,t
∥uitz

⊤
i ∥

Θ : =
1

∥xmm∥F
si : = S(UiXzi)

hi : = Uixzi

hi : = Uix
mmzi
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without loss of generality, assume

αi = opti = 1

for ∀i ∈ [n].

Repeating the proof for Lemma 9 of Tarzanagh et al. (2023a) yields

⟨∇L(x), xmm⟩ = 1

m

m∑
i=1

L′
i(γi1 − γ)(1− si1)si1

[
hi1 −

∑n
t≥2 hitsit∑n
t≥2 sit

]

⟨∇L(x), x⟩ = 1

m

m∑
i=1

L′
i(γi1 − γ)(1− si1)si1

[
hi1 −

∑n
t≥2 hitsit∑n
t≥2 sit

]

Focusing on a single example i ∈ [n] with s, h, h vectors (dropping subscript i), given π, for
suffciently large R, we wish to show that[

h1 −
∑n

t≥2 htst∑n
t≥2 st

]
≤ (1 + π)

[
h1 −

∑n
t≥2 htst∑n
t≥2 st

]
(17)

We consider two scenarios.

Scenarios 1: ∥x− xmm∥F ≤ ϵ := π/(2M). In this scenario, for any token, we find that

|ht − ht| = |s⊤t (x− xmm)zt|
≤M∥x− xmm∥F
≤Mϵ

Consequently, we obtain

h1 −
∑n

t≥2 htst∑n
t≥2 st

≥ h1 −
∑n

t≥2 htst∑n
t≥2 st

− 2Mϵ

= h1 −
∑n

t≥2 htst∑n
t≥2 st

− π

Also noticing

h1 −
∑n

t≥2 htst∑n
t≥2 st

≥ 1

This implies Eq.(17).

Scenario 2: ∥x− xmm∥F ≥ ϵ := π/(2M). In this scenario, for some δ = δ(ϵ) and τ ≥ 2, we have

h1 − hτ ≤ 1− 2δ

Recall that s = S(Rh) where R = ∥x∥F /∥xmm∥F . To proceed, split the tokens into two groups:
Let N be the group of tokens obeying (u1 − ut)

⊤xz ≥ 1 − δ for t ∈ N and [n] − N be the rest.
Observe that ∑

t∈N st∑n
t≥2 st

≤
∑

t∈N st

sτ

≤ n
eδR

e2δR

= ne−δR

Set M = M/Θ and note that

∥ht∥ ≤ ∥xmm∥F · ∥utz
⊤∥ ≤ M
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Using

(u1 − ut)
⊤xz < 1− δ

over t ∈ [n]−N and plugging in the bound above, we obtain∑n
t≥2(h1 − ht)st∑n

t≥2 st
=

∑
t∈[n]−N (h1 − ht)st∑n

t≥2 st
+

∑
t∈N (h1 − ht)st∑n

t≥2 st

≤ (1− δ) + 2Mne−δR

Using the fact that

h1 −
∑n

t≥2 htst∑n
t≥2 st

≥ 1

the above implies Eq.(17) with π′ = 2Mne−δR − δ. To proceed, choose

Rπ = δ−1Θ−1 log(
2Mn

π
)

to ensure π′ < π

Theorem G.4 (A variation of Theorem 4 in page 8 in Tarzanagh et al. (2023a), formal version
of Theorem 3.14). Suppose Assumption 3.10 on the tokens’s score hold. Then, Algorithm W-GD
(Definition 3.7) with the step size η ≤ 1/LX and any starting point X(0) satisfies

lim
k→∞

X(k)

∥X(k)∥F
=

Xmm

∥Xmm∥F

Proof. Given ∀ϵ ∈ (0, 1), we define

π :=
ϵ

1− ϵ

By Theorem 3 of Tarzanagh et al. (2023a), we have

lim
k→∞

∥X(k)∥F = ∞

Hence, we can choose kϵ such that for any k ≥ kϵ, for some parameter Rϵ, it holds that

∥X(k)∥F > Rϵ ∨
1

2

Now, for any k ≥ kϵ, by Lemma 10 of Tarzanagh et al. (2023a), we have

⟨−∇L(X(k)),
Xmm

∥Xmm∥F
⟩ ≥ (1− ϵ)⟨−∇L(X(k)),

X(k)

∥X(k)∥F
⟩

Multiplying both sides by the stepsize η and using the gradient descent update, we have

⟨X(k + 1)−X(k),
Xmm

∥Xmm∥F
⟩ ≥ (1− ϵ)⟨X(k + 1)−X(k),

X(k)

∥X(k)∥F
⟩

=
1− ϵ

2∥X(k)∥F
(∥X(k + 1)∥2F − ∥X(k)∥2F − ∥X(k + 1)−X(k)∥2F )

≥ (1− ϵ)

(
∥X(k + 1)2F ∥ − ∥X(k)∥2F

2∥X(k)∥F
− ∥X(k + 1)−X(k)∥2F

)
≥ (1− ϵ)(∥X(k + 1)∥2F − ∥X(k)∥2F − ∥X(k + 1)−X(k)∥2F )
≥ (1− ϵ)(∥X(k + 1)∥F − ∥X(k)∥F − 2η(L(X(k))− L(X(k + 1))))
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where the first step follows from simple algebra, the second step follows from ∥x(k)∥F ≥ 1/2, the
third step follows from (a2 − b2)/2b− (a− b) ≥ 0 holds for ∀a, b > 0, the last step follows from
Lemma 8 of Tarzanagh et al. (2023a).

By summing the inequality over k ≥ kϵ, we have

⟨ Xmm

∥Xmm∥F
,

X(k)

∥X(k)∥F
⟩ ≥ 1− ϵ+

C(ϵ, η)

∥X(k)∥F

where the finite constant C(ϵ, η) is defined as

C(ϵ, η) := ⟨X(kϵ),
Xmm

∥Xmm∥F
⟩ − (1− ϵ)∥X(kϵ)∥F − 2η(1− ϵ)(L(X(kϵ))− L∗)

where L∗ ≤ L(x(kϵ)) for ∀k ≥ 0.

Since ∥x(k)∥F → ∞, we have

lim
k→∞

inf⟨ Xmm

∥Xmm∥F
,

X(k)

∥X(k)∥F
⟩ ≥ 1− ϵ

Since ϵ is arbitary, we can consider the limit as ϵ → 0. Thus, we have

X(k)

∥X(k)∥F
→ Xmm

∥Xmm∥F

Theorem G.5 (A variation of Theorem 5 in page 8 in Tarzanagh et al. (2023a), formal version
of Theorem 3.15). For any initialization X(0), there exists a dataset dependent sufficiently small
δ > 0 such that the following holds: Suppose non-optimal scores obey |γit − γiτ | ≤ δ for all
t, τ ̸= opti, i ∈ [m]. Then, Algorithm x-GD, with η ≤ 1/(2Lx) obeys limk→∞ ∥X(k)∥F = ∞ and
limk→∞

X(k)

∥X(k)∥F
= Xmm

∥Xmm∥F

Proof. We provide the proof in three steps.

Step 1: Defining the original and equally-scored problems. Given the original dataset (Ui, zi, Vi)

with scores γit, define an approximate dataset (Ũi, z̃i, Ṽi) as follows. Let P⊥
v denote the projection

onto the subspace orthogonal to the linear head v. For a given input i, we define an index s, opti as
follows:

• If the setting is cross-attention, then, s, opti is arbitrary.

• If the setting is self-attention, then s = 1 whenever opti ̸= 1 and s ̸= opti is arbitrary
otherwise.

Note this construction does not touch uis and guarantees for equal scores γit = γis for all t, opti.
Observe that by construction ∥ũit − uit∥ ≤ δ/∥v∥ since non-optimal score differences are at most δ.
Additionally, we always set z̃i = zi. This is clear for Cross-Attention. For Self-Attention, we use
the fact that xi1 is unchanged thanks to our choice of s and we set z̃i = uit1 = zi. Following this
setting, we define L(W ) andL̃(x̃) as the ERM objectives of the original and equally-scored problems,
respectively, as follows:

L(X) =
1

n

n∑
i=1

L(Viv
⊤U⊤

i S(UiXzi)) (18)

L̃(X̃) =
1

m

m∑
i=1

L(Viv
⊤Ũ⊤

i S(ŨiX̃zi)) (19)
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Let Xmm and X̃mm denote the solution of ATT-SVM(Tarzanagh et al. (2023a)) for the original and
equally-scored SVM problems, respectively:

Xmm = argmin
x

∥x∥F subj.to (uiopti
− uit)

⊤xzi ≥ 1 for ∀t ̸= opti, i ∈ [n] (20)

X̃mm = argmin
X̃

∥X̃∥F subj.to (uiopti
− ũit)

⊤X̃zi ≥ 1 for ∀t ̸= opti, i ∈ [n] (21)

Recall that we assume a solution to the original problem Wmm exists. Additionally, x̃mm is
guaranteed to exist by making δ smaller than a dataset-dependent constant. Also note that there exists
∆0(δ) > 0 that depends solely on the original problem and δ, and can be made arbitrarily small by
decreasing δ, such that

∥x̂mm − xmm∥F
∥xmm∥F

≤ ∆0(δ) (22)

To proceed, let γi = Vi · Uiv, γ̃i = Vi · Ũiv and h̃i = Ûix̂izi. Following Lemma F.9, we have

∥∇L(X)−∇L̃(X)∥F ≤ 1

m

m∑
i=1

∥l′(γ⊤
i S(hi)) · ziγ⊤

i S′(hi)Ui − l′(γ̃⊤
i S(h̃i)) · ziγ̃⊤

i S′(h̃i)Ũi∥F

≤ 1

m

m∑
i=1

M0∥ziγ̃⊤
i S′(h̃i)Ũi∥F ∥γ⊤

i S(hi)− γ̃⊤
i S(h̃i)∥

+
1

m

m∑
i=1

M1∥ziγ⊤
i S′(hi)Ui − ziγ̃

⊤
i S′(h̃i)Ũi∥F (23)

where by Lemma F.4 we have M1 = 3n3R7 exp(13R2) and M0 = 2n2R2 exp(6R2)

Step 2: Monitoring the fluctuations during iterations until x(k) enters the local cone around
xmm Fix X(0) = X̃(0). Algorithm W-GD(Definition 3.7) applied to L(X) and L̃(X̃) defined in
Eq. 20 and Eq. (19) implies that

X̃(k + 1) = X̃(k)− η∇L̃(X̃(k)) (24)

X(k + 1) = X(k)− η∇L(X(k)) (25)

For the original problem with Objective Eq.(20), it follows from Theorem 7 of Tarzanagh et al. (2023a)
that there exist parameters µ = µ(opt) ∈ (0, 1) and R = Rµ > 0 and a conic set Cµ,R(X

mm) such
that gradient descent converges to the max-margin direction Xmm when initialized anywhere within
Cµ,R(X

mm), where

Cµ,R(X
mm) = {X ∈ Rd×d : ⟨ X

∥X∥F
,

Xmm

∥Xmm∥F
⟩ ≥ 1− µ, ∥X∥F ≥ R}

We will prove the following claim.

• Claim 1 For a sufficiently large data-dependent δ (see (22),(26),(28),(34), there exists k ≥ 1
such that X(k) ∈ Cµ,R(X

mm), where X(k) is defined in Eq. (25))

Let LX and LX̃ denote the lipschitz constants of gradients of objectives L(X) and L̃(X̃) defined in
Eq. (18) and Eq. (19) respectively. From Lemma F.9, we obtain

2∥v∥∥zi∥2∥Ui∥3(M0∥v∥∥Xi∥+ 3M1)− ∥v∥∥zi∥2∥X̃i∥3(M0∥v∥∥X̃i∥+ 3M1) = 2LX − LX̃

Hence, there exists ∆1(δ) > 0 that depends solely on the original problem and δ, and can be made
arbitarily small by decreasing δ, such that

2LX − LX̃ ≥ ∆1(δ)LX̃ (26)

which implies that

1

2LX
≤ 1

(1 + ∆1(δ))LX̃

≤ 1

LX̃
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Hence, any stepsize η ≤ 1/(2LX) satisfies the requirements of Lemma 8 for the original and auxiliary
objectives L(X) and L̃(X̃), respectively. As a result, the gradient descent updates (24) and (25)
with any stepsize η ≤ 1/(2LX) guarantees the descent of Objectives (18) and (19), respectively. To
proceed, let µ̃ = µ/2. For the equally-scored problem with Objective (19), Theorem 4 in Tarzanagh
et al. (2023b) assures the existence of k = kµ̃ such that when we run gradient descent in (24) with
the step size η for k iterations,then ∥X̃∥F ≥ Rµ̃ for some Rµ̃ ≥ 2Rµ,and

⟨ X̃(k)

∥X̃(k)∥F
,

X̃mm

∥X̃mm∥F
⟩ ≥ 1− µ̃ (27)

Using Eq. (23), let ∆2,τ := ∥∇L(X(τ)) − ∇L̃(X̃(τ))∥F . Since X(0) = X̃(0), it follows from
Eq. (23) that there exists ∆2(δ) that depends on the original problem (due to Eq. (23) and µ = 2µ̃)
and δ, and ∆2,τ (δ) and ∆2(δ) can be made arbitrarily small by decreasing δ such that

∥X̃(k)−X(k)∥F
∥X̃(k)∥F

≤ η

Rµ̃

kµ̃−1∑
τ=0

∥∇L(X(τ))−∇L̃(X̃(τ))∥F ≤ η

Rµ̃

kµ̃−1∑
τ=0

∆2,τ (δ) ≤ ∆2(δ) (28)

Let

∆(δ) := ∆2(δ) + ∆0(δ) + ∆2(δ)∆0(δ) (29)

where ∆0(δ) is given in Eq. (22) and ∆2(δ) is given in Eq. (28)

It follows from Eq. (22), Eq. (28), Eq. (27) and Eq. (29) that

⟨ X(k)

∥X(k)∥F
,

X̃mm

∥X̃mm∥F
⟩ = ⟨ X̃(k)

∥X̃(k)∥F
+

X(k)− X̃(k)

∥X̃(k)∥F
,

X̃mm

∥X̃mm∥F
+

Xmm − X̃mm

∥X̃mm∥F
⟩

= ⟨ X̃(k)

∥X̃(k)∥F
,

X̃mm

∥X̃mm∥F
⟩+ ⟨X(k)− X̃(k)

∥X̃(k)∥F
,

X̃mm

∥X̃mm∥F
⟩

+ ⟨ X̃(k)

∥X̃(k)∥F
,
Xmm − X̃mm

∥X̃mm∥F
⟩+ ⟨X(k)− X̃(k)

∥X̃(k)∥F
,
Xmm − X̃mm

∥X̃mm∥F
⟩

≥ 1− µ̃+ (−∆2(δ)−∆0(δ)−∆2(δ)∆0(δ))

≥ 1− 2µ̃+ µ̃−∆(δ)

≥ 1− µ+ µ̃−∆(δ) (30)

∥X(k)∥F
∥X̃(k)∥

≤ 1 +
X(k)− X̃(k)

∥X̃(k)∥F
≤ 1 + ∆2(δ) (31)

∥Xmm∥F
∥X̃mm∥

≤ 1 +
Xmm − X̃mm

∥X̃mm∥F
≤ 1 + ∆0(δ) (32)

Now, it follows from Eq. (30) - Eq. (32) for k = kµ̃,

⟨ X(k)

∥X(k)∥F
,

Xmm

∥Xmm∥F
⟩ ≥ 1

1 + ∆2(δ)
· 1

1 + ∆0(δ)
(1− µ+ µ̃−∆(δ))

=
1

1 +∆(δ)
(1− µ+ µ̃−∆(δ))

≥ 1− µ+
1

1 +∆(δ)
(µ̃− (2− µ)∆(δ))

≥ 1− µ (33)

Here, the last inequality is obtained by choosing δ > 0 to ensure that (26) holds, and both ∆2(δ) and
∆0(δ) are sufficiently small such that (22), (28), and the following condition are satisfied:

µ̃− (2− µ)∆(δ) ≥ 0 (34)
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We can similarly guarantee ∥X(k)∥F ≥ Rµ by using Rµ̃ ≥ 2Rµ. Hence, we have shown that,
for sufficiently small data-dependent δ (see Conditions (22),(26),(28),(34)), Claim 1 holds, and for
k = kµ̃ , X(k) ∈ Cµ,R(X

mm), where X(k) is defined in (24), (25).

Step 3: The proof now follows by applying Theorem 7 on the original problem. This is because
gradient descent iterations starting at X(k) for k = kµ̃ which lies within the cone provably converges
to the max-margin direction.
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H HESSIAN

In this section, we provide a brief analysis on the hessian of our loss function. In Section H.1, we
compute the hessian with respect to x. In Section H.2, we reform the hessian for the ease of the
analysis afterwards. In Section H.3, we are able to show that the hessian can be decomposed into
several diagnal matrices and low rank matrices.

H.1 HESSIAN COMPUTATION WITH RESPECT TO x

Lemma H.1. If the following conditions hold

• Let γ(x)l0,j0,i0 := ⟨f(x)l0,j0 , h(y)l0,i0⟩

• Let dLl0,i0,j0
(x,y)

dxi
be computed as Lemma B.6

Then we have

• Part 1.
dLl0,i0,j0(x, y)

dxidxi

= (⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩ − γ(x)l0,j0,i0⟨f(x)l0,j0 ,Al0,j0,i⟩)2

+ c(x, y)l0,j0,i0
(

+ ⟨f(x)l0,j0 ◦ Al0,j0,i ◦Al0,j0,i, h(y)l0,i0⟩(1− γ(x)l0,j0,i0)

− 2⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩⟨f(x)l0,j0 ,Al0,j0,i⟩
+ 2⟨f(x)l0,j0 ,Al0,j0,i⟩2γ(x)l0,j0,i0
)

• Part 2.
dLl0,i0,j0(x, y)

dxidxj

= (⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩ − γ(x)l0,j0,i0⟨f(x)l0,j0 ,Al0,j0,i⟩)·
(⟨f(x)l0,j0 ◦ Al0,j0,j , h(y)l0,i0⟩ − γ(x)l0,j0,i0⟨f(x)l0,j0 ,Al0,j0,j⟩)
+ c(x, y)l0,j0,i0
(

+ ⟨f(x)l0,j0 ◦ Al0,j0,i ◦Al0,j0,j , h(y)l0,i0⟩(1− γ(x)l0,j0,i0)

− ⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩⟨f(x)l0,j0 ,Al0,j0,i⟩ − ⟨f(x)l0,j0 ◦ Al0,j0,j , h(y)l0,i0⟩⟨f(x)l0,j0 ,Al0,j0,j⟩
+ 2⟨f(x)l0,j0 ,Al0,j0,i⟩⟨f(x)l0,j0 ,Al0,j0,j⟩γ(x)l0,j0,i0
)

Proof. Proof of Part 1 First, we compute

d

dxi
(⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩ − ⟨f(x)l0,j0 , h(y)l0,i0⟩⟨f(x)l0,j0 ,Al0,j0,i⟩)

=
d

dxi
⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩

− (
d

dxi
⟨f(x)l0,j0 , h(y)l0,i0⟩)⟨f(x)l0,j0 ,Al0,j0,i⟩

− (
d

dxi
⟨f(x)l0,j0 ,Al0,j0,i⟩)⟨f(x)l0,j0 , h(y)l0,i0⟩

= ⟨f(x)l0,j0 ◦ Al0,j0,i ◦Al0,j0,i, h(y)l0,i0⟩ − ⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩⟨f(x)l0,j0 ,Al0,j0,i⟩
− (⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩ − ⟨f(x)l0,j0 , h(y)l0,i0⟩⟨f(x)l0,j0 ,Al0,j0,i⟩)⟨f(x)l0,j0 ,Al0,j0,i⟩
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− (⟨f(x)l0,j0 ◦ Al0,j0,i,Al0,j0,i⟩ − ⟨f(x)l0,j0 ,Al0,j0,i⟩⟨f(x)l0,j0 ,Al0,j0,i⟩)⟨f(x)l0,j0 , h(y)l0,i0⟩
= ⟨f(x)l0,j0 ◦ Al0,j0,i ◦Al0,j0,i, h(y)l0,i0⟩ − 2⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩⟨f(x)l0,j0 Al0,j0,i⟩

+ 2⟨f(x)l0,j0 ,Al0,j0,i⟩2⟨f(x)l0,j0 , h(y)l0,i0⟩ − ⟨f(x)l0,j0 ◦ Al0,j0,i ◦Al0,j0,i, h(y)l0,i0⟩⟨f(x)l0,j0 , h(y)l0,i0⟩
where the first step follows from simple derivative, the second step follows from simple algebra, the
third step follows from simple algebra.

Then, we have
d

dxi

d

dxi
Ll0,i0,j0(x, y)

=
d

dxi
(c(x, y)l0,j0,i0 A

⊤
l0,j0,i(f(x)l0,j0 − f(x)l0,j0f(x)

⊤
l0,j0)h(y)l0,i0)

= (⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩ − γ(x)l0,j0,i0⟨f(x)l0,j0 ,Al0,j0,i⟩)2

+ c(x, y)l0,j0,i0
d

dxi
(⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩ − ⟨f(x)l0,j0 , h(y)l0,i0⟩⟨f(x)l0,j0 ,Al0,j0,i⟩)

where the first step follows from differential chain rule, the second step follows from Part 8 of
Lemma B.6 and differential chain rule.

By combining the two equations, we completes the proof.

Proof of Part 2 First, we compute

d

dxj
(⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩ − ⟨f(x)l0,j0 , h(y)l0,i0⟩⟨f(x)l0,j0 ,Al0,j0,i⟩)

=
d

dxj
⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩

− (
d

dxj
⟨f(x)l0,j0 , h(y)l0,i0⟩)⟨f(x)l0,j0 ,Al0,j0,i⟩

− (
d

dxj
⟨f(x)l0,j0 ,Al0,j0,i⟩)⟨f(x)l0,j0 , h(y)l0,i0⟩

= ⟨f(x)l0,j0 ◦ Al0,j0,i ◦Al0,j0,j , h(y)l0,i0⟩ − ⟨f(x)l0,j0 ◦ Al0,j0,j , h(y)l0,i0⟩⟨f(x)l0,j0 ,Al0,j0,i⟩
− (⟨f(x)l0,j0 ◦ Al0,j0,j , h(y)l0,i0⟩ − ⟨f(x)l0,j0 , h(y)l0,i0⟩⟨f(x)l0,j0 ,Al0,j0,j⟩)⟨f(x)l0,j0 ,Al0,j0,i⟩
− (⟨f(x)l0,j0 ◦ Al0,j0,i,Al0,j0,j⟩ − ⟨f(x)l0,j0 ,Al0,j0,i⟩⟨f(x)l0,j0 ,Al0,j0,j⟩)⟨f(x)l0,j0 , h(y)l0,i0⟩

= ⟨f(x)l0,j0 ◦ Al0,j0,i ◦Al0,j0,j , h(y)l0,i0⟩
− ⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩⟨f(x)l0,j0 Al0,j0,j⟩ − ⟨f(x)l0,j0 ◦ Al0,j0,j , h(y)l0,i0⟩⟨f(x)l0,j0 Al0,j0,i⟩
+ 2⟨f(x)l0,j0 ,Al0,j0,i⟩⟨f(x)l0,j0 ,Al0,j0,j⟩⟨f(x)l0,j0 , h(y)l0,i0⟩
− ⟨f(x)l0,j0 ◦ Al0,j0,i ◦Al0,j0,j , h(y)l0,i0⟩⟨f(x)l0,j0 , h(y)l0,i0⟩

where the first step follows from simple derivative, the second step follows from simple algebra, the
third step follows from simple algebra.

Then, we have
d

dxj

d

dxi
Ll0,i0,j0(x, y)

=
d

dxj
(c(x, y)l0,j0,i0 A

⊤
l0,j0,i(f(x)l0,j0 − f(x)l0,j0f(x)

⊤
l0,j0)h(y)l0,i0)

= (⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩ − γ(x)l0,j0,i0⟨f(x)l0,j0 ,Al0,j0,i⟩)·
(⟨f(x)l0,j0 ◦ Al0,j0,j , h(y)l0,i0⟩ − γ(x)l0,j0,i0⟨f(x)l0,j0 ,Al0,j0,j⟩)

+ c(x, y)l0,j0,i0
d

dxj
(⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩ − ⟨f(x)l0,j0 , h(y)l0,i0⟩⟨f(x)l0,j0 ,Al0,j0,i⟩)

where the first step follows from differential chain rule, the second step follows from Part 8 of
Lemma B.6 and differential chain rule.

By combining the two equations, we completes the proof.
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H.2 REFORMULATING SEVERAL TERMS

Lemma H.2. We have

• Part 1.

⟨f(x)l0,j0 ◦ Al0,j0,i ◦Al0,j0,j , h(y)l0,i0⟩ = A⊤
l0,j0,i diag(f(x)l0,j0 ◦ h(y)l0,i0)Al0,j0,j

• Part 2.

⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩⟨f(x)l0,j0 ,Al0,j0,i⟩+ ⟨f(x)l0,j0 ◦ Al0,j0,j , h(y)l0,i0⟩⟨f(x)l0,j0 ,Al0,j0,j⟩
= A⊤

l0,j0,i((f(x)l0,j0 ◦ h(y)l0,i0)f(x)
⊤
l0,j0 + f(x)l0,j0(f(x)l0,j0 ◦ h(y)l0,i0)⊤)Al0,j0,j

• Part 3.

⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩⟨f(x)l0,j0 ◦ Al0,j0,j , h(y)l0,i0⟩
= A⊤

l0,j0,i(f(x)l0,j0 ◦ h(y)l0,i0)(f(x)l0,j0 ◦ h(y)l0,i0)
⊤ Al0,j0,j

• Part 4.

⟨f(x)l0,j0 ,Al0,j0,i⟩⟨f(x)l0,j0 ,Al0,j0,j⟩ = A⊤
l0,j0,i f(x)l0,j0f(x)

⊤
l0,j0 Al0,j0,j

Proof. Proof of Part 1. This trivially follows from Fact A.1

Proof of Part 2.

⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩⟨f(x)l0,j0 ,Al0,j0,i⟩+ ⟨f(x)l0,j0 ◦ Al0,j0,j , h(y)l0,i0⟩⟨f(x)l0,j0 ,Al0,j0,j⟩
= ⟨f(x)l0,j0 ◦ h(y)l0,i0 ,Al0,j0,i⟩f(x)⊤l0,j0 Al0,j0,j +⟨f(x)l0,j0 ◦ h(y)l0,i0 ,Al0,j0,j⟩A

⊤
l0,j0,i f(x)l0,j0

= A⊤
l0,j0,i((f(x)l0,j0 ◦ h(y)l0,i0)f(x)

⊤
l0,j0 + f(x)l0,j0(f(x)l0,j0 ◦ h(y)l0,i0)⊤)Al0,j0,j

where the first step follows from Fact A.1, the second step follows from Fact A.1.

Proof of Part 3

⟨f(x)l0,j0 ◦ Al0,j0,i, h(y)l0,i0⟩⟨f(x)l0,j0 ◦ Al0,j0,j , h(y)l0,i0⟩
= ⟨f(x)l0,j0 ◦ h(y)l0,i0 ,Al0,j0,i⟩⟨f(x)l0,j0 ◦ h(y)l0,i0 ,Al0,j0,j⟩
= A⊤

l0,j0,i(f(x)l0,j0 ◦ h(y)l0,i0)(f(x)l0,j0 ◦ h(y)l0,i0)
⊤ Al0,j0,j

where the first step follows from Fact A.1, the second step follows from Fact A.1.

Proof of Part 4 This trivially follows from Fact A.1.

H.3 DECOMPOSING ∇2Ll0,i0,j0(x, y)

Definition H.3. Let γ(x)l0,j0,i0 := ⟨f(x)l0,j0 , h(y)l0,i0⟩ for convenience, then we define B(x) as
follows:

B(x) := Bdiag +B1
rank +B2

rank +B3
rank

where

• Bdiag = (1− γ(x)l0,j0,i0)c(x, y)l0,j0,i0 diag(f(x)l0,j0 ◦ h(y)l0,i0)

• B1
rank = −(2γ(x)l0,j0,i0 + c(x, y)l0,j0,i0)((f(x)l0,j0 ◦ h(y)l0,i0)f(x)

⊤
l0,j0

+

f(x)l0,j0(f(x)l0,j0 ◦ h(y)l0,i0)⊤)

• B2
rank = (2γ(x)l0,j0,i0c(x, y)l0,j0,i0 + γ(x)2l0,j0,i0)f(x)l0,j0f(x)

⊤
l0,j0

• B3
rank = (f(x)l0,j0 ◦ h(y)l0,i0)(f(x)l0,j0 ◦ h(y)l0,i0)⊤
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