A Baseline algorithms

The three different baseline algorithms discussed in Section [3|are summarized in the algorithm box
below.

Algorithm 2 FedAvg variants

1: Input: initial w, learning rates 7, t' < 1
2: Server executes:
3: fort=1,---,T —1do

4:  broadcast w to all active devices i € A(t)

5. for each active device ¢ do

6: G" + DeviceUpdate(i, w, 1)

7:  end for

8w w—n/|A) Z G* biased FedAvg
1€A(L

9:  w<+ w—n/|At) Z GZ FedAvg with importance sampling
zEA(t)

10:  if updates from the randomly selected S devices are received then

11: w—w—np/S - Z o FedAvg with device sampling
i€S

12: 't +1

13:  endif

14: end for

B Proof of convergence for smooth and strongly convex objective functions

In this section, we analyze the convergence of MIFA for smooth and strongly convex problems. Let
71 be defined the same as in Section[5] Also, we introduce

2
max’T E max 7(t,1)|
N 1<t<T—1

which takes the maximum number of inactive rounds in round 1,--- ,7" — 1 for each device and
averages its square over devices. The following theorem is a more general version of Theorem

Theorem B.1. Assume that Assumptions[l|to[3|hold. Further assume that the device availability
sequence T(t,1) satisfies Assumption 4l and 7(1,i) = 0 for all i € [N]. By setting the learning

rate ny = m with a = max{100, 40to } (L/p)*5. After T — 1 communication rounds, MIFA
satisfies:
_ Tr+1 5 dmaxrAl + (K —1)2A45 + Al
E — ) =0 ’ )
(L] - fuw) =0 (Dot o
where W is a weighted average of w; defined as:
1 I T
Wp = W—Z(t+a—1)(t+a—2)wt,WT =Y (t+a—1)(t+a-2),
T=1 t=1

and A, = L(D + Lo?/p), Ay = L(D/K? + 02/ K3), Ay = 213 |wy — w.|*.

Note that the only difference between Theorem . and Theorem . lies in dpax,7 and Tr%ax’T.
Theorem|B.1|yields Theorem. s1nce dImx <

mdx T
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B.1 Additional notation

Define 7, = Kn;. The update rule of MIFA can be summarized as
Mt = ; Nt = ;
Wil = We = > Vfiwiy) = wy — KN ;Vfi(wzfr(t,i),k)‘ 4)

Further, let e} , = V f;(w} ) — V f;(w} ,) be the sampling noise of device i at round ¢ and local

step k. Define A, = E¢ [Hwt — w, ||2} . Next, we introduce the following notation about device

unavailability. Define 7, and d; to be the average of the number and squared number of inactive
rounds over all devices at round ¢. That is,

N N

= Do), d= o P

i=1 i=1
Denote by the sum of 7; as sr, i.e., sp = ZtT;ll 7¢. Lastly, define
ly = max{r(t,i) + 7(t — 7(¢,4),5)}.
i,
That is, the “oldest” response used to update w;_ () into wy is received in round ¢ — [;. For

convenience, all expectations in this section are taken over sampling noise £, and the summation
Y piistakenoveri=1,--- ,Nandk =0,1,--- | K — 1.

B.2 Preliminary lemmas

Before starting the proof, we introduce some preliminary lemmas in this subsection.

Lemma B.1 (Property of smooth functions). For all functions f that are L-smooth with domain X,
if Jinf e v f(x) := f* we have:

1 2
— < — f*.
o7 IVI@I < f@) - f
Proof. By definition of L-smoothness
N 1
I* < = V@)
1 1 2
< _ — _
< 1)~ (V1) 1950 ) + 57 1910
= fl@) = 57 IVF@)I".
Rearrange the terms on both sides and we complete the proof. O

The following lemma bounds the norm of local gradient ||V f;(w)|| by how close the w is to to the
global optimum w,.

Lemma B.2 (Bounding the local gradient). For all functions f; satisfying Assumptions (I| and
IV fi(w)||* can be bounded by ||w — w.||. That is,

IV fi(w)|* < 202w — w. | + 2/|V fi(w. )|

Proof. By Jensen’s inequality and L-smoothness, we have

IV fi(w)[* < 2|V fi(w) = V fi(w)|* + 2|V fi(w,)|
< 2L2||w — wil* + 2|V fi(w.) |-

The following lemma comes from Lemma 5 in [[18]].
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Lemma B.3 (Perturbed strong convexity). The following holds for any L-smooth and p-strongly
convex function f and any x,vy, z in the domain of f:

(Vf(x),z=y) = f(z) = fy) + % ly = 2I* = L}z — «||*.

Proof. In order for the paper to be self-contained, we restate the proof here.

By smoothness:

F(2) < @)+ (V)2 =)+ 5 2 = 2l = (Vf(@), 2~ 2) > f() — @)~ 5 |1z =
By strong convexity:
F) 2 f@) + (Vf@),y =) + G lly — l® = (V@),e =) 2 f@) = fo) + 5 lly -l
Combining the above inequalities, we have:
(Vi) 2~ 3) > £(2)— F) — 5 1z —all*+ &y — >
By triangle inequality:
ly —al* > 5 lly — 21 ~ flo — =

Thus,
7 2 L+u 2
(VI(@)z=y) 2 f(z) = fy) + Iy = 21" = =~ llz — 2]
K 2 2
2 f(2) = fy) + 7 lly = 2" = Llz = 2],
where the second inequality only uses L > pu. O

The following lemma is slightly modified from Lemma 8 in [18]].

Lemma B.4 (Bounded drift for strongly convex and smooth objective functions). For all K > 1 and
0<k<K-—1 whenn < ﬁ, we have bounded drift:
87 L*(K — 1) (K-1)

2(K — 1)ij?o?
K K '

8
Ay +

. ~2
E | s —wil|”] < T fi )| +

Proof. For K = 1, the bound trivially holds since wg"o = wy. For K > 2,
i 2 i S i 2
E |:Hwtk - th } =E th,k—l — Wy — Utvfi(wt,k—1)H }
i i 2
=E [H%,kq — Wt — thfi(wt,kq)u } + 77t202

1 . )
< (1 n Kl) E [|lwf -y — will’] + Kn?E |V st 0)|]P] + o

1 )
< (1 ; K_l) E [uisy — wl’] + 2607 [V £iCw) ]
+2Kn;E {vai(wi,kq) - Vfi(wt)HQ} +nio’
1 i
< (1 + K_1 + 2KL277t2> E [Hwt,k—l - thQ}
+ 2K [V fiw) ] + 2o

The first inequality uses ||z +y||> < (1+ 1) ||z|> + (1 + v) [ly||*, Y > 0 with v = L. For

K-1°
it < 10p» 1.6 e < 15 we have 2K L2n? < m. Plug in the definition of 7, we have
i 2 51 i 21 277 2 nio?
B [t — ] = (1 gy ) llwtocs ol + B [19 ] + %5
N ——
Y s Yi-1 ha
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Unrolling the recursion Yy, < h1Yy,_1 + ho, where Yy = 0, we have

k—1 K-1

; hg(hk — 1) hg(h — 1)

Y. < kY E : Jo_ 1 < 1 )
k= h2j:oh1 hi—1 — hy —1

50(K—1) 5

. 51 .
Since hi* ™1 = (1 + 50(K o) 0 < exp(2) <3andhy — 1 = ﬁ > 7, plugging
in the value of hy, we have

=2 2
i 2 d o
B ot - ] < 206 - 1) (2L [195@0] + 227 B
8ij; L*(K — 1) 8(K — )i 2, 2(K — Dito®
< TS A+ | () P+ T
where the second inequality uses Lemma O

B.3 The descent lemma for smooth and strongly convex problems

In this subsection, we state the descent lemma and provide a proof.

Lemma B.5 (Descent lemma for smooth and strongly convex problems). Assume that Assumptions|]]
to 3] I hold Further assume that 7(1,i) = 0 for all i € [N]. For any learning rate satisfying
N < 25KL, ie,m < 25L, the updates of MIFA satisfy:

44

A= (1- ;m) By~ S (B [F(w)] ~ Fw.)

(6)

2’[’]t0' ~ Sﬁtz
KN?Z Z nj+KN+ 4 4 s0,
i=1 j=t—7(t,3)
where
N

GAL3(K —1)2 o« _ 16L3 _ _ — i
H = T K2N Ui Z ntZ_T(t,i)At—T(t,i) + N2 Mt ZT(t7 i) Z Z U?Aj—f(j,i)

i=1 i=1 j=t—7(t,i) '=1

t—1

N
16LD _ _ N 64(K —1)2L
eyt | Y | nf§jnt e 19 SiCw)]?
i=1

j=t—7(t,i)

t—1

16(K — 1)2Lo? .
* K3N ”’Z"t T<“>+ KN ’”Z ol tZ@ »nj
j=t—7(t,i

~+

-1

64L5 (K N
T RN ”tz @iy [ Do DA GanDi—rGan

j=t—7(t,2) =1

t—1

64L3 N s ,
T RN mz (t,4) Z Z 5175 —r(iny IV fir (wi) |

j=t—7(t,2) =1

16L3(K _ 1)202 3 N . t—1 ,
O R DIUCLE DD 7Y
1=1 j=t—7(t,7) =1
and
~ N . t—1 N
20 Lij; T(t,1) Y
SQ= N Z N ; Z
=1 j=t—7(t,3) i=1
. N . t—1 N
20 Lij T(t, i) (K —1)2
N2 K2N > T | BL2 s + 8V fir(wi) || 12 K :
i=1 j=t—r(t, z) i:
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Proof of the descent lemma. According to the update rule in (@), we can expand ||w;4+1 — w. H2 as

2

lwesr — w*||2 = Wt — Wx —

Ui i
KN .(wt—T(t,i),k)

e — . f{@; Z (9 o0}y 1) 00— 0.

71

Ax
2

Jr[(2]\[2 ZVﬁ wt sz)k)

Az

To bound the expectation of ||w;41 — ws ||2, we bound expectations of .4; and A respectively.
B.3.1 Bounding the first term
Note that V f; (wLT(t’i)yk) can be expanded as Vfi(wifr(t’i)yk) + eLT(tﬂ.)’k. Thus, A; can be split
as
A= 2 Z <sz'(w§§r(t ) ))s Wt — w*> - 2 Z <eifr(t i),k Wt — w*> .
KN v ) KN v s
Due to reuse of noisy updates, eLT(m%k is correlated with w; and E KeLT(t}i)’k, wy — w*>} is not

necessarily zero. Further expanding w; — w, as (w; — wi_T(t o)t (wé_T(m.) x — Wx), We obtain

21 ; 27 . .
Ay = KN <Vfi(wzfr(t,i),k)’ Wy — w*> KN <e;f‘r(t,i),k7 Wy — wiztfr(t,i),k>

,’L

Bl BQ
_ 2 <ei A, W N — W >
KN — t—7(t,3),k) Vt—7(t,1),k * /-
Ji

Bs

Due to independence of el _ (t,i),% and wi_ (t,0),k> WE have E [Bs] = 0. By Lemma

) ; 2Lij
By < 2 () — f(w.)) — P2 oy~ 4 ”tZHwt I

C1

To estimate the bound for C;, we take a closer look at one summand of C;. Note that (wi_T (ti)k wy)
can be split in the following way.

i
Wy —r(t,5),k — Wt

= wé—T(t,i),k — Wy—r(t,i) T We—r(t,i) — Wt
t—1
i 1 5 Y i!
= Wi_r(t,i),k — Wt—r(t,i) — KN Z Nj Z vfi/(wj—r(j,i’),k/)
j=t—r(ti) K
1 t—1

= wt 7(t,i),k = Wt—r(t,5) — KN Z 77] Z (Vfl ] T(]’L k:’) vfl (wj 7(7, 1,)))

j=t—7(t,s) k')’

t—1 N t—1
1 ) 1 s
o 2o W Virwigan) — % Dl Y€ gy
j=t—r(ti) i'=1 j=t—r(t,i) k' d
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, 2
By Jensen’s inequality, we expand HwLT( vk th as four parts.

2 2

7 7
Hwt—-r(t,i),k —w|| <4 Hwt—-r(t,i),k — Wi_7(t,4)

D,
1 t—1
+4 ﬁ - Z Z (va j 7(5,4"), k’) Vfi'(wj*T(jyi’)))
j=t—7(t, z) ki’
Do
2
t—1

1
ey 2 W Viewirgan)

j=t—7(t,7) k'’

Ds

t—1

1 o
ey 2 W GG

j=t—r(ti) ki

Dy
According to Lemma([B.4] for k = 0, D; = 0. For k > 1,
32LX(K — V)i .,
Dy < DA
B2(K — )i (1.0) IV i) + 8(K — 1)ily_,(;,10”
K K3 * K2
Repeatedly applying Jensen’s inequality and further using L-smoothness,
t—1 ?
47(t,7) — .
B0 < o) 5 | (VA r) — Hoyrii)
j=t—7(t,%) K il
< 47 (t,1) =

K];z. ) 77]2‘2vai’(w;/ff(m'),k')—Vfi'(wjfru,i/))HQ

j:H(t i) kil
< 4L27(t,1)

KN7 Z ”JZH“JJ (i) ket T Wi=r (5t

j=t—7(t,7) k' i’

2

By Lemma|B.4]

R4 )K 12 S SN
E [Dy] < 2N D WD B

j=t—7(tq) i'=1

32L27(t i) (K —1)2 & s
eI Yo D rgan IV fr(wo)])?

j=t—7(ti) =1
SL2r(ti)(K — 1202 & LK
K3N Z mj Z Mj—r(j.")-
j=t—7(tg) i'=1
Expanding D3 by Jensen’s inequality and applying Lemma|B.2]

E D] < 770 ti 2 S|V for(w; i)
8IS TN WJZH fz'(wjff(w))H

j=t—r(ti) ki

8r(t, )L L & . —
—~ Z anAj_T(M)JrST(t,z)D Z ;.

j=t—7(t,3) i’ =1 j=t—7(t,7)

IN
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J=7(4,1").k
Still by Jensen’s inequality, the expectation of D4 can be bounded as follows.

2
Due to independence of ej , and ej w ford #iork #K,E “‘Zk, el } < KN¢g?2.

2
ar(ti) < . Ar(t,i)o? S,
EDi<oxm Do |1 Crion|| S—pga— 2 7
j=t—7(t,7) ki’ j=t—7(t,7)

Intuitively, D; quantifies the drift induced by multiple local steps. D3 and D, correspond to errors
caused by inactivity. Dy is induced by both local steps and inactivity. Note that D, to D4 vanish
when 7(¢,7) = 0 and D; and that D5 vanish when K = 1. Combining the expectation of D; to Dy,
we have

E |:Hw1"%—7'(t,i),k — Wt

32L*(K — 1)%77__ . 87(t,i)[2 & ol
7(t,i) 7(t,4) o
= K2 Atert) + — Do DA
j=t—r(ti)  i'=1
= 32(K 1) nt ‘r t ’L
+87(L)D Y i+ 702 IV fi(w.)||?
j=t—7(t,7)
8(K — 1)277?77-@,1)‘72 47(t,i)o? = 5
+ K3 + KN Z n;
j=t—7(t,7)

t—1

32LA7 (8, 1) (K — 1)2 PR
+ K2N Z j Z MGy D=7 (")
j=t—r(t,i) i'=1

2027 (K —1)2 & SN )
+ N ST ED T IV (w)l
j=t—7(ti) =1

t—1

8L27(t,i)(K —1)2%02 el
+ KN Do WD My

j=t—7(t,i) =1

— Wy

2
Since when 7 and ¢ are fixed, E [Hw } can be uniformly bounded for all 0 < k£ <

t—7(t,i),k

K — 1, we can bound the expectation of C;.

E[C]

64L3 16L3 ~ N ) — N .
< K2N nth T(t,i) AVES r(ts) T W'ﬂtZT(t,l) Z anAjfr(j,i)
=1

j=t—7(t,i) =1

N t—1
16LD _ _ L\ 64K
+ N UtZT(tJ) ' Z - 77.7' + K2N Utz M- 7(t,1) val(w*)”
i=1 j=t—7(t,7)
16(K — 1)2Lo? —
+ 3N nth 7(t,i) KNntZ 7(t,1) . tz:(t)n]
j=t—7(t,i

64L5 (K —
+ K2N?2 "tz (t,7) Z 277 G=7(5,i") Ajr(jir)
N

j=t—7(t,1) =1

t—1

64L3
e ’hZ G| D DB IV woll

j=t—7(t,0) =1
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t—1

16L3(K
+W"tz DY 122773 7 ()

j=t—7(t,7) i/=1

Here we denote the RHS of the above inequality as . Therefore,

1 . -
E[Bi] < _§/~L77tAt = 20 (E [f(we)] — f(ws)) +H. (7
Next we estimate the bound for B,.Unrolling one summand of B,
- <ei—r(t,i),k?wt - wZ—T(t,i),k> == <ezz;—'r(t,i),k’ wy — wt*f(m‘)>
Ca

i i
- <6t_7(m-),k, Wt—r(t,i) — wt—r(t,i),k> .

Cs

Due to independence of ei_T(t i)k and wy_r .4 — wi_T(t i)k E [Cs] = 0. Then we turn to Co,

t—1
1 i i
Co = KN <et—7—(t,i),k’ E : M E : (Vfl W (i) 1) T ej—T(j7i')”‘”")>

j=t—7(t,s) k'’

t—1
1 % ~ 1
= KN <et7—(t7i)»k’ Z nJeJT(]12)7k>
t,i)

j=t—r(ti

Ds

1 ) t—1
+ m <e;‘r(t,i),k7 Z 77] Z 6 7,1’ >

j=t—7(t,7) k'#£k
or i/ #i

De

t—1
1 i
+KN<()k Sy Vil M“,)k,)>.

J=t—r(ti) ki

D7
Applying the identity eLT(t’i)yk = ei717¢(t71,i),k =...= eifT(t’i)fT(th(t’i)yi)’k, the expectation
of Ds can be bounded by
2 t—1
o
E [Ds] < — .
[ 5] KN 77]

j=t—7(t,7)
Due to independence of ei wand el fori’ #iork #k,E[Dg] = 0. Note that V f; (w;LT(j’i,)’k,)

can be splitas (V fir (wi__ ;) 1) =V fir(wj—r(j,i1)) + (V fir(j—r(j1)) — V fir (ws)), where the
first part is the difference between the gradient on the local parameter and on the global parameter,
and the second part is the difference between the gradient on the global parameter and on the global

optimum. By Cauchy-Schwartz inequality E [(X,Y)] < \/IE [||X||2} E {HYHQ} , we bound the
expectation of D7,
E [Dr]

) 4 t—1
= ZNE <eff'r(t,i)’k> Z WJZ(VL wj— Tw’) W)~ Vfi'(ij(j’i')))>

j=t—7(t,i) k',i’

1 ; t—1 .
+ mE <et‘r(t,i),k7 Z nj Z (Vfi/ (wjfr(j,i’)> — Vfi’ (w*)>>

J=t—r(ti) k'
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2
t—1

< ﬁ(f E Z 77] Z (vfz J T(J i’ ) sz (wj —7(J, 1,)))

j=t—r(ti) ki

2
t—1

+ ﬁa E ST i Y (Vi (wi—rgn) = Vi (w.)

j=t—r(ti) K

By Jensen’s inequality and L-smoothness, the term inside the first square root can be bounded as
follows.
2

Z Y (Vfi'(w;/q(j,i'),k/) - Vi (wjfr(j,i')))
j=t—7(t,7) k' i’

2
t—1

T(tﬂ Z) Z ﬁj2 Z (vfll( j 7(4,4"), k/) vfl/(w]—T(],Z'))>

J=t—T(ti) ||k

t—1

< KN7(ti) Y. i ZHVfi/(wﬁ':k-/)’vfi’(wj)’r

j=t—7(t,i) i

t—1

< KNL*7(t,1) Z 77]2 Z “w;_f(j,i/),k’ — Wi—r(4,i)

j=t—7(t,i) ki

2

Similarly, the term inside the second square root can be bounded as follows.

2
t—1

Yo > (Viirwirgan) = Vi (w.))
j=t—7(th) ki’
t—1

N
< K’NLPr(ti) Y, i} <Z [[wj—r (i) w*||2> :
=1

Jj=t—7(t,3)
Therefore,
E [D]

. t—1
T(t,1) _ .
sol KN Z 7712’ ZE [ijT(j,i’),k/ — Wi—r(5,4")

j=t—7(t,i)  K,i

|

(i) <2 N
for TED S g (ZA)
j=t—r(t,i) =1

t—1

T(t, 1) (K —1)2 7 9 202
S oL W Z j Z 77] (4,4 8L2Aj—7'(j,i’) + 8 HVfZ/(w*)H + 7

j=t—7(t,i) i'=1

rti) & al
ron |5 (X e ),

G=t—7(t,0) i'=1

where the second inequality uses Lemma [B.4 Combining the expectation of D5 to D7, we have
E [C,]

o2 t—1 T(tz') t—1
SEN L Mitol Tgr Y (ZA >>

j=t—7(t,1) j=t—r(t, z) i'=1
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t—1

. N
T(t,Z)(K _ 1)2 ~9 ~9 202
toLy | g 2 B Wy (8P A T 8IVA@II + T ).

j=t—r(ts) =1

The first term can be interpreted as the accumulated noise due to reuse of noisy gradients. The
expression inside the square root of the second term stands for the effect of inactivity and it vanishes
when 7(¢,4) = 0. The expression inside the square root of the second term stands for the effect of
unavailability and local updates and it vanishes when 7(¢,7) = 0 or K = 1. Then the expectation of
B3 can be bounded by

E [Bs]
~ —1 ~ N . t—1 N
27,02 . . 20 Ly 7(t, 1) =9
< N2 Z Z ‘ n; + N Z N Z . Uk ZAj—T(jyif) +
i=1 j=t—7(t,i) i=1 j=t—7(t,3) i'=1
SQ1

- 20
sy (305 + 8 IV A )+ 5 ).

SQ»
®)
Combining and (8), we bound the expectation of A;.

E[Ai] <E[B)] +E [B]
< A= 20 (B [f )] — () + s S S i+ H A5,

=1 j=t—r(t,i)

where SQ = SQ; + SQs.
B.3.2 Bounding the second term
Note that ﬁfi(wz_T(t’i) ,) can be split into three terms, i.e.,
@fi(wszr(t,i),k) = (Vfi(wifr(t,i),k) - sz‘(wt)) + Vfi(we) + eif'r(t,i),k‘

By Jensen’s inequality,

2

~2
[AQ] ;Q%Q]E Z (sz wt 7(t,i), k) vfl(wt>)
ki

By
2 2
37 3¢ i
+ KzNz]E vai(wt) + K2N2E Zet—f(t,i%k
ki ki

85 BG

Due to independence of ¢! (i), and et (i) e fOr i # i’ or k # k', we have Bg < "f . Recall

C = Q;ﬁ; ki wz_T(m)_’k, — w¢|| . By Jensen’s inequality and L-smoothness, we then bound B,.
3L2 3
7 Z]E {Hwt 7(t,i) k) th } *Lﬂt]E [C1] < S LaeH.
By Lemma|[B.I] we have

Bs < 337 [[VF(wo)|]| < 6L} (E [f(wo)] - f(w.)).
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Therefore
3'*2 2 —
I+ 6L (B 1f(w)] - f(w.)).

Combining Appendix [B.3.T]and Appendix [B.3.2] we have
1 . - -
B s 1- zunt) Ay~ 20 (1= 8L (B [F(w)] ~ f(uw)

Qnta ~ 3i2o? 3
KNQZ Z n; + KN + 1+§L77t H+SQ.

i=1 j=t—7(t,i)

3
E [As] < SLieH +

Since when 7j; < —27,(1 — 3Lf,) < —227, and 2L}, < 3, Lemma|B.5|holds.

1
25L° 'O’

B.4 Deriving the convergence bound

In this subsection, we obtain Theorem [B.T|based on the descent lemma. We provide a bound for A,
in AppendleVI <t < T and further bound E [f(77)] — f(w,) in Appendix [B.3]

B.4.1 Bounding the distance from the global optimum

Lemma B.6 (A bound for the expected squared l>-distance from the global optimum). Assume
that Assumptions|I|to 3| hold. Further assume that the device availability sequence 7(t,1) satisfies
Assumption | and 7(t,i) = 0, for all i € [N]. By setting the learning rate n; = TR Ty With

a = max{100, 4Ot0}(%)1'5. Foralll <t <T, aftert — 1 communication rounds, A\, satisfies:

2
Ar s (ffgﬁ tfa 0 fa)Q =B )
where
3502 a— 3202 e Amax,7C1 + (K —1)2Co + C3
u2NK’ 2NK’ p3K?2
and

Cy = 2500LK?(D + 2Lo?/u), Cy = 5000L(D + 0/ K), C3 = max{1600t2, 10000} L> K2 AZ.
We prove Lemma [B.6| by induction. We first show that (9) holds when ¢ = 1. Then assuming that
Ay < By holds forall 1 < ¢/ < t, we prove A1 < Byy1 by verifying

(a) (b)
Bit1 > F(By, ) > RHS of (6) > Ayya, (10)

where F'is a function of B; and 7;. To validate (b), we prove that for all 0 < m < l;, B;_,, and
7t—m can be bounded by B; and 7}, respectively in Appendix We simplify terms of higher
degree in Appendix and simplify terms with square roots in Appendix Finally, relation
(a) is verified in Appendix [B.4.6] A formal proof is provided as follows.

Proof of Lemma Note that @I) holds trivially when ¢ = 1 since % > a?A;. Now we
assume V1 <t/ <t, Ay < By holds.
B.4.2 Connecting bounds and learning rates at different rounds

According to Assumpt1onl (t,7) <to + 3 t ly <2t + 5 t Combining with ¢y < Oa we have

1 40 1 20
~ < and < .
t+a—r7(ti) ~ 39(t+a) t+a—1; ~ 19(t +a)

Therefore, for all 0 < n < 7(t, ), we have
St_nE + G + F
(t+a-n)2 t4+a-n (t+a—n)?

Bt—n =

24



T (t+a-71(ti)2 t+a-—7(ti) (t+a—7(ti))?2

40\?
<= Bs.
(3) &
Forall 0 <m <,

StE G F 20 2
B—mg S — B,,
S a0 Ttva—b  Gra—i)? (19> *

and

4
OT]f,VO <n <7(t1),

~—7L<~—7' z_
Mt—n = Mt—r(t) = 39

20
Mo < Np—i, < 1977,5,V0<m<lt

Also, we have

Qnta SOTtU 9

i=1 j=t—7(t,i)

B.4.3 Simplifying terms of higher degree

In this section, we simplify # in (6) and bound it by B; and 7};. Rearranging H, we have

16L3 N =1 N 16LD N t—1
H=—gy 7| D DA |ty T | D 0
i=1 j=t—r(t,)i'=1 P =t (t20)
I >
N t—1
8La -
" 7 >
i=1 j=t—7(t,7)
s
64L3 (K —1)% _ ~
Wnt Z n?—r(t,i)At—T(t,i)
i=1
Iy
64L° (K N )
+ K2N? 771‘2 (t,4) Z ZUJUJ T(JZ’)AJ 7(5,i")
j=t—7(t,i) =
Zs
64(K
KQN mZnt rieny IV Fi(w )
Ts
64L% (K al =1
R i | 3 Zm iy IV Fu (w2
=1 j=t—7(t,0)i'=
I

16(K —1)2Lo% _ <.
T D D
=1

s
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t—1

16L3(K
+§@W%Z Li) | Dl JQZUJTL

j=t—7(t,7) =1

e
We first show that Z;, 7, and 75 can be bounded by 7, B;. According to Assumption 4]

N Ao+ (1/0)) _ Ao+ (/D) _ 4 p® 1

t — T 12
TS = Ty S a1 D) S b S 10007 S 0L 12)
Combining the result in Appendix [B.4.2] we can bound Z; in the following way.
2 N
40 20 _ o1 . -
Il < 16 (39> (19> Lnt <L277§N ZT(t7Z)2> Bt S 019,U77tBt
i=1
Similarly, Z5 and Z4 can be bounded as follows.
GALS (K —1)2 o i t
Is < WﬂtZT(tal) Z Z T9 7l; Bt
i=1 j=t—7(t,)i'=1
83L°(K — 1 0\ 2
< B 1 ),
0.83L3(K —1)2 _
S TU?BH
40\" L3 (K —1)% _. TIL3(K —1)% _.
7y <64 (39> TUSB:& < TU?Bt'
Further using 7; < ﬁ < 25L1 =, we have
68.13L3 (K — 1) _ 71.83L3 _ ~ ~
Ti+7T5 < I§2 Vb, < ( n?) pile By = 0.12417], By
By the same token,
68.1(K — 1)L _
Is + 17 < %nffl
17.03(K — 1)L _
Is+1Iy < —(K3 ) o
Still using the result in Appendix[B.4.2] we can bound Z» and Z3.
40\’ [1 &
7, < 16 <39> (N ZT(t,i)2> LD7} < 16.84LDd,7},
i=1
0N\? (1 & o\ Lo? o 8.42d,Lo>if}
I3 <8 — — t,1 — gy <
v=3(55) (2ore?) o < P
Therefore,
68.1(K — 1)2L
H < 0.31p7; By + 16.84LDd,7j; + %ﬁf@ )

8.42d, Lo?73} 17.03(K — 1)2L iy
+ K LA %3 nfaQ

B.4.4 Simplifying terms with square roots

In this section, we bound terms with square roots on RHS of (@), i.e., SQ. We apply the results in
Appendix [B.4.2)to bound the first term.

| X 1 L
QUﬁtLN; 7(t,1) Z ﬁ?NZAjfT(J

G=t—7(t,0) i'=1
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80 1 N 1 t—1 N
~2 .
3977 L ; 7(t, Z)N Z Z Bj_ri)

j=t—7(t,)i'=1

St (B)

< 2-16077t 7L~/ Bs.

IA

Recall
Amax,7C1 _ 5000dmay 7 L2072
By > 312 2 4 2
p(t +a) pi(t +a)
: 2 1 N . 2 1 N N 7
Since 77 = {ﬁ Yo T(2, z)} < ¥ 2imq T(t,1)? < dmax, 1, We have
707 L 1 4 8
By > — i >—-8. —— (2160w L) = —(2.16077L).
pAt+a) —p o pt+a) I
Therefore,

1
guﬁtBt > 216072 7: L/ B;.

Next, we bound the second term.

. N . t—1 N
20 Ly, T(t, 1) (K — 1) a?
N > K2N Yo Ty | BLAA Gy + 8]V fi (w)] 42 e

i=1 j=t—r(ti) =1

~ N . t—1
20 L1}, T(t, 1) (K —1)2 5 202
SN XN TN X P S (1B + 819w + =

i=1 j=t—7(t,7) =1

3 N . 2
2.160 L7} T(t,9)2(K — 1)? 20 202
< — —2 = |8(— | L?B;+8D+ —
> K 9 (reTE

K
K —1)2.160 L7} 20\° 202
§( )P,GU TeTh <8< 0) L2B, +8D + — )

19 K

To show that w \/<8 (%8)2 L2B, +8D + %) < & pij By, we only have to prove

64(2.16)%(K — 1)202L277 _ 20 202
B} > L 18| == LQB 8D + — 14
t = N2K2 Mt 19 t + + K ( )
To let (I4) hold, we only have to verify
1 (K —1)%0%L477 _
5B > 26472—1(2%?, (15)
1 K —1)%202L%T, D 1 —1)oL 1 — VoLV D
7Bt2 2 2500( ) Bt 00( )U Tf\/i t 600( )O' Tt\/77
4 prK? uK PAK (t + a)?
(16)
C1)2,272-2 2 _ 2
EBE > 625 (K —1)%0°L*7; ﬁf(i) o B> 50(K — 1)Lot, w22 o 800(K —1)Lo*r
4 prK? K uK VE  3K5(t+a)?
A7
0.5
Since 7j; < 5E7rs, we have

0647 (K —1)20%L477 o A24(K — 1)? Ldmax,70° _ 2500dmax 7 L?0® _ 1 B
12K? e = [BE2(t + a)? =T i(t+a? —27°
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Therefore (T3) holds. Also note that
1600(K — 1)oL1v/D _ 1600L) [(KK 1 @> (w)]

WK(t+ a)2 w3 (t+ a)?
800L(K — 1)2D  800Ldyax, 70>
Kt + a)? p(t +a)?
< B;.

Hence, (T6) holds. Similarly,

800(K — ].)LO’QTt - 80002 L K-1 < 400L(K — )2 2 400LJ]mXYTo*2 B
BEY(t+a)2 3t +a)? K15 = BK3(t+ a)? pBt+a)2 —0
Therefore, (IE]) holds. Now we have obtained a bound for SQ. That is,
1 .
SS9 < Z“th' (18)

B.4.5 Verifying relation (b)

In this subsection, we verify relation (b) by using the results in Appendix [B.4.2] Appendix [B.4.3and
Appendix First apply the definition of strong convexity and therefore,

vam—qungp (19)

5. 1 — 1.38ijy > 0. We have

Since pfj; < 2 <
1 . 44 _ ~ -
1 - badk Ay — o5 (E [f(w)] = flwi)) < (1= 1.38puij) Ay < (1 — 1.38pij) Be.  (20)
Combining (TT), (T3), (I8) and (20), we obtain

80 30
RHS of () < (1~ 138 By + 02501, By + 0,337, B, + 02 1 37 o

39KNt T RN

2D
- 73(K —1) . Ymax, 7  18.1(K — 1)? .
+ {18dmax,T + KZ} LD} + [ o 73 Lo?73.
Therefore, relation (b) is verified.
B.4.6 Verifying relation (a)
To verify relation (a), we only have to show
80702 P 30? - 73(K —1)2 3
B 0.8un:B; > B 18d max LD
t11 + 0.8umn; By it KN i + KNnt ax,T T K2 7 .
Ypax,r  18.1(K —1)? 9.3
% + 78 Lo*n;.
Note that B, can be split as
B - TtE + StE + G + F
T G ta+1)?2 T (t+a+1)2  tta+l | (t+a+1)2
and that
o 1 B 1 < 1
t+a t+a+1 (t+a)t+a+1) = (t+a)?’
1 1 B 2t +2a+1 < 2
(t+a)? (t+a+1)?2 (t+a)2(t+a+1)2 " (t+a)?
Therefore, to prove (22), we only have to show
iy S 80702 ~2 1280702 23)

(t+a+1)2 = 39KN™ ~ 392KN(t +a)?’
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and

.85 B, > QESt n 2F n G + 480’2
TS P Tt (a2 | KNt + a)?
_ 7T3(K —1)2 _
+ |:18dmax,T i (KQ)] LD} (24)
Ypax,r  18.1(K —1)2 9.3
* { K K3 Lo

(23) holds since

3502 . 1280(40 + 1)? o 1280(t +a+ 1)2
PENK — 39(402)u2NK — 39u2NK(t +a)?’
To show that (24) holds, we plug in the value of B; and 7}; and make minor adjustments.
1.2Es; 1.2F 2.2G
Gtap G+taP  (tta)?
S 4802 dmax 7 L(1152D + 57602/ K) n (K —1)? _ L(4672D + 1158.402 /K)
~ KNp2(t+a)? w3 (t + a)? K? w3t + a)?
Recall

oo 220 a7 L(2500D + 5000Lo2/ 1) (K- 12 5000L(D + 02 /K)
o N2NK7 = w3 K2 w3 :

Thus (24) holds. Now we have completed the induction step and obtain Lemma [B.6]

B.5 Proof of Theorem [B.1]

In this subsection, we provide a bound for E [f(wr)] — f(w,) based on the bound for Ar. Here we
restate the descent lemma.

1 44 _
&Héo—yw)&—%m@UWM—ﬂMD
2% 37202 25
17{7;\(;22 Z i+ ey +50H+SQ >

=1 j=t—7(t,7)

QA

Interestingly, the proof in Appendix [B:4.T] generates a bound for Q;. Combining 1)) and (22)), we
find

80702 ~2

39K N KC

3K —1)2] o [Odmaer 181K —1)2] . ,_
> (1 - 1.387) B + Q.

Byy1 > (1 — 1.38uii) By + 0.25ui) By + 0.33uf; By + ————

18d—max,T +

Hence
ETt

< Biy1 — By + 1.38un By £ ———
Qt < Biy1 t + M)t t_(t+a+1)2

Rearrange (23)), we have

s (L)) - 7)) < (1= G0) A= A + Qs

Apply (19) and subtract 0.25u7;, A on the RHS and 0.57(E [ f (w¢)] — f(w.)) on the LHS. Then we
have
63

%nt(E [f(we)] = f(ws)) < (1 - iﬂﬁt) Ay — Apyr + Oy
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Dividing 7}; on both sides and multiplying both sides by (t + a — 1)(t + a — 2), we have
(t+a—1)(t+a—=2)(E[f(w)] = fw.))

pt+a—-3)t+a—-2)(t+a—1) pt+a—2)t+a—-1)(t+a)

< 1 Ay — 1 AVERT
+u(t+a—2)(t2—a—l)(t+a)gt

< ,u(t—l—a—i’))(ﬁ—i—a—Q)(t—I—a—1))At_/L(lf—i-a—Q)(t—i—a—1)(15—i-a)At+1

- 4 4
+E'n(t+a)+E'si+ F + (t+a)G'.
where £ = LB, E' = 0.345uE, F' = 0.345uF, G" = 0.345uG. Telescoping fromt = 1to T — 1,
we have

T—1 (T +a—3)(T+a—2)(TH+a—1)

S (t+a—1)(t+a—2){E[f(w)] — f(w.)}+ 1 Ar
t=1
3 T-1 T-1 T-1
< ’“‘TAl +E'Y nt+a)+E D s+ FT+G ) (t+a).
t=1 t=1 t=1
(26)

By L-smoothness, f(w;) — f(w.) < % ince a > 100(%)1'5, “(a4_2) > % Therefore,

At.S
,LL(T+CL*3)(T+CL*2>(T+Q*1)A u(a72)(T+a72)(T+a71)A
4 g 4 g

2 (T+a=2)(T+a—DAE [f(wr)] = fw)}

\%

Then (26) can be further simplified as

T

Y (t+a—1)(t+a—2){E[f(w)] - flw.)}

= 27)
pa’ " = /7171 / /Tﬁ1
<A+E Y nt+a)+E Y s+ FT+G ) (t+a).

t=1 t=1 t=1

Since Y7 s = S S e = ST — 1 — )7, we have
T-1 T-1 T-1
E'"Y nt+a)+E' Y s <ET—-1+a)) n
t=1 t=1 t=1
< E(T+a)sr.
Therefore,

3
RHS of @7) < %Al + E(T +a)sp + F'T+G'T(T +a).

Define Wr = S/ (t +a—1)(t +a—2) = 173 4+ (a — 1)T? + (a® — 2a + 2)T. Note that
Wp > %T2 (T + a). Dividing W on both sides, we have

T
{;T St+a—1)(t+a-2)E [f(wt)]} - flw.)

t=1

3pa’ A+ 3E' st N 3G"  3F'
1

< —.
T2 T + T2

~ 4T+ a)?

3 2
Considering % < %% and convexity of f(w), we have

G'+E'7r  F
E[f(@r)] — flw) =0 [ 2T L 2
e e
where wr = WLT Zthl (t+a—1)(t+a—2)w;. Plugging in G’, E’ and F’, we obtain Theorem
Since diax,7 < T2 Theorem [5.1|holds.

max,T"
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C Proof of convergence for smooth and non-convex objective functions

In this section, we first state a more general version of Theorem [6.T]and then provide a proof. The
proof of Theorem|6.1]is provided as a corollary (See Corollary[C.T). Regarding the number of inactive
rounds, we have the following relaxed assumption.

Assumption 9. There exists a constant ty such that ¥t > 1 and i € [N], 7(t,i) <
1 ey max{VE, Vio}

Note that different from Assumption Assumption@ allows 7(t, ) to grow as O(v/t). Let 77 and
Tmax,T D€ be defined the same as in Section E} Further define

Tmax,T = N Z max {T t Z)}

1<t<T-1

which takes the maximum number of inactive rounds over rounds 1,--- ,T" — 1 for each device and
takes the average across devices. And define

=
—_— d
T _1 Z ts
t=1
which is the average of squared number of inactive rounds across all devices and rounds. The
following theorem summarizes the performance of MIFA on smooth and non-convex problems.
Theorem C.1. Letr Assumptions[I] 2|and 5| to[/|hold. Further assume that the device availability

sequence T (t, 1) satisfies Assumption|9and 7(t, 1) = 0 forall i € [N). By setting the learning rate n =

2 3
where constant cg satisfies 0 < co < 1 and T > max{ % ENL 161 NK, t,},

con ] N
0N/ KTL(1+7r)’ JREWY

after communication rounds 1,--- , T — 1, MIFA satisfies:

min B [|[Vf(w)]?] = ( W(f(wl)—f*Jra?HATG)

1<t<T TKN
where
1 O Tnax.1L> (L? + pé)o? -
Azi{g P NKL (1 + . >
CT U+ ) ax,T ( (pd + L2)(1 + 7r) L r

(K —1)NL(8 + UQ/K)} + LK Ntnax 10\ | B+ K—jv

Define rr = ZtT:_ll dg, which is the sum of average squared number of inactive rounds over the
first T — 1 communication rounds. Define g, = 2% >, ; Vfl-(wti_T(t i),%)» Which is the scaled
accumulated true gradients at round ¢. Also define lynax, 7 = 27max,7 and 17 = K1 for convenience.

C.1 Additional notation

C.2 Preliminary lemmas

Before starting the proof, we introduce some preliminary lemmas in this subsection.

Lemma C.1 (Property of Hessian Lipschitz functions). For a p-Hessian Lipschitz function f and for
all w,v and z, the following holds.

(VF(w) = VF(v),2) < (V2F()(w =), 2) + £ 2] Jw = o]*.

Proof.
(Vf(w) = Vf(v),2)

. <[/ V2 {0+ 0w )d8] (w0 - ). )
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= (V2 f(v)(w—v),2) + <{/O1 [V2f(v + 0(w —v)) — V2 f(v)] de} (w — v), Z>

1
< (V2F () —0),2) + 2] o — o] \ [ 725w+ 0w - 0) - 50 deH

1
< (V2 f(v)(w =), 2) + 2] |w = ]| /0 V2 f(v+ 0(w —v)) = V2 f(v)]| db

< (V21(0)(w — v), 2) + p 2] o — o] / o
< (VA @) =0),2) + 2 12w — ol

O
Lemma C.2 (Bounded drift for non-convex objective functions). Forall K > 1,0 <k < K —1,
n < 10 7, we have bounded drift
i 2 doi*(K —1 4K - D8 2K —1)iPo?
E [y - wi’] < 2T E =D (195w 2] + DT 2E D0

Proof. Simply combining (5) in Lemma|[B.4]and Assumption[7} we have
i 2 2 o’
B [t~ wl] < 200 1) (GFE (1900017 + 55

~2 K — K — ~2 2 K — ~20.2
< dam (K Ve [IIVf(wt)IIQ] +4( Kl)n B N 2( K12)77

O

Lemma C.3 (Bounding the difference of parameters at different rounds). Forallt > t';t —t' </,
where [ is a constant and 1 < ﬁ the following inequality holds.

2 4al7i? = N 2
E [Ilwt —wy | } < >, D.E [va(wjfw,i))ﬂ ]

j=max{t—1[,1} i=1

~ 4,'7/212
20~2 2
+ 41°pn° + N
Prgof Slncer,( =7 (.5), k) Vfl( j (5,0), ) sz(wj 7(J, z))+sz(wj 7(4, Z)) —7(4,2),k’
E |lhwe - we ]
2
=1y
_ =2 = i
=B || > o 2 VAW )
j=t’ ki

2

< 37°E KN Z Z (sz Wi (iiyk) — Vfi(wj—r(j7i)))

j=t’" ki

2 2
t—1 N

_ 37
+3i°E szﬁ Wj—7(j,i)) JrKanz]E Z(Z €i- T(Jz)k>

]t’il —y

3t—t L2n2 tz‘: ZE“ 2}

j=t—t' k,i
(t—t
7) 0'2

t—t t—1
Z ZE[’VL Wj—7(3,1) H}

j=t—t’ i=1

Wi—7(5,0),k — Wi—7(j,9)
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~2l2

<3alﬁ2 - NE o - 3 .
=N > S E (V)] + 30287 +o o

j=max{t—1[,1} i=1

R2aIL24 (K —1)2 & & o1 12(K — 1)22L2Bi
" NK? J'maxz{tl 1};E {va(’LUJ,T(JZ))H } + K2

G(K )2l2L2~4 2

+

K3
_ dali? 47P12
! J;l;uz (195 (w5 —5)|*] + 40267 + Z-0™.

The first inequality above uses Jensen’s inequality. The second one utilizes L-smoothness and

Jensen’s inequality. The third one uses Lemma and the last one holds since 77 < \/113 I O

C.3 The descent lemma for smooth and non-convex problems

In this subsection, we state the descent lemma and provide a proof.

Lemma C.4 (Descent lemma for non-convex problems). Assume that Assumptions|[I} 2| and[5]to[7]
hold. Further assume that 7(1,i) = 0 for all i € [N]. For any learning rate satisfying 7 <

- Vvi2r’
ie,n< ﬁ the following holds for all 1 <t <T.
E [f(wt—kl)} — E [f(w:)]
L1+ .
<—f]E [HVf( ol ] —l—% 2+ (Hydy + Hyry + H3)ip?
al = al 2
+2mo L | > > E [HVf(w]—,T(j,i/))H ]
j=max{t—Imax,T,1} i'=1 (28)
4L2 + ID6 y N ' t—1 77 3
U2 s caa | Eflel?]) - La - 22 E el
i=1 j=t—1(t,3)

Sal?(K — )i &
+0L7727't E |:||Vf(’(Ut)||2i| + %ZE |:||Vf(wt—7'(t,’i))||2:| y

where Hy = 7(4’:2;]’:,6)02, Hy = 2L2ax, 704/ B + ;(’sz\, and Hy = 4(K_1)L2[((25+”2/K) .

Proof of the descent lemma. According to the update rule in @) and L-smoothness,
f(wigr) = f(we)

L
<AV f(we), wegpr —wy) + 3 [wirr — we]|?

2
) 1 o Li? | 1 -
= —1] <Vf(wt), KN kz: vfi(wt—'r(t,i),k)> 5 "N ; Vfilwy 1))

1 . 1 .
=1 <Vf(wt), TN > e;'r(t,i),k> =1 <Vf(wt)7 N > vfi(w;'r(t,i),k)>
ki

ki

T T2

T3
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C.3.1 Bounding the first term

Due to reuse of noisy updates, ei_T( £i),k is correlated with w; and E [7;] is not necessarily zero.
Unrolling one summand of 77,

—1] <Vf(wt), ei—'r(t,i),k> =1 <Vf(wt) = Vf(wir(t,1)) ei—f(tﬂ:),k>

U
-1 <Vf(wt—7'(t,’i))’ ei—‘r(t,i),k> .
Us
Since w;_, (1) and ej__, ; ; are independent, we have E [Uo] = 0. Plugging 2 = —e;__, ;) , into
LemmalC.]
E [t4]

. i 1 2
<E {—77 <V2f(wt—7—(t,i))(wt — Wi—r(t,4))5 et—‘r(t,i),k>} + 5/)577]53 {Hwt e | }

t—1
- 1 i i
= 772E <v2f(wt—r(t,i))KN Z z V fu (wj—-r(j,i/))v et_T(f,,i),k>

j=t—7(t,i) ki’

V1
t—1

+1] KlN > DE [<V2f(wt ) ) Chmr (e b >}

j=t—7(t,2) k'@’

Va
1 . 2
+ PO E [||wt — Wir(e)| } :
Vs
Using the identity ei_T(t k= ei—l—'r(t—l NE == ei_T(t_i)_T(t_T(t 0).0) k and independence

of egk and eé/,’k, for all ¢ # ¢/ or k # K/, we can bound V5.

= =2
n i i N 7L
Vo = WT@ i)E [<V2f(wt—r(t,i))et—f(t,i),k,et—T(t,i),k>] < 7(t,i) KNUQa
where the second inequality uses L-smoothness of f. Note that V fi(w;_-(; 7)) can be split as

V fi(wj—r(j,iry) — V fir(wi) + V fir (wy). Further using Cauchy-Schwartz inequality E [(X,Y)] <

\/E {HXHQ} E [||Y||2} and L-smoothness, we can bound V; in the following way.

t—1
V) = ﬁzﬁ > > E [<V2f(wt4(t,i)) (Vfir(wj—r(in) = V fir (wr)) ’eifT(t,i),k>}

J=t—r(t,) K
+ 7?7 (t,0)E szf(wt r))V (W), €50 r(2.0))]

o Lij? “
< > R 9t - sz

jt‘rtz

Va4
+ oLir(t,i),/E [||Vf(wt)||2]

Note that forall t — 7(¢,4) < j <t—1andi' € [N],t — (j — 7(4,7)) < lmax,7- By L-smoothness
and Lemma|C.3] we obtain an upper bound for V.

L2~2
By < 721 S e -

j=t— T(tL)z’ 1
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t—1 N
N D RS 911 | O]

j=max{t—lmax,1,1} '=1
2

+ 2UL lmax TT(t Z) B + == N

where the last in equality uses /= +y < \/z + /y, Vo, y > 0. Now we can obtain an upper bound
for V.

t— N
. ~ almax,T 2
Vi< 27(t, oL’ | =5 > > E [HVf(wj_T(j,i/))H ]
j=max{t—Imax,7,1} i'=1
o2
+ ULﬁzT(tJ)\/E {HVf(wt)H \ Ft} + 20 L%l 77(t, D2 B+ N
We proceed to bound V3 by Jensen’s inequality.
i B 2
n
VS =E ﬁ Z Z Vfl J (4,4 )
j=t—7(t,2) ki’
- 2
t—1 p
1| TN SEVRT S o S
j=t—7(t,7) j=t—7(t,i) ki’
) 2 2
t—1 1 t—1
~9 ~2 s
<APE || D0 g [ TR || mn X D Ciraow
j=t—7(t,3) G=t—7(t,5) k' i/
t—1
. 27(t, )202772
< 27" ool + =
<2t > E gl + —%x
j=t—7(t,7)
Combining V; to Vs, we have
T(t,i)Lo® 5  pdT(t,i)%0? 7 9 / o2
< _
E U] < N 7 + RN + 20 L=l max, 77 (2, Wit/ B +
ol t—1 N )
. ~ max,T
+ 27(t,i)o L7 N Z Z E [HVf(wj—ﬂm)H }

j=max{t—lmax,7,1} =1

+ o LiPr(t, )y [E [IVF(w)l*] + por(t, i S E llg;1*)

J=t—m7(t,i)

Finally we bound the expectation of 77 and conclude this section.

Lo ,  pddic? 7
E < 2 L max ToAT
[T1] < N Tt TN T2 Limasx, TTE7° \/ﬂ+KN

+ 2r,0 L7 Oélm%’T Z Z E [va wj—T(j,i’))Hz}

j=max{t—Imax,7,1} i'=1

~3 N t—1
_ po7° .
+oLitry B [IVFw)lP] + SR Y0 ri) Y E[lgl?]-
i=1 j=t—7(t,i)
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C.4 Bounding the second term

. 2 2 2
Since (z,y) = 3 |zl + 3 lyl” — 3 = — vll",

To = =3 IVFo)|* = 3 gl + 5 ||V (we) - vaz Winr(tiyk)

Us

Next we bound Us. Note that V f(w;) — 25 Yo Vfi(wz_T(t #).%) can be split as

N
= S (V) = Vi) + o 3 (T = Vi)

i=1 ki

By Jensen’s inequality and L-smoothness,

E [Us]

212 X 21 2I2 . 2
< S B [[lwe = v I”] + T 2 b = wimrien

i=1 ki

41272 & = 01 4d, L2027

Sy . T(tﬂ)‘ Z .E{ngn}‘f‘w
i=1 j=t—7(t,1)
8aL?(K — 1)i? 2, BL2(K —1)iPf | 4L (K ~ DiP'o®
+ KN ZE [va(wt—r(t,i))H ] + K 2 )

where we apply Lemma|[C.2]and plug in the bound for V5 in the second inequality. To sum up, we
derive the following bound for the expectation of 7s.

2 (7 ~
< [||Vf(wt)|| | - 7 [lgel?]

t—1

4L277 o1 4d, L2027
Z i) 3 E[lgl’] + =g
j=t—7(t,7)
BaL?(K — Vi’ <~ LK~ 1)if'3 | 4L(K ~ 1)if’o?
+ KN ZE“Vf wt T(“) H } K K2 :
C.5 Bounding the third term
By Jensen’s inequality,
2
Lip 1 .
E[E]:TE gt—"mzet—r(t,i)ﬂk
ki
2
< LiE ||lgo|*] + Li*E H Zet _—
LO’277]2
< LiE |g:] .
< LTE |llge”| + <oy
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Combining the results in Appendix [C.3.1] Appendix [C.4and Appendix [C.5] we have
E[f(wis1)] = E[f (we)]
i L(1+71)0° _
fg]E [\\Vf(wt)||2] + Q * + (Hydy + Hamy + Hy)i

KN
2~3 almax,T = N 2
T 2mo LT | Ty > > E (VA i)l
j=max{t—lmax,7,1} 7' =1
N t—1 .
(4L2 + p(5 9 7 B
e o |3 Ellel] ) -5 0 -2 E [le)”]

i=1 j=t—r(t,0)

L2 K — =3 N
+ oLifr E[||Vf(wt)||2]+—8a (KN Sl S E [V (wran)?]
i=1

where H, = %, Hy = 2L max 104/ B+ % and H3 = 4(K_1)L2I({2ﬂ+”2/]{) . Now we

have proved the descent lemma.

C.6 Deriving the convergence rate

. T—1 2 . T-1 2
since {3 E [[|V (e ra)l’] € (1 + maxicicr 1 {r(t0)}) 15 E IV @)]P] the
telescoping sum of (28) from ¢t = 1 to 7' — 1 satisfies

E [f (wr)] = E [f(w1)]
T+ ST)O'2 -2

T—1
<7 (; S8al?(K K)Tmax 1 ) ; E [“Vf(wt)‘lﬂ +L( — i

Vs
+ (H17"T + HQST + HgT)’F]3

T-—1 Oél - t—1 N 9
DL R DR B 1| | 2 omn] o
t=1 j=max{t—lmax,7,1} 9'=1 (29)
Vs
AL? + p6) 4 o =l . T-1
U2 S iy |2 EBflel?] | - a2 Y& [la?]
t=1 i=1 J=t—7(t,i) t=1

V7

+ oL’ Z iy [E [IVF o)) -

Vs

Next, we bound Vs to Vg respectively. When 7 <, / m, we have
p T
< i2E 1V (wolP] -

By Jensen’s inequality (Y, \/a7)> < TS, arie. Sy ar < /T Y1 as,

T =1 N
~ lmax
Ve < 27max, 7o L7}’ Z QT’T Z Z E {va(wj—r(j,i'))nﬂ

t=1 j=max{t—lmax,7,1} i'=1
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TTN

l2
< 2Tmax,ToL2ﬁ3J Dt > D E U!Vf(wmamﬂ

t=14¢=1

T
S 2Tmax,Tlmax,TUL2773\l O‘T%max,T Z E |:||vf(wt)||2:| .

t=1

When 7j < - and 7j < m , we can bound V; as
V7 < _g [1 - 2L77 - (4L2 +p6 max, T77 (ZE [”gtH })

Using 73 < Tax,7 forall 1 <t <7 — 1 and Jensen’s inequality, we have

T
Vs < 0LiP Tmary | TS E [V F(wo)]?]-

After minor rearrangement, (29) can be simplified as

T—1
ST E (19 (w)l?]
2
< %(f(wl) — fwr)) + Wﬁﬂ(mrﬁﬂm*mmz (30)

T
4 (14 2 /e 7 L) ﬁaLfmax,TﬁJ > E[IVF ).
t=1

By Lemma [||Vf(wT)H2} < 2L(E [f(wr)] — f*). Multiplying both sides by 7; and further
using < 1 We have

i (|9 £ (wr) ] <

Then adding E [||Vf(wT)H2} to the LHS and %]E [f(wr)] = f(w.) to the RHS, (B0) can be further

simplified as

T

S E[IV )]
2

< 2 )+ HEEDT G st 4 Hose + TP

3

T
4 (14 2 7/ AT 7 L) ﬁaLTmax,TﬁJ > E[IVF)l).

t=1

Define Q7 = S{_, B [V (wn)|I*], Hy = &(F(wn) = %) + EESEZ5 4 d(Hyrp + Hasy +
H3T)ﬁ2, Hs =4 (1 + 2l max, T /a?max,TLﬁ) \/TO’L?maxyTﬁ. Now we solve the following inequal-

ity.
Qr < Hs\/Qr + Hy = /Qr < = (H5+\/H5 +4H4)=>QT<H5 + 2H4.
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Therefore,
1 & s 8 o 8L(1+7p)0?
7 2B (195 0l] < g5t = )+ =g

+ 4(Hydr + HoFp + H3)7?

+ 32027__1%13)(,TL2772 + 128&027:313x,T112nax,TL4ﬁ4'

3D

Let 7 = co4/ %, where ¢j is a constant and 0 < ¢g < 1. We will show that for 7" >
max{w, 16LN K, to}, the following holds.

L2+4pd
n < 1 (32)
TN\ 20402 + p0)dpaer
1

n< — 33
U (33)
n < ; (34)
= 320577—1113)(,TL2 ’

By Assumption a when T > tg, 7(t,1) < i W, V¢ < T. Thus (32) holds. Since
T > 16LNK, (33) holds. To verify (34), we only have to show

_ 1 _ T(14 7r)

I QLN S S 0

T = 320 a2 T = 3902 LK N

Still by Assumption[9} we only have to show

1 LT T +7r)
4\ NK(ps + L?) ~ 32aLKN’

which holds for T’ > %. Now we only have to plug the value of 7} into (3T)) and make minor

adjustments. Still by Assumption[J} we have

~\2 _ 1
(hmas,77)* = O ((p(s T L1+ ﬁ)) '

Since min; <7 {HVf(wt)Hz} <iyT R [||Vf(wt) ||2} , we have

mmEﬂWﬂw)ﬂ=0<u+ﬁﬂﬁw0—ﬁ+a%+¢j7

1<t<T TKN
where
1 _ QTmax 7 L? (L2 + pd)o? -
Ag=—— 072 - NKL(1+ it ) d
’ u+m{ met ( (3 + L2)(1 + 7r) L

(K~ )NL(B +0® /K)} + LK Ntnax 10\ | B+ I;'—jv

Now we have completed the proof of Theorem [C.1} The following corollary is the same as Theo-
rem [6.1] which holds under the assumption of bounded number of inactive rounds.

Corollary C.1 (Bounded number of inactive rounds). Assume that Assumptions [I} [2} and [J]
to |Z hold. Further assume that the device availability sequence T(t,1) satisfies Assumption |§

and 7(1,i) = 0 for all i € [N]. By using a learning rate n = ,/m, for T >
max{32aLNK,16LNK, W}, after T' — 1 communication rounds, MIFA satisfies:

O L B (L R

1<t<T
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where [* is the optimal value, and:

2111'x L2 ) 2mx
A4:NKL<QU2V+M+UVmaX\/B>+( +8)0 Vi

VEN L
s — (K —1)NL(B+ 0%/K)
5 = - .

r+1

SKNv2,, (L +p0)
Proof. We first show that to hold. holds because when T' > ——=——max = —F22

1
n < —_—
= V/2<4L2—+p5>uaax

Also, (33) holds when 7' > 16 LN K. (34) holds when T" > 32acLN K. Therefore, (31) holds and it
can be further simplified as

1 2] _ 4 o AL(47)0?
T;E [HVf(wt)II ] < Tfﬁ(f(wl)—f )‘*‘Tﬁ

L2 ) , (35)
+4 | Hy N;Vi + Hov + Hs| 7
+ 32022 L2 4 5120020302, L.
. SKNv2, (L*+pd)
Since T' > fp’
1
=2 2
v, =0 —mmF—— .
s =0 (T y77)
Therefore,
2274 9
2_3 9 44 ac v LY 5\ ac“vLKN
QO T U L7 O(MW > = (T .

Besides,

o2

e L
T
N
1 L2 +po? [ 1 (L% + po?)v,
Hy | = L PG J S 2| ) o T PT)Pmax
1<Nizlyz> O<L(u+1) N;” O( L )
LK Nvpax
Hawi? = O (T” <o—\/B+ 02/\/KN>) :
K—-1)NL 2/K
= o (U DN 110)
1+v

Now we have completed the proof of Corollary [C.1] O

D Proofs in Section 5.1]

Our analysis is based on the observation that 7(¢, 7) is a truncated geometric random variable with
success probability p, for the Bernoulli participation model.

Lemma D.1. For i.i.d. Bernoulli participation model with participation probabilities {p;}, we have
7(t,4) is a truncated geometric random variable taking values in {0,1,...,t — 1}.

Proof. Notice that for k < ¢, the event {7(¢,7) > k} is equivalent to the event that device 7 is not
active atround ¢t,t — 1,...,t — k + 1, which means

P(r(t,i) > k) = (1 —p;)*, fork < t.

Also, since we have assumed that all devices participate at the first round, we have P(7(¢,4) > t)
0.

ol
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D.1 Proof of Theorem[5.2]

Proof. By Lemma we know that for all k,
P(r(t,i) > k) < (1 —pi)".
For any fixed 0 < ¢, < 1, by setting k = [%], we have P(7(¢,7) > k) < d;. This means
with probability at least 1 — d;, we have
log(1/d¢)
log(1/(1 —pi))”

By choosing d; = % . % and taking union bound over all ¢ > 1 and ¢ € [N], we have with
probability at least 1 — 6,

T(t,i) <1+

: log (% - £) 1 §
T(t,1) < 1+m =1+ m[log(%)—&-Zlogt—&—logN}.

Using the inequality that W < 1/p; (which is tight when p; ~ 0), we further have

2 1
(i) <14+ — (210gt+logN+log 65) (9(—(1+1og(Nt/5))>.
7 Di
For Assumption E]to hold, We need to find a £y such that for all ¢,
2

T t
1+ [log(6—5)+210gt+1ogN} <to+ 3.

Pmin
Solving this inequality, we get
2

2 2b N
to > (1og —1) + logL+1,

which is satisfied if

bN
to > C log

for an absolute constant C' > 0. O
D.2 Proof of Theorem[5.3]
Proof. By Lemma|D.T] we have

o) t—1 1

- ZP(T(t,i) > k:) =Y -p)F <~

k=1 k=1 b

Therefore, we can upper bound the expectation of 7 = m TSN r(t,i) as

) 1L 1
e P

Furthermore, we know that 7(¢, ¢) is sub-exponential with ||7(¢,7) ||y, < C’1 i [37]. Then we know

that 77 —E [7r] is sub-exponential with || 7 —E [77] ||y, < Ca% ZZ e Therefore by Bernstein’s
inequality [37]], we have with probability at least 1 — 4,
N

7r —E[7r] < cg(% ;;) . max (log%,l).
We conclude that
11 1
e (y2,,) ot vees).
Remark: C7, Cs, C3 > 0 are absolute conslt;nts. O
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D.3 Additional Discussion on the Expected Waiting Time

To accomplish a single global update, algorithms such as FedAvg and SCAFFOLD need to receive
the local updates from a randomly sampled subset S of devices. In our setting, the server needs to
wait for a few rounds so that all devices in S become active and return the computation result during
the these rounds. For i.i.d. Bernoulli participation model, the expected rounds for the i-th device to
become active is 1/p;. Therefore, the expected rounds for all the devices in S to become active is at
least ﬁ .

min{p;[i€S}

Denote by T'(S) the expected rounds for all the devices in S to become active, under the setting that
S is randomly selected from N devices without replacement, we have

1
Es[T(S)] > Ps( the device with minimal p; is selected ) = N .
Pmin Pmin

E Proof of Proposition 5.1]

Proof. This lower bound actually holds even for centralized algorithms. We first show that a lower
bound for centralized optimization implies a lower bound on our case. We then analyze the lower
bound for the standard optimization setup.

Number of gradient evaluations. Assume that we have N devices, and each device respond every
27 rounds of communication. Then by definition 7r = O(7), and only ©(NKT'/7r) stochastic
gradients are evaluated. Hence, the theorem is proved if we can show that no algorithms can output a
(potentially random) wp within 7 stochastic gradients evaluations satisfying

2

E(f(wr) — f(w")] > co:—T.

Uncontrained stochastic optimization lower bound. The constrained version of the above in-
equality has been formally proved by multiple works (e.g.[2 [29]). These results do not readily
applied as we did not assume the function to be Lipschitz continuous. The smooth but not Liptschitz
continuous case is a folklore in optimization community (e.g. see [12] equation 1.3). We provide a
short proof for completeness following [8, 144]].

For a given p € (0,1],0 > 1, we consider the following simple one-dimensional function class
parameterized by b:
min{ fy(z) := &(z — b)?}, forb € [0,1/2]. (36)
xT

Note that f is 1-smooth and p-strongly convex.

Also suppose that for b € [0, 1/2] the stochastic gradients are of the form:

9(x) ~ Vo(x) + xp, Elg(2)] = V fu(x) , and E[|g(z) = V fo(2)’] < 0. (37)
Note that the function class (36) has optimum value f;(b) = 0. Thus, we want to prove the following:

Theorem E.1. There exists a distribution X, such that the stochastic gradients satisfy (37). Further,
Sor any (possibly randomized) algorithm A, define Ay (f, + xb) to be the output of the algorithm A
after k queries to the stochastic gradient g(x), then:

60(72

ber[ré?i};2]E[fb(Ak(fb+Xb))] > ku

We assume the algorithm of interest is stable, i.e. maxye(o,1/2) E[fo (Ar(fo + x5))] < 00. Otherwise,
the theorem is true.

Let Ax(f» + x») denote the output of any possibly randomized algorithm A after processing k
stochastic gradients of the function f;, (with noise drawn i.i.d. from distribution x;). Similarly, let
D (fu+ x») denote the output of a deterministic algorithm after processing the & stochastic gradients.
Then from Yao’s minimax principle we know that for any fixed distribution B over [0, 1/2],

min pnax, EalBx, fo(Ar(fo +x3))] = min Bos[Ex, f5(Dr(fo + x5))] -
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Here we denote IE 4 to be expectation over the randomness of the algorithm A and E,,, to be over the
stochasticity of the the noise distribution ;. Hence, we only have to analyze deterministic algorithms
to establish the lower-bound. Further, since Dy, is deterministic, for any bijective transformation

h which transforms the stochastic gradients, there exists a deterministic algorithm D such that

Dy (h(f» + x3)) = Di(fs + x»). This implies that for any bijective transformation h(-) of the
gradients:

mDin Epns[Ey, fo(Dr(fo + x0))] = mDiH Eb5|Ex, fo(Di(R(fs + x5)))] -

In this rest of the proof, we will try obtain a lower bound for the right hand side above.

We now describe our construction of the three quantities to be defined: the problem distribution 1,
the noise distribution xy, and the bijective mapping h(-). All of our definitions are parameterized
by e € (0,1/8] (which represents the desired target accuracy). We will pick € to be a fixed constant
which depends on the problem parameters (e.g. k) and should be thought of as being small.

* Problem distribution: B picks by = 2€0/ or by = €0/ atrandomi.e. v € {0, 1} is chosen
by an unbiased coin toss and then we pick

b, = (2 — V)e% . (38)

* Noise distribution: Define a constant v = 4¢/o and p, = (16¢? — 8ve?). Simple computa-
tions verify that v € (0,1/2] and that

Py = (4 —2v)(4€%) € (0,1).
Then, for a given v € {0, 1} the stochastic gradient g(x) is defined as

- L ith prob. p,
g(q;) _ {/L.’E 2y wilh prob. p,, , (39)

nx with prob. 1 — p, .

To see that we have the correct gradient in expectation verify that
2%
Elg(2)] = px — 9y M by =V fo, (2) -

Next to bound the variance of g(z). We see that
1\2
Bla(e) = VA@P <o (5 ) +0-potE <%,
Thus g(z) defined in satisfies condition (37).
* Bijective mapping: Note that here the only unknown variable is v which only affects p, .

Thus the mapping is bijective as long as the frequencies of the events are preserved. Hence
given a stochastic gradient g(x;) the mapping we use is:

W JO ifg(z) = pa,
hg(zi)) = {1 otherwise. “

Given the definitions above, the output of algorithm Dy, is thus simply a function of & i.i.d. samples
drawn from the Bernoulli distribution with parameter p, (which is denoted by Ber(p, )). We now
show how achieving a small optimization error implies being able to guess the value of v.

Lemma E.1. Suppose we are given problem and noise distributions defined as in (38) and (39), and
an bijective mapping h(-) as in @0). Further suppose that there is a deterministic algorithm Dy,
whose output after processing k stochastic gradients satisfies

Eps[Ey, fo(Dr(h(fo + x0)))] <

e2o?

64

Then, there exists a deterministic function Dy, which given k independent samples of Ber(p,,) outputs
V' = Dy(Ber(p,)) € {0, 1} such that




Proof. Suppose that we are given access to k samples of Ber(p, ). Use these k samples as the input

h(fy + xp)) to the procedure Dy, (this is valid as previously discussed), and let the output of Dy, be

( ). The assumption in the lemma states that

1 202 @) 202
E, |Ey, 5 5 \x — b,,ﬂ < GT which implies that E,, |,"” — b, |* < 16,2 almost surely.
Then, using Markov’s inequality (and then taking square-roots on both sides) gives
1
P —b|>—| <=
r |:|xk | 2 2 IJ 1

) > 3“’ ,and v/ = 1 otherwise. Recall

that |bg — b1| = eo/p with by = 2e0/p and by = eo /. With probablhty I 5:) —b| < So/u
and hence the output 1/ is correct. O

Consider a simple procedure Dj, which outputs 2/ = 0 if x(”

Lemma shows that if the optimization error of Dy, is small, there exists a procedure Dy, which
distinguishes between the Bernoulli distributions with parameters py and p; using k& samples. To
argue that the optimization error is large, one simply has to argue that a large number of samples are
required to distinguish between Ber(pg) and Ber(p; ).

Lemma E.2. For any deterministic procedure Dy,(Ber(p,,)) which processes k samples of Ber(p,)

and outputs V'
1
Prly =v] < 3 + 1/ k(4e)?.

Proof. Here it would be convenient to make the dependence on the samples explicitly. Denote

sg’) = <s§”)) , s,(:) € {0,1}* to be the k samples drawn from Ber(p, ) and denote the output

as v/ = 25(55:)). With some slight abuse of notation where we use the same symbols to denote the
realization and their distributions, we have:
= 1 - 1 ~ 1 -
P%mihzﬂziP{m£UZQ+§mﬁm9)(ﬂ 2+£ﬁﬂ(h—m$ﬂ.
Next using Pinsker’s inequality we can upper bound the right hand side as:

E[Ds”) - D) < [Disi”) - Dsi”)| < \/;KL( B(s7).D(s”)).

where ||y denotes the total-variation distance and KL(-, -) denotes the KL-divergence. Recall two
properties of KL-divergence: i) for a product measures defined over the same measurable space

(pla"'apk> and (QI7"'7qu)a

KL((p1s---»Pk)s (q1, -5 q8)) = ZKL(M,%%

and ii) for any deterministic function f),
KL(p, q) > KL(D(p), D(q)).

Thus, we can simplify as

Pr [25( (V)) ,/} < %+ \/ZKL(Ber(m),BCT(po))
1 k (po — p1)?
=2 "\ 8po—p0)
< % + 1/ k(4e)?
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If we pick € to be
1

ERETTAVER

1 2 3
— k(4de)” = —.
p H VRS =7
Given Lemmas and[E.2] this implies that for the above choice of e,

o? o2

64y p2Mk

we have that

Eons[Ey, fo(Dr(h(fo + x3)))] > €

F Proof of Proposition [6.1]

This proof is almost the same as the proof in Appendix [E] except that we use the result from Theorem
3 of [3] instead of from [8]].

G Additional Experiments on CIFAR-10

For the CIFAR-10 dataset, we conduct more thorough experiments under the same setup as in
Section[7] We further experiment with various degrees of data heterogeneity to explore the effect of
data heterogeneity on algorithm performance.

G.1 Improving the experiments in Section

Using the same setup as that of Section [/} we conduct more comprehensive experiments on
CIFAR-10. Specifically, we perform hyperparameter search of the inital learning rate over the
grid {0.01,0.02, - - - ,0.17} to make sure the optimal learning rate falls in the middle of the interval.
We add two more baselines, i.e., Federated Averaging that samples 10 and 25 devices for each
global update, denoted as FedAvg(S = 10) and FedAvg(S = 25) respectively. We increase the total
number of rounds to 2000. We plot the average training loss and test accuracy curves over 5 random
seeds with error bars in Figure[3] Note that we smooth the curves by simple moving average for better
visualization. From the training results, we can reach the same conclusions as in Section Besides,
we observe more volatile training loss and test accuracy for FedAvg(S = 10) and FedAvg(S = 25)
due to increased noise induced by the device sampling.

G.2 Results on various degrees of data heterogeneity

To further explore how levels of data heterogeneity influence algorithm performance, we use the
Dirichlet allocation proposed in [[15]] with parameter « to partition the dataset and experiment on
data generated with different o’s. Specifically, a smaller « indicates a higher level of heterogeneity.
We run all algorithms with o € {0.01,0.05,0.1, 0.2} for 2000 rounds. For each combination of the
algorithm and the data heterogeneity level, we search for the optimal initial learning rate over the grid
{0.01,0.02,--- ,0.17} and repeat the experiment on 5 random seeds. We artificially set p; by the
following rule: if the ¢-th device holds more samples of class j than all other classes, its participation
probability is set as p; = pminj/9 + (1 — Pmin)> Where ppin controls the lower bound of participation
probabilities. Throughout all experiments in this subsection, pp,i, is set as 0.1. The model type and
other hyperparameters are the same as those in Section[7] We report the average test accuracy with
standard deviation and the gap between the average test accuracy achieved by the baseline algorithm
and that achieved by MIFA in Table[T]

We observe that the performance of all algorithms degrades as the degree of data heterogeneity
increases. For all levels of data heterogeneity, MIFA is consistently competitive to FedAvg with
importance sampling and outperforms all other baselines. The advantage of MIFA over biased FedAvg
is more significant under higher levels of data heterogeneity (o < 0.1).
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Figure 3: Training losses and test accuracies on non-iid CIFAR-10. Fig.[3(a) and B(b)} minimum
participation rate set as 0.1. Fig. minimum participation rate set as 0.2. FedAvg (S = 10),
FedAvg (S = 25), FedAvg (S = 50) and FedAvg (S = 100) refer to FedAvg with device sampling
that samples S devices for each global update. FedAvg-IS is short for FedAvg with importance
sampling, which requires knowledge of the participation probabilities.

Table 1: Average test accuracy under different levels of data heterogeneity. The standard deviation
across different random seeds is reported in the parenthesis. A smaller « indicates a higher level of
data heterogeneity. The *gap’ column reports the difference between the average accuracy achieved
by baseline algorithms and that achieved by MIFA.

Algorithm a=0.01 a = 0.05
acc.(stdev.) gap acc.(stdev.) gap
MIFA 33.33(0.39) - 36.98(0.44) -
FedAvg-IS 32.40(0.85) | —0.92 | 34.15(3.07) | —2.84
Biased FedAvg 28.04(0.71) | —5.29 | 31.51(0.71) | —5.47
FedAvg (S =100) | 27.63(0.27) | —5.70 | 31.14(0.45) | —5.84
FedAvg(S = 50) 27.01(0.45) | —6.31 | 29.97(0.52) | —7.02
FedAvg(S = 25) 23.09(1.77) | —10.24 | 29.15(2.01) | —7.84
FedAvg(S = 10) 20.71(2.93) | —12.62 | 26.46(1.83) | —10.52
. a=0.1 a=0.2
Algorithm acc.(stdev.) gap acc.(stdev.) gap
MIFA 40.04(0.27) - 42.30(1.58) -
FedAvg-IS 39.50(0.40) | —0.54 | 42.71(0.68) | +0.41
Biased FedAvg 35.22(0.34) | —4.82 | 40.49(0.99) | —1.81
FedAvg (S =100) | 32.73(0.40) | —7.32 | 35.49(0.57) | —6.81
FedAvg(S = 50) 32.45(0.84) | —7.60 | 34.89(0.67) | —7.42
FedAvg(S = 25) 31.89(1.36) | —8.15 | 34.64(1.22) | —7.67
FedAvg(S = 10) 28.39(1.18) | —11.65 | 33.93(2.09) | —8.38
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