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ABSTRACT

Vision-language models such as CLIP have demonstrated strong zero-shot per-
formance, but their considerable size and inefficient inference limit customizable
deployment for users. While knowledge distillation is a solution, it still requires the
original data, which is not always available due to copyrights and privacy concerns.
For many users seeking open-vocabulary customization, Data-Free Knowledge
Distillation (DFKD) emerges as a promising direction. Upon rethinking DFKD, we
find that existing methods fail on CLIP due to their heavy reliance on BatchNorm
layers, which are unexpectedly unusable in CLIP. Based on our findings, we adopt
image-text matching to achieve DFKD for CLIP, enabling customization based on
arbitrary class texts. This involves (i) inversing a surrogate dataset from CLIP based
on text prompts; and (ii) distilling a student model from CLIP using the surrogate
dataset. Specifically, we introduce style dictionary diversification to enhance the
diversity of synthetic images. To prevent uncontrollable semantics introduced by
diversification, we propose a class consistency maintaining strategy to ensure the
consistency of synthetic images. Based on synthetic images with various styles, we
further propose meta knowledge distillation to train the student model with good
generalization ability. Moreover, we introduce a simple yet effective method to
enable customization based on few example images. Comprehensive experiments
showcase the superiority of our approach across twelve customized tasks, achieving
a 9.33% improvement compared to existing DFKD methods.

1 INTRODUCTION

Vision-Language Models (VLMs) such as CLIP (Radford et al., 2021) are revolutionizing the field
with their outstanding performance. VLMs offer a remarkable zero-shot performance on a broad
range of visual recognition tasks (Menon & Vondrick, 2023; Silva-Rodriguez et al., 2024) thanks to
their open-vocabulary ability (Ilharco et al., 2022; Conti et al., 2023). However, the large model sizes,
high computational resource requirements, and inefficient inference speed of these models restrict
their deployment on mobile and IoT edge devices (Howard et al., 2017; Tan & Le, 2019). While
knowledge distillation is a solution, it still requires the original data, which is not always available due
to copyright and privacy concerns (Truong et al., 2021). Furthermore, different users have varying
needs for downstream tasks, such as personalized tasks (Gal et al., 2023). This promotes us to ask:
Could we customize models based on users’ needs (e.g., arbitrary combinations of class texts or few
example images) without the original data? In other words, can we steal any compact models from
an off-the-shelf CLIP to meet customized tasks?

Data-Free Knowledge Distillation (DFKD) (Yu et al., 2023; Hong et al., 2023) aims to distill a teacher
model to a student model without accessing the original data. DFKD performs knowledge distillation
by inversing a surrogate dataset from the teacher model. It typically optimizes the data x associated
with a target label y, which lies in the label space of the teacher model. However, applying SOTA
methods to the powerful CLIP model results in significant failures (see Fig. 2). This is because
existing DFKD relies on statistics stored in BatchNorm (BN) layers of the teacher model, which are
used to align the distribution of synthetic images with the pre-training data distribution. However, the
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Figure 1: An illustration of the open-vocabulary customization. Users input their customized needs through
class texts or example images and receive a student model that can directly perform inference. Our framework
uses multi-modal encoders to build a loss function that evaluates how well a (text, image) or (image, image)
pair matches, then backpropagates to the latent space. Diversity can be enhanced through style dictionary
diversification. We optimize synthetic images to compile a surrogate dataset for training. Finally, we split images
into training and testing sets according to styles, and employ meta-learning to train a customized student model.

BN statistics stored in CLIP are unexpectedly unusable. In this paper, we find that CLIP, trained on
large-scale internet datasets, tends to encode facial features into its BN statistics (see Fig. 3).

To address the issue of unusable or absent BN layers (e.g., architectures like ViT), we adopt an
alternative inversion way via image-text matching (Xuan et al., 2023; Liu et al., 2024). By aligning
the target class t and synthetic image x in the embedding space of CLIP, we achieve the reconstruction
of original data (Liu et al., 2021; Crowson et al., 2022). However, there remain three drawbacks: (i)
The diversity of synthetic images is insufficient, and they often lack photo-realism, failing to represent
the real distribution; (ii) Diversifying text prompts to increase data diversity introduces uncontrollable
semantics, potentially resulting in overly stylized and class-inconsistent content; (iii) Logits-based
knowledge distillation tends to overfit by mimicking the teacher model’s outputs, neglecting the
invariant information and thus reducing generalization. Additionally, there is a lack of attention to
how image prompts could also be utilized for inversion.

In this work, we address these issues in a unified framework (see Fig. 1), enabling customization based
on both texts and images. We distill small models from CLIP in a data-free manner for customized
tasks, obviating the need for the text encoder. For text-based customization, we introduce style
dictionary diversification to enhance the diversity of synthetic images. Our style dictionary contains
terms that describe the real world. We start with these terms as prompts and further utilize contrastive
learning for instance-level discretization. This approach not only maintains photo-realism but also
enhances diversity among samples. To prevent uncontrollable semantics introduced by diversification,
we further propose class consistency maintaining to ensure accurate classification of synthetic
images. After synthesizing images with various styles, we use meta knowledge distillation to transfer
style-agnostic knowledge from CLIP to the student model. Specifically, we minimize the loss
on current styles while ensuring that the optimization direction also yields improvements across
other styles. By encouraging a gradient direction suitable for all styles, the student model captures
shared representations across different styles, enabling effective generalization. For image-based
customization, we construct prototypes based on example images to reduce intra-class variance.
Instead of relying solely on few example images for knowledge distillation, we expand the distribution
by leveraging the teacher’s knowledge. We demonstrate that this approach effectively reduces the
generalization error and enhances performance.

In summary, our main contributions are three-fold: (1) We enable open-vocabulary customization
from CLIP based on only texts or few images. (2) We rethink model inversion methods in existing
DFKD, uncovering the challenges posed by CLIP. (3) Our approach enhances the diversity and
consistency of synthetic images, and improves the generalization of the student model.

2 RELATED WORK

Vision-Language Models (VLMs). VLMs (Jia et al., 2021; Li et al., 2022; 2023; Alayrac et al.,
2022) have emerged as a promising paradigm for visual recognition with the release of CLIP (Radford
et al., 2021). Zero-shot classification, i.e., computing the similarity between a query image and
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embedded texts for each class, has shown impressive results on various benchmarks. VLMs are
trained on extensive datasets of image-text pairs. Unlike previous models limited to fixed classes,
VLMs have the advantage of linking visual data with free-form language (Huang et al., 2024; Tang
et al., 2024). Recent research has focused on optimizing input prompts, developing learnable prompts
for text encoders (Zhou et al., 2022b;a), visual encoders (Bahng et al., 2022), or both jointly (Xing
et al., 2023). Additionally, there’s been explorations into using synthetic images generated from
available class names to aid image classification (Udandarao et al., 2023; Bansal & Grover, 2023).
In contrast, we do not query generative models or external images, but propose to inverse images
directly from CLIP by optimizing images with pre-defined supervision.

Data-Free Knowledge Distillation (DFKD). DFKD (Raikwar & Mishra, 2022; Fang et al., 2022; Yu
et al., 2023) aims to transfer knowledge from a pre-trained teacher model (typically a larger model)
to a student model (generally more lightweight), without access to the raw data. This research is
particularly valuable in practical scenarios where data availability is limited due to data privacy,
safety, or ethical concerns (Hu et al., 2024; Wei et al., 2024b). DFKD has been greatly influenced
by techniques like model inversion (Fredrikson et al., 2015), which seeks to extract embedded data
knowledge from pre-trained models. In particular, DeepInversion (Yin et al., 2020) regularizes the
distribution of synthetic images based on statistics from BN layers of the teacher model. Another
method with a generator, CMI (Fang et al., 2021) introduces a contrastive learning objective to
ensure that synthetic images are distinguishable from previously synthesized ones. They typically
assume a classification model with a classifier that outputs logits. Target classes are represented
as labels defined in the classifier’s label space. In contrast, Xuan et al. (2023) proposed leveraging
image-text matching for DFKD in VLMs, introducing three prompt diversification methods to extract
out-of-distribution capacity from VLMs. In comparison, our target classes can be represented not
only as texts but also as example images. Additionally, we propose consistency strategies to prevent
noise semantics introduced by styles and enhance realism.

Customization. Adapting models to the specific needs of users has long been a goal in machine
learning research. Customized models are typically seen in recommendation systems (Amat et al.,
2018; Wang et al., 2023) and federated learning (Fallah et al., 2020; Atapour et al., 2024). Recently,
the customization trend has extended to vision tasks, where fine-tuning generative models is com-
mon for reconstructing specific scenes (Roich et al., 2022; Gal et al., 2023; Kumari et al., 2023).
PALAVRA (Cohen et al., 2022) utilizes a pre-trained CLIP model for the retrieval and segmentation
of personalized objects. It identifies pseudo-words in the text embedding space of CLIP that refer to
a specific object. These pseudo-words are then used to describe images for retrieval or to segment
specific objects in a scene, distinguishing the personalized object from other candidates. In contrast,
our focus lies in customizing smaller models that can directly perform inference to recognize objects.

3 PRELIMINARY

Rethinking Model Inversion in DFKD. Existing DFKD methods (Yin et al., 2020; Fang et al., 2021;
2022) typically employ a classification model that outputs logits, with target classes represented
as labels defined in the classifier’s label space. These methods focus on inversing images from
pre-trained models using a classification loss and a prior regularization loss, treating the image x̂
as the optimization object. The prior regularization loss aims to align the feature distribution of
synthesized images with prior distribution information, i.e., the mean µ and variance σ2 stored in BN
layers, encouraging the synthetic images x̂ to mimic the distribution of original images:

min
x̂

LBN =
∑
l

∥µl(x̂)−µBN
l ∥+∥σ2

l (x̂)−σBN
l ∥, (1)

where µl(x̂) and σ2
l (x̂) denote the mean and variance of features at the lth convolutional layer. µBN

l

and σBN
l refer to the mean and variance of prior statistics stored in the lth BN layer.

To apply DFKD methods on VLMs, we utilize the ResNet-50 backbone of CLIP as the teacher model.
However, CLIP only has a visual encoder Eimg to extract features. Consequently, we construct a
linear classifier W upon the backbone. We then fine-tune this classifier using the testing set to form a
classification model f(·) = Eimg(·)TW , which replaces the teacher in DFKD methods.

As shown in Fig. 2, all DFKD methods fail when applied to CLIP. Detailed results for each dataset
are provided in Table 8. This failure stems from their heavy reliance on BN layers, which store
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Figure 3: Visualizations of synthetic images using DFKD methods. We observe that CLIP, trained on
large-scale internet datasets, tends to encode facial features into statistics of its BatchNorm layers. When using
models pre-trained on ImageNet, these methods can synthesize informative images for training.

statistical knowledge from prior training. They are constrained to utilize the teacher pre-trained on
training sets, which essentially stores the previously seen data. For instance, ablation experiments of
DeepInversion (Yin et al., 2020) show a 40%-69% drop in performance upon removal of the BN loss.
While CLIP is pre-trained on large-scale, web-crawled datasets that often contain complex scenes
with people, even though the text descriptions may not mention people (see Fig. 9 in App. B), leading
to domain shifts from test images. We observe that CLIP’s BN layers tend to favor faces (see Fig. 3),
resulting in corrupted images that do not accurately reflect the target class. Other VLMs also exhibit
this phenomenon, as detailed in App. B. Consequently, DFKD methods struggle to utilize CLIP to
synthesize high-quality images, causing a significant performance drop.

To further validate this observation, we conduct experiments using a pre-trained ResNet-50 from
PyTorch, combined with a linear classifier as the teacher. In Fig. 2, results denoted with (IN) clearly
show improved performance, despite only fine-tuning the classifier. In Fig. 3, synthetic images (IN)
can reflect class semantics and are recognizable by human observers. This suggests that existing
DFKD methods are only effective when the teacher’s BN stored distribution closely matches
the testing distribution. Our approach enables DFKD for CLIP without relying on BN statistics,
and is applicable even to transformers that lack BN layers, showcasing the superiority. Based solely
on class texts, we outperform DFKD methods that utilize real data.

Image-Text Matching. To address the issue of unusable or absent BN layers (e.g., architectures
like ViT), we adopt an alternative inversion way via image-text matching. CLIP consists of a pair
of text encoder Etxt and image encoder Eimg, which map a text t and an image x into a common
latent space. Given class texts {t1, · · · , tn}, we can synthesize images by aligning them in the latent
space (Crowson et al., 2022; Liu et al., 2024). Specifically, we fix the CLIP parameters and adopt a
pre-trained VQGAN with a decoder G for more efficient parameterization, conducting optimization
directly in the latent variable space z. We start with random noise and progressively refine z by
minimizing the loss function, which measures image-text consistency:

min
z

Litm = arcsin2 (∥Eimg(G(z))− Etxt(t)∥) , (2)

where arcsin maps distances to angular space, and the image x̂ = G(z). The decoder G reduces the
dimensionality of the optimization target from pixel space to a low-dimensional latent space.

To enhance image diversity, we create numerous prompt templates using a style dictionary
{d1, · · · ,dN}, such as “[t] in the style of [d]”, and introduce learnable styles optimized by instance-
level contrastive learning (Xuan et al., 2023). Initially, input texts are converted into a set of tokens

4



Published as a conference paper at ICLR 2025

Water lilly Tacos Sunflower Cup Chair Original After diversificationTeacher CLIP

skyscraper.

Teacher CLIP

mountain?
skyscraper?

cloud?
cityscape?

Figure 4: Left: Utilizing image-text matching directly may result in synthetic images that lack photo-realism
and tend towards artistic styles. Right: Introducing style dictionary diversification can lead to uncontrollable
semantics, potentially resulting in overly stylized and class-inconsistent content. This may even cause CLIP
itself to inaccurately recognize target class labels, imparting uncertain knowledge to the student model.

Vt, · · · ,Vd, where each word is mapped to a vector through a fixed codebook. These tokens are
then fed into the transformer module to obtain the text embedding T . The contrastive loss is
back-propagated to optimize Vd of the style prompt d in the token embedding space:

min
Vd

Lcst = − log
exp (dcos(T ,T+))∑B
b=1 exp

(
dcos(T ,T−

b )
) , (3)

where dcos measures the distance between text embeddings, and B denotes the batch size. Positive
samples T+ are obtained through text augmentation by randomly shuffling letters of the frozen
template “in the style of”. Negative samples T−

b are the other style prompts within the batch.

4 METHODOLOGY

In this section, we propose a data-free framework for customizing student models from CLIP (see
Fig. 1). The framework adopts a two-step paradigm, including model inversion and knowledge
distillation. In Sec. 4.1, we discuss text-based customization. Our approach enhances the diversity
and consistency of synthetic images, and improves the generalization of the student model. In Sec. 4.2,
we discuss customization based on few example images from each class.

4.1 TEXT-BASED CUSTOMIZATION

Style dictionary diversification. Given the target class t, we can synthesize images from CLIP
by optimizing Eq. (3) and Eq. (2). Empirical observations (see Fig. 4, left) suggest that synthetic
images often lack photo-realism and tend towards artistic styles. This phenomenon arises from
CLIP’s training on vast internet image-text pairs, containing various domains, enabling it to grasp
abstract concepts. Hence, the style dictionary we devise aims to closely emulate real-world scenes,
incorporating terms like “pattern”, “illustration”, and “photorealism”. This strategy balances the
maintenance of realism with the achievement of a diverse range of style prompts.

We can employ the concept of δ-cover to investigate how data diversity influences the generalization
error bound (Sener & Savarese, 2018; Zhang et al., 2023). A dataset S is a δ-cover of dataset D if a
set of balls of radius δ, centered at samples in S, cover the dataset D. We define the diversity of the
surrogate dataset S as δdiv, which is the inverse of the minimal radius δmin. The rationale is that if the
radius δmin is high, the diversity of the dataset must be low. Under some mild assumptions:
Theorem 4.1. Given the original dataset D = {xi, yi}i∈[m] with m i.i.d. samples and the surrogate
dataset S = {x̂j , ŷj}j∈[s]. Assume the hypothesis function is λη-Lipschitz continuous, the loss
function ℓ(x, y) is λℓ-Lipschitz continuous for all y, and is bounded by L, with ℓ(x̂j , ŷj ;θ) = 0 for
all j ∈ [s]. If the dataset S is a δ-cover of D, with probability at least 1− γ, the bound holds:∣∣∣∣∣∣ 1m

∑
i∈[m]

ℓ(xi, yi;θ)−
1

s

∑
j∈[s]

ℓ(x̂j , ŷj ;θ)

∣∣∣∣∣∣≤λℓ + ληLC

δdiv
+

√
log |Θ|+ log 1

γ

2m
,

where C is the number of classes, and θ ∈ Θ is the optimized student model.

Please refer to App. A.1 for proofs. This theorem shows that the generalization error is bounded
by δdiv. In other words, the more diverse samples inversed from CLIP, the greater improvement
in generalization can be achieved. Naive prompts result in a large covering radius δ and thus the
δdiv is low. On the other hand, manually designing complex prompts is laborious and empirical. By
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employing style dictionary diversification, CLIP can be guided to synthesize a diverse range of new
samples, thereby enhancing the generalization of the student model.

Class consistency maintaining. It’s inevitable that synthetic data may contain class-inconsistent
samples (He et al., 2023). This issue becomes more severe with style dictionary diversification, as it
may introduce uncontrollable semantics into text prompts (see Fig. 4, right). Hence, we introduce a
class consistency maintaining strategy to prevent overly stylized deviation. Unlike the instance-by-
instance optimization in Eq. (2), in a scenario where we know all the classes for the customized task,
we can perform global multi-class optimization. Specifically, for an n-way classification, we input
class names {t1, · · · , tn} with prompt si = “a photo of a [ti]” into the text encoder Etxt to obtain
text embeddings. Then, these text embeddings Etxt(s) can be used to construct a classifier. Each
latent embedding Eimg(G(z)) can be classified based on cosine similarity according to the classifier:

min
z

Lcls = CE(Eimg(G(z)) · Etxt(s), ŷ), (4)

where ŷ ∈ N[1,n] is the target class label. The classification loss serves as an anchor to regularize
the class semantics of the diversified data in CLIP’s embedding space. This promotes consistency
between synthetic images and their corresponding class text.

Meta knowledge distillation. When using the surrogate dataset for distilling knowledge from CLIP,
synthetic images may not cover all semantic information of real images, resulting in a gap between
the training and testing distributions. In other words, the covariate shift issue (Sugiyama & Storkey,
2006) in DFKD is more significant than in knowledge distillation. To address this, we propose meta
knowledge distillation to train the student model across various styles. The objective (Li et al., 2018)
is to minimize the loss on current styles while ensuring that the optimization direction taken also
yields improvements across other styles.

The surrogate dataset X contains N styles through the style dictionary. To emulate real train-test
shifts, we train the student model θ on different styles. During each iteration of training, one style Xte

is randomly chosen as the meta-testing (virtual-test) style, while the remaining styles Xtr = X −Xte

form the meta-training set. The optimization objective for meta knowledge distillation is as follows:

min
θ

EXte∼XLouter = LKD(Xtr;θ) + LKD(Xte;θc), s.t. θc = min
θ

Linner = LKD(Xtr;θ), (5)

where LKD is the KL divergence between student logits and CLIP logits, minimizing their disagree-
ment. CLIP logits are the cosine similarity between image embeddings Eimg(X ) and text embeddings
Etxt(s). θc is obtained after the inner loop, and θ is the student parameters we truly update. The
outer loop evaluates the performance of θc on another style Xte. To understand how the student learns
invariant representations, we can analyze the objective from the perspective of gradient alignment.

Theorem 4.2. If LKD has Lipschitz Hessian, and θc = θ − α∇Linner denotes a single gradient
descent step on θ with the objective Linner, where α is a learning rate, then:

∇Louter = ∇LKD(Xtr;θ) +∇LKD(Xte;θ)− α∇ (∇LKD(Xtr;θ) · ∇LKD(Xte;θ))︸ ︷︷ ︸
StyleAlignment

+O(α2).

Please refer to App. A.2 for proofs. The analysis reveals that the gradient of Xte produces the inner
product with the gradient of Xtr. This implies that optimizing the student model θ not only minimizes
the expected loss across all styles X (effectively the empirical risk minimization), but also maximizes
the inner product between gradients of different styles ∇LKD(Xtr;θ) · ∇LKD(Xte;θ). Hence, it
encourages the student model to converge towards a common gradient direction across styles, learning
invariant representations that generalize to new testing distributions.

4.2 IMAGE-BASED CUSTOMIZATION

In the above sections, we optimize synthetic images to match target texts, benefiting from CLIP’s
powerful image-text alignment capability. An interesting idea is whether we can optimize synthetic
images using target images {I1, · · · , In} by aligning their embeddings in the visual space, where
each class has K-shot example images {ij}Kj=1. We can replace Etxt(t) in Eq. (2) with Eimg(i) to
enable the image prompt. Building upon this idea, we propose class prototype guidance to further
reduce the intra-class variance of synthetic images.
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A single image may not accurately capture the characteristics of a class, leading to synthetic images
exhibiting notable intra-class variance, which will hinder inter-class discrimination (Hou & Sato,
2022). Therefore, we construct a prototype representation for each class, around which data points
cluster. Specifically, we compute the prototype pŷ as the mean of few example images in the embed-
ding space Eimg(ij). Synthetic images can be optimized towards the target class ŷ by classifying it
with all prototypes p:

min
z

Liim + Lcls = arcsin2 (∥Eimg(G(z))− pŷ∥) + CE(Eimg(G(z)) · p, ŷ). (6)

Compared to solely using few example images to distill knowledge from the CLIP, our approach can
be viewed as leveraging the CLIP’s knowledge to augment a new distribution. We demonstrate that
the generalization of a model trained on this distribution can be quantified by its proximity to the
testing distribution. We borrow the notion of divergence from Ben-David et al. (2010).
Corollary 4.3. For any arbitrary distributions P and P ′, with the trained model θ ∈ Θ. The notion of
Θ∆Θ divergence denotes that dΘ∆Θ(P ′,P) = supθ,θ′∈Θ |Px∼P′ [θ(x) ̸= θ′(x)]−Px∼P [θ(x) ̸=
θ′(x)]|. Assume there exists ζ(|Θ| , s, γ) ≥ 0, a non-negative function that diminishes monotonically
with s. Then, with probability at least 1− γ the following bounds hold:

EP′(θ) ≤ ÊP(θ) +
1

2
dΘ∆Θ(P ′,P) + ζ(|Θ| , s, γ) + λ(P ′),

where EP′(θ) is the expected error over P ′, ÊP(θ) is the empirical error over the s training samples
in the surrogate dataset S ∼ P , and λ(P ′) is a constant.

Please refer to App. A.3 for proofs. The second term dΘ∆Θ(P ′,P) represents the divergence
between two distributions, underscoring that generalization performance depends on this divergence.
Consequently, incorporating a distribution close to the testing distribution alongside the original
data can significantly enhance generalization. This suggests that utilizing distributions generated
from CLIP, a foundational model trained on a vast dataset, would be particularly beneficial due to its
exposure to diverse distributions (Zhou et al., 2023).

5 EXPERIMENTS

In this section, we begin by detailing our experimental setup. Following that, we empirically verify
the effectiveness of our proposed approach via extensive experiments.

5.1 EXPERIMENTAL SETUP

Datasets and pre-trained models. In the DFKD setting, we have no access to the training data.
We employ ViT-B/32 as the visual encoder and a 12-layer 8-head transformer as the text encoder of
CLIP (Radford et al., 2021). VQGAN (Esser et al., 2021) is utilized for synthesizing surrogate images.
The pre-trained weights are kept fixed throughout the training process. We perform model inversion
from texts sourced from datasets including Caltech-101 (Fei-Fei et al., 2004) (101 categories),
ImageNet-1K (Deng et al., 2009) (1000 categories), or Flower-102 (Nilsback & Zisserman, 2008)
(102 fine-grained categories). Our method is an open-vocabulary, customized approach suitable for
any category recognized by CLIP. Therefore, we randomly divide ImageNet-1K into 10 splits to
simulate a real customization scenario as closely as possible, reporting average results to demonstrate
the robustness of our method. Each task includes over 100 categories encompassing a wide range
of natural categories. Further details regarding data statistics are provided in App. H. The student
model is evaluated on these datasets, including the test set of ImageNet, and the complete datasets of
Caltech-101 and Flower-102, with the classification accuracy (in %) reported.

Implementation details. Without specific statements, we default to using a ResNet-18 as the student
model. We construct a style dictionary with a size of 16 (details in App. G). The batch size for prompt
learning is set to 64, with a learning rate of 0.01. Surrogate images are synthesized with a resolution
of 224 × 224, and optimized using the Adam optimizer with a learning rate of 0.1 for 400 iterations.
For text-based customization, 64 images are generated per class. For image-based customization,
each class has 4 example images, and 24 additional images are synthesized per class. The inner loop
learning rate α and outer loop learning rate for meta knowledge distillation are both set to 0.001,
utilizing the SGD optimizer. Compared DFKD methods are implemented using the official code
repository, and recommended hyperparameter settings are utilized.
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Table 1: Test accuracy (%) for text-based customization. SDD: Style Dictionary Diversification; CCM:
Class Consistency Maintaining; LCE: supervised loss with hard labels; LKD: knowledge distillation loss with
soft labels; Meta: meta knowledge distillation. All inversion methods are tested with meta LKD.
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5.2 MAIN RESULTS

Results of text-based customization. In Table 1, given the text t of target classes, CLIP conducts
zero-shot classification with the vanilla prompt “a photo of a [t]”. Baseline (Crowson et al., 2022)
synthesizes images using the vanilla prompt and performs meta knowledge distillation upon the
dataset. Adding style dictionary diversification (SDD) notably improves performance, highlighting
the importance of data diversity for knowledge distillation. SDD is a preliminary step with low
complexity, taking only 57 seconds to train on RTX 4090. While SDD also introduces risks of noisy
samples, e.g., prompts may contain other confusing objects. Fortunately, with class consistency
maintaining (CCM) to prevent overly stylized deviation, SDD+CCM yields consistent improvement
over the baseline. It is observed that CCM sometimes brings performance drops compared with the
baseline, which may be attributed to the reduction in diversity. Therefore, SDD+CCM is an effective
trade-off, bringing an average performance improvement of 4.2%.

After obtaining the surrogate dataset, we explore various knowledge distillation methods. Compared
to common supervised cross-entropy training, we find significant advantages in distilling knowledge
from CLIP. This is because soft labels from the CLIP contain richer negative label information and
higher entropy. Building upon this, we investigate the proposed meta knowledge distillation, which
is an optimization approach that can be combined with different loss functions. “Meta” in Table 1
presents the effectiveness of our algorithm, where both LCE+LKD and LKD achieve improvements
(↑1.54%). These results illustrate that meta knowledge distillation helps to discover shared class
semantics across different styles and learn a more generalizable student.

Table 2: Image-based customization (%).

Caltech-101 ImageNet

Real data 83.13 72.88
Baseline 81.83(-1.30%) 69.78(-3.10%)
Ours 84.78(+1.65%) 74.54(+1.66%)

Results of image-based customization. We explore
image-based customization, where users have only few
example images and may not even know the class names.
As shown in Table 2, real data augmented with standard
techniques such as RandomCrop, RandomFlip, and Col-
orJitter achieve certain effectiveness. However, Baseline
(simply using each image as an image prompt for inver-
sion) results in suboptimal performance, indicating that synthetic data is much less data-efficient than
real data. On the other hand, our proposed prototype guidance boosts accuracy by 2.95%-4.76%.
This confirms that CLIP effectively expands the training distribution while narrowing the divergence
with the testing distribution, due to CLIP being trained on diverse distributions. As indicated by
Corollary 4.3, approaching the testing distribution enhances generalization.

Computational complexity. The CLIP model employs a ViT-B/32 visual encoder and a 12-layer
8-head text encoder, whereas the student model uses ResNet-18. As shown in Table 3, the student
model not only has a more lightweight visual backbone but also omits the text encoder entirely. This
leads to a significant reduction in both parameters and computational requirements.
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Table 3: Reductions in parameters and computational requirements compared to CLIP.

Img Params Txt Params Total Params Img GFLOPs Txt GFLOPs Total GFLOPs
CLIP 87.85M 63.43M 151.28M 8.82 5.96 14.78
Student 11.68M 0M 11.68M 1.82 0 1.82

Table 5: Accuracies (%) on other student/teacher architectures for knowledge distillation.
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5.3 FURTHER ANALYSES

Table 4: Consistency vs. diversity (%).

Coef. of Lcls LR=0.001 LR=0.01 LR=0.1

0.5 61.64 62.10 63.22
1 62.06 62.46 62.34
2 62.35 62.94 62.52

Trade-off between consistency and diversity. The trade-
off between class consistency maintaining and style dictio-
nary diversification is critical. The hyperparameters con-
trolling diversity are primarily the batch size and learning
rate of contrastive learning. The hyperparameter control-
ling consistency is mainly the coefficient of Eq. (4), which
we set to 1 by default. We conduct additional ablation
studies by keeping the batch size constant and varying the learning rate to control diversity, as well
as changing the loss coefficient to control consistency. The results are shown in Table 4. It can be
seen that with the same diversity (fixed learning rate), increasing consistency shows beneficial trends.
When consistency is the same (fixed coefficient), intermediate diversity generally performs better.
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Figure 5: Different training strategies. All results use
the LCE+LKD for knowledge distillation.

Knowledge distillation strategies. Given the
synthetic images, various training strategies
have been explored in previous studies. For
instance, He et al. (2023) utilizes each class’s
text features as the classifier’s initialization, as-
suming it can aid convergence. Due to the initial
instability of parameters and large gradients, di-
rectly learning the entire network may lead to
numerical instability. Therefore, we start by
training the classifier for warmup and then move
on to train the whole model. Results of different
strategies are shown in Fig. 5. Surprisingly, ini-
tializing with text features leads to a decrease in performance, indicating a discrepancy between the
feature space of CLIP and the student model’s feature space, which random initialization handles
better. The effect of warmup is significant, as it helps alleviate premature overfitting to mini-batches
in the initial stages, contributing to the stability of deeper layers in the student model.

Other model architectures. While our approach and theoretical framework are adapted for broad
foundation models, we also explore its effectiveness on different model architectures, as shown
in Table 5. We examine a different teacher architecture, CLIP-RN50. Additionally, we consider
smaller student models like ViT-T (Touvron et al., 2021), which is a transformer architecture with
a significantly reduced parameter count, enhancing its efficiency for image processing. Similar to
other distillation techniques, we find that our approach is capable of transferring representations
across various student/teacher architectures. This underscores the versatility of our approach: once
synthesized, these datasets can be readily applied to train various model architectures.

Visualizations. We present visualized results of synthetic images generated by our approach. Specif-
ically, Fig. 6 showcases the synthetic images produced based on class texts, while Fig. 7 displays
those generated from example images. These visualized results illustrate the effectiveness of our
style dictionary diversification in creating more diverse and plausible images, as well as the ability of
image-based customization to generate content-consistent images.
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Pyramid ValleyAirplane Yin-yangWater lilly

Figure 6: Visualizations of the text-based customiza-
tion. Our approach enhances the diversity of synthesized
images, preventing repetitive content while ensuring ac-
curate representation of class semantics.

Example Images Synthetic Images

Figure 7: Visualizations of the image-based
customization. Using only few example images,
we synthesize corresponding images that serve as
valuable supplements to the original images.

Synthesized Image Real ImageText Prompt

“a photo of a 
globe-flower, a 
type of flower.”

“a photo of a 
balloon flower, a 
type of flower.”

Figure 8: Examples illustrating
misalignment between input texts
and synthesized images, which
can lead to suboptimal performance
in knowledge distillation. CLIP
may struggle with certain specialized
terms and fine-grained classes. Up-
per: Request for a globe-flower, but
CLIP ambiguously combines globe
and flower. Lower: Balloon flower
refers to a brand of flowers.

5.4 LIMITATION AND FUTURE WORK

Table 6: Strategies to alleviate
text ambiguity (%).

Flower-102

Text prompt 15.83
+ Constraint 18.07(+2.24%)
+ Image prompt 74.72(+58.89%)

In the experiments with Flower-102, a fine-grained flower dataset,
we encounter limitations of CLIP inversion: incorrect synthesis of
ambiguous text prompts. Short class names are inherently ambigu-
ous (Song & Soleymani, 2019), and CLIP may misunderstand these
texts or have not seen the class before, resulting in synthetic images
that do not accurately represent the intended class (see Fig. 8). This is-
sue arises not from our approach, but rather from a limitation inherent
to VLMs, i.e., the ambiguity of text prompts.

We outline several potential directions for future improvement: (1) Mitigating ambiguity using
few example images, i.e., combining both text and image prompts. (2) Employing more detailed
text prompts for constraints, such as “a type of flower”. Some studies (Menon & Vondrick, 2023;
Pratt et al., 2023; Roth et al., 2023) have shown effectiveness in using LLMs to generate specific
descriptions for each class. (3) Leveraging larger and more advanced VLMs (Li et al., 2021; 2022;
2023), with stronger text-image alignment capabilities, to address the limitation at the pre-training
level. We conduct related experiments on Flower-102, and the results are shown in Table 6. Both
image prompts and more detailed text prompts demonstrate their effectiveness. We also discuss the
potential societal impacts of this work in App. F.

6 CONCLUSION

We rethink DFKD and find that existing methods fail on CLIP due to heavy reliance on BatchNorm
layers, which are unexpectedly unusable in CLIP. In this paper, we enable open-vocabulary cus-
tomization from CLIP based on only texts or few images. Our approach enhances the diversity
and consistency of synthetic images, and improves the generalization of the student model. The
effectiveness of each module is confirmed through theoretical analyses. Comprehensive experiments
showcase the superiority of our approach across customized tasks.
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A THEORETICAL PROOFS

A.1 PROOF FOR THEOREM 4.1

Theorem A.1. Given the original dataset D = {xi, yi}i∈[m] with m i.i.d. samples and the surrogate
dataset S = {x̂j , ŷj}j∈[s]. Assume the hypothesis function is λη-Lipschitz continuous, the loss
function ℓ(x, y) is λℓ-Lipschitz continuous for all y, and is bounded by L, with ℓ(x̂j , ŷj ;θ) = 0 for
all j ∈ [s]. If the dataset S is a δ-cover of D, with probability at least 1− γ, the bound holds:∣∣∣∣∣∣ 1m

∑
i∈[m]

ℓ(xi, yi;θ)−
1

s

∑
j∈[s]

ℓ(x̂j , ŷj ;θ)

∣∣∣∣∣∣≤λℓ + ληLC

δdiv
+

√
log |Θ|+ log 1

γ

2m
,

where C is the number of classes, and θ ∈ Θ is the optimized student model.

Proof. Using PAC-Bayesian generalization bound (McAllester, 1999), for all θ ∈ Θ, with probability
1− γ over independent draws (xi, yi) ∼ PX×Y , we have:∣∣∣∣∣∣Eyi∼η(xi)[ℓ(xi, yi;θ)]−

1

m

∑
i∈[m]

ℓ(xi, yi;θ)

∣∣∣∣∣∣ ≤
√

log |Θ|+ log 1
γ

2m
.

Then, we reproduce and adapt the proof from Sener & Savarese (2018) in the context of core-set for
completeness. We have a condition which states that there exists an x̂j in a δ-cover around xi.

Eyi∼η(xi)[ℓ(xi, yi;θ)] =
∑
k∈[C]

pyi∼ηk(xi)(yi = k)ℓ(xi, k;θ)

(d)

≤
∑
k∈[C]

pyi∼ηk(x̂j)(yi = k)ℓ(xi, k;θ) +
∑
k∈[C]

|ηk(xi)− ηk(x̂j)|ℓ(xi, k;θ)

(e)

≤
∑
k∈[C]

pyi∼ηk(x̂j)(yi = k)ℓ(xi, k;θ) + δληLC,

where yi ∼ ηk(xi) denotes that {yi = k} ∼ ηk(xi) = p(yi = k|xi). Step (d) uses Claim 1 from
Berlind & Urner (2015), and step (e) uses the Lipschitz property of the hypothesis function and the
loss bound. Considering the trained student model is assumed to have zero loss, i.e., ℓ(x̂j , ŷj ;θ) = 0.∑

k∈[C]

pyi∼ηk(x̂j)(yi = k)ℓ(xi, k;θ) =
∑
k∈[C]

pyi∼ηk(x̂j)(yi = k)[ℓ(xi, k;θ)− ℓ(x̂j , k;θ)]

+
∑
k∈[C]

pyi∼ηk(x̂j)(yi = k)ℓ(x̂j , k;θ)

≤ δλℓ.

Therefore, according to the definition of δ-diversity, we have:

Eyi∼η(xi)[ℓ(xi, yi;θ)] ≤
λℓ + ληLC

δdiv
.

Since we assume a zero training error for the surrogate dataset S = {x̂j , ŷj}j∈[s], applying the
triangle inequality yields:

| 1
m

∑
i∈[m]

ℓ(xi, yi;θ)−
1

s

∑
j∈[s]

ℓ(x̂j , ŷj ;θ)| =
1

m

∑
i∈[m]

ℓ(xi, yi;θ)

≤ λℓ + ληLC

δdiv
+

√
log |Θ|+ log 1

γ

2m
.
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A.2 PROOF FOR THEOREM 4.2

Theorem A.2. If LKD has Lipschitz Hessian, and θc = θ − α∇Linner denotes a single gradient
descent step on θ with the objective Linner, where α is a learning rate, then:

∇Louter = ∇LKD(Xtr;θ) +∇LKD(Xte;θ)− α∇ (∇LKD(Xtr;θ) · ∇LKD(Xte;θ))︸ ︷︷ ︸
StyleAlignment

+O(α2).

Proof. We have:

∇Louter =∇LKD(Xtr;θ) +∇LKD(Xte;θc)
∂θc
∂θ

=∇LKD(Xtr;θ) +∇LKD(Xte;θc)
∂(θ − α∇LKD(Xtr;θ))

∂θ

=∇LKD(Xtr;θ) +∇LKD(Xte;θc)(I − α∇2LKD(Xtr;θ)).

Applying the fundamental theorem of Taylor’s expansion to the gradient ∇LKD(Xte;θc), we have:

∇LKD(Xte;θc)

=∇LKD(Xte;θ) +∇2LKD(Xte;θ)(θc − θ) +O(∥θc − θ∥2)︸ ︷︷ ︸
=O(α2)

=∇LKD(Xte;θ) +∇2LKD(Xte;θ) (θc − θ)︸ ︷︷ ︸
−α∇LKD(Xtr;θ)

+O(α2)

=∇LKD(Xte;θ)− α∇2LKD(Xte;θ)∇LKD(Xtr;θ) +O(α2).

Note that, this offers a streamlined method to ascertain the Hessian Product by evaluating the gradient
of LKD(Xte;θc) w.r.t. θc (Wei et al., 2024c). As a result, this eliminates the necessity for the
time-intensive and memory-consuming explicit calculation of the Hessian Product. Concurrently, any
term that is a high-order term in α is classified into the O(α2) notation:

∇Louter =∇LKD(Xtr;θ) +∇LKD(Xte;θ)

− α∇2LKD(Xte;θ)∇LKD(Xtr;θ)− α∇2LKD(Xtr;θ)∇LKD(Xte;θ) +O(α2)

=∇LKD(Xtr;θ) +∇LKD(Xte;θ)− α∇ (∇LKD(Xtr;θ) · ∇LKD(Xte;θ))︸ ︷︷ ︸
StyleAlignment

+O(α2).

A.3 PROOF FOR COROLLARY 4.3

Corollary A.3. For any arbitrary distributions P and P ′, with the trained model θ ∈ Θ. The
notion of Θ∆Θ divergence denotes that dΘ∆Θ(P ′,P) = supθ,θ′∈Θ |Px∼P′ [θ(x) ̸= θ′(x)] −
Px∼P [θ(x) ̸= θ′(x)]|. Assume there exists ζ(|Θ| , s, γ) ≥ 0, a non-negative function that diminishes
monotonically with s. Then, with probability at least 1− γ the following bounds hold:

EP′(θ) ≤ ÊP(θ) +
1

2
dΘ∆Θ(P ′,P) + ζ(|Θ| , s, γ) + λ(P ′),

where EP′(θ) is the expected error over P ′, ÊP(θ) is the empirical error over the s training samples
in the surrogate dataset S ∼ P , and λ(P ′) is a constant.

Proof. From Theorem 2 in Ben-David et al. (2010), it holds that:

EP′(θ) ≤ EP(θ) +
1

2
dΘ∆Θ(P ′,P) + λ(P ′),

where 1
2dΘ∆Θ(P ′,P) = supθ,θ′∈Θ |Px∼P′ [θ(x) ̸= θ′(x)]− Px∼P [θ(x) ̸= θ′(x)]| and λ(P ′) =

minθ∈Θ EP′(θ) + EP(θ) is a constant. Then, with the PAC-Bayesian generalization bound:∣∣∣EP(θ)− ÊP(θ)
∣∣∣ ≤ ζ(|Θ| , s, γ) =

√
log |Θ|+ log 1

γ

2s
,
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Figure 10: Visualizations of DeepInversion on Caltech-101 using PyramidCLIP (Gao et al., 2022).

with probability at least 1− γ, the following bounds hold:

EP′(θ) ≤ ÊP(θ) +
1

2
dΘ∆Θ(P ′,P) + ζ(|Θ| , s, γ) + λ(P ′).

B RETHINKING DFKD ON OTHER VLMS

In Sec. 3, we examine the inversion results of existing DFKD methods on CLIP and find that almost all
synthesized images are related to human faces, regardless of the target class. To explore whether other
VLMs exhibit similar behavior, we present further inversion visualizations. However, the backbones
of most VLMs are based on ViT, which lacks BN layers. This also highlights the superiority of
our method, which remains effective even in the absence of BN layers. Consequently, we chose
PyramidCLIP (Gao et al., 2022) (which provides a ResNet-50 backbone) for additional validation.
PyramidCLIP addresses semantic mismatches and mutual compatibility issues with image-text pairs
from the internet and outperforms CLIP by more than 10%, making it a stronger VLM.

Venice Beach Wedding Dress

Figure 9: The problem in the web-crawled
image-text pairs.

Inversion results on PyramidCLIP are shown in Figs. 10
and 11. As depicted, half of the images successfully syn-
thesize the target object, but the other half still depict
human faces. This demonstrates a common phenomenon
in VLMs: large-scale, web-crawled datasets invariably
contain humans, even though the text descriptions may
not mention people, leading to model bias (see Fig. 9).
Consequently, existing DFKD methods are not applicable
to open-vocabulary foundation models and are limited to settings where the teacher model and testing
set share the same distribution.

Our method is applicable to VLMs with a vision encoder and text encoder structure. We also explore
the performance on BLIP (Li et al., 2022) and EVA (Fang et al., 2023). As shown in Table 7, EVA
achieves the best performance, followed by CLIP and BLIP. The pre-trained weights we use for
BLIP are the official “blip-itm-base-coco”. We observe that BLIP’s image-text matching capability is
weaker than CLIP’s. This is because BLIP’s text encoder is image-grounded and trained on a binary
classification task conditioned on images. Additionally, BLIP’s pre-training dataset contains 14M
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Figure 11: Visualizations of CMI on Caltech-101 using PyramidCLIP (Gao et al., 2022).

Table 7: Test accuracy (%) for text-based customization across other VLMs.

Caltech-101 ImageNet1 ImageNet2 ImageNet3 Average

CLIP (Radford et al., 2021) 61.33 62.46 65.02 65.60 63.60
BLIP (Li et al., 2022) 59.68 50.88 57.62 57.36 56.39
EVA (Fang et al., 2023) 67.62 65.24 66.96 66.42 66.56

images, whereas CLIP is pre-trained on 400M text-image pairs. EVA achieves the highest zero-shot
top-1 accuracy on ImageNet-1K, and demonstrates strong image-text matching capability. These
results indicate that our method is applicable to other VLM architectures and that its performance
improves with the capability of the underlying VLM.

C WHY IMAGE-TEXT MATCHING EXCELS

While optimization in existing DFKD accurately captures the essence of a classification problem,
such a formulation is sub-optimal for model inversion (Nguyen et al., 2023). In a classification setting,
the primary expectation for x̂ is to be sufficiently discriminative for class i. This objective can be
achieved by both maximizing Eimg(x̂) · Etxt(ti) or minimizing

∑n
j=1,j ̸=i Eimg(x̂) · Etxt(tj). On

the contrary, the goal of model inversion is to reconstruct training data. That is, in addition to x̂
being sufficiently discriminative for class i, successful inversion also requires x̂ to be close to the
training data representations for class i represented by ti. Therefore, image-text matching focuses on
maximizing Eimg(x̂) ·Etxt(ti) instead of maximizing the log-likelihood. Thanks to VLMs’ powerful
image-text alignment capability, we can reconstruct images close to the original data x.

D EXPERIMENT RESULTS

To compare our proposed text-based customization with existing DFKD methods (Yin et al., 2020;
Fang et al., 2021; 2022), we summarize the results in Table 8. Conventional DFKD methods face
challenges in leveraging CLIP’s BN layers to generate high-quality images, leading to a notable
performance drop. The specific results of different training strategies for knowledge distillation are
presented in Table 9.

We also conduct hyperparameter sensitivity experiments for the inner and outer loop learning rates
α, used in meta knowledge distillation, as shown in Table 10. As the outer α increases, it leads to
over-updating and significant performance drops. A lower step size allows the model to adapt more
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Table 8: Comparisons with DFKD methods on 11 customized tasks. (CLIP) denotes a teacher model of
ResNet-50 pre-trained by CLIP, and (IN) indicates a teacher model of ResNet-50 pre-trained on ImageNet.

Calt
ec

h-1
01

Im
ag

eN
et1

Im
ag

eN
et2

Im
ag

eN
et3

Im
ag

eN
et4

Im
ag

eN
et5

Im
ag

eN
et6

Im
ag

eN
et7

Im
ag

eN
et8

Im
ag

eN
et9

Im
ag

eN
et1

0

Ave
ra

ge

DeepInv (CLIP) 14.84 6.26 6.24 5.08 6.76 5.70 7.06 6.64 7.10 6.87 5.84 7.13
DeepInv (IN) 57.83 41.50 44.98 44.46 40.92 47.40 40.20 44.54 44.82 47.49 44.92 45.37
CMI (CLIP) 9.88 7.88 7.74 6.92 7.58 7.72 8.28 6.46 7.54 6.92 6.98 7.63
CMI (IN) 56.75 49.30 51.82 53.36 45.76 51.92 49.06 52.98 47.22 55.67 50.04 51.26
Fast (CLIP) 5.34 7.38 6.16 6.44 7.02 5.98 7.14 7.00 6.28 8.39 6.10 6.66
Fast (IN) 60.26 55.76 55.98 57.02 51.92 52.86 56.02 52.50 52.04 57.91 55.63 55.26
Ours (CLIP) 60.76 63.90 64.52 66.40 63.18 66.46 67.28 64.06 63.74 64.48 65.71 64.59

Table 9: Different training strategies. All results use the LCE+LKD for knowledge distillation.
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w/o 50.47 48.56 51.88 54.06 48.56 52.63 55.60 54.24 50.02 53.01 51.73 51.89
Initialization 48.73 49.98 53.70 52.44 50.72 52.01 53.28 55.42 49.14 52.13 50.28 51.62
Warmup 57.17 59.10 62.78 63.46 61.12 64.33 64.96 65.24 62.86 62.43 61.58 62.28
Init. + Warm 59.87 60.14 62.42 63.82 58.54 64.07 64.22 63.82 63.84 62.77 62.29 62.35

finely to the common features of multiple tasks, rather than overfitting to any specific task. The best
performance is achieved with an inner α of 0.01 and an outer α of 0.001.

TinyCLIP (Wu et al., 2023) and CLIP-KD (Yang et al., 2024) distill small CLIP models using
relation, feature, gradient, and contrastive paradigms. Unlike our approach, they perform cross-modal
distillation (students also have a text encoder) and rely on large-scale datasets such as LAION-400M,
YFCC-15M, or CC3M+12M. LP-CLIP (Laroudie et al., 2023) trains a linear layer using pseudo-
labels produced by CLIP, enhancing robustness through knowledge distillation on the training set.
In contrast, we train the student network on synthetic data via meta-learning. We explore applying
LP-CLIP’s mixture of data augmentations and consistency loss to our student model distillation
process. As shown in Table 11, consistency loss achieves comparable performance but slightly lags
in generalization across different datasets.

E THE ROLE OF VQGAN

It replaces the statistics stored in the BN layers of pre-trained model to provide image priors (Struppek
et al., 2022). This off-the-shelf generator aligns the patterns of synthetic images with natural images.
The category of synthetic images is ensured through CLIP, as described in Eq. (2). Using an external
generator offers more flexibility, allowing different pre-trained generators to be selected for the target
task to minimize bias.

We conduct the following experiments: directly inverting images without VQGAN, using VQGAN
pre-trained on ImageNet, and using VQGAN pre-trained on OpenImages. Additionally, we exper-
imented with training VQGAN from scratch during the inversion process but encountered severe
mode collapse. As shown in Table 12, VQGAN pre-trained on ImageNet outperforms OpenImages

Table 10: Effect of the learning rate in meta knowledge distillation on ImageNet1.

Outer α = 0.001 Outer α = 0.01 Outer α = 0.1

Inner α = 0.001 62.46 56.88 5.44
Inner α = 0.01 63.58 56.66 6.22
Inner α = 0.1 62.04 55.82 10.68

19



Published as a conference paper at ICLR 2025

Table 11: Comparisons of different knowledge distillation techniques.

Caltech-101 ImageNet1 ImageNet2 ImageNet3 ImageNet4 Average

Ours 61.33 62.46 65.02 65.60 62.52 63.39
LP-CLIP (Laroudie et al., 2023) 61.40 60.50 62.34 64.68 63.94 62.57

Table 12: VQGAN with different pre-trained weights.

Generator ImageNet1 ImageNet2

Without VQGAN 34.24 33.60
ImageNet VQGAN 62.46 65.02
OpenImages VQGAN 59.36 63.68

VQGAN when applied to ImageNet. The w/o VQGAN approach involves directly optimizing pixels
for 400 iterations. While optimizing for thousands of iterations (as done in DeepInv) could improve
results, this highlights the efficiency advantage of VQGAN.

We also considered using diffusion models as generators. Unlike VQGAN, which maps z to the
image x̂ in a single forward pass, diffusion models require a multi-step denoising process to generate
images from noisy inputs or latent variables. Even advanced samplers like DDIM (Song et al., 2021)
or PNDM (Liu et al., 2022) typically require more than 10 steps. Performing model inversion involves
optimizing input latent variables, which need to be differentiable. This means the full computation
graph must be retained. However, most existing diffusion libraries (e.g., Hugging Face’s Diffusers)
use “no_grad()′′ during generation. To address this, we implemented a differentiable version of
DDIM for experimentation, but found that even with just 5 steps, the computation graph exceeded
24GB of GPU memory. In summary, we choose VQGAN for its efficiency and effectiveness.

F BROADER IMPACTS

Using large-scale image datasets poses significant challenges regarding privacy preservation, annota-
tion labor, and AI ethics (Nakashima et al., 2022; Chen et al., 2024; Zhang et al., 2025). Consequently,
large-scale datasets involving human-related images are being retracted due to ethical considerations.
Other extensive datasets like JFT-300M and Instagram-3.5B (Mahajan et al., 2018) remain inaccessi-
ble to the public. These limitations significantly constrain research opportunities in this area, leading
the research community to increasingly focus on the alternative use of pre-trained models (Zhang
et al., 2024; Wei et al., 2024a).

In this context, Data-Free Knowledge-Distillation elegantly resolves these issues with open-sourced
pre-trained models. By complying with the licensing terms set by the providers of these models,
which may allow for academic, research, or commercial use, we can freely utilize them in downstream
tasks. Furthermore, our approach offers practical solutions in resource-scarce scenarios, contributing
to positive social impact by fulfilling users’ customized needs.

G STYLE DICTIONARY

The initialized style dictionary consists of 16 style words, as depicted in Table 13. Based on empirical
experience, these style words have shown good performance in real-world applications. We also
experiment with a style dictionary containing styles sourced from the Internet and varied the number
of styles. Generally, increasing the number of styles enhances diversity. However, as shown in
Table 14, we observe a saturation trend where irrelevant styles may introduce negative bias. This
occurs because some styles inadvertently add class-irrelevant semantics, such as unrelated elements
or complex backgrounds. To address this, we carefully select style words that do not introduce
additional semantics.
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Table 13: Our style dictionary.

photo pattern natural picture
image figure profile illustration

photorealism realistic digital daguerreotype
expressionism longexposure isometric view

Table 14: Accuracies (%) with differently initialized style dictionaries.

16 styles 50 styles 86 styles Our 16 styles

Caltech-101 57.99 60.78 60.49 61.33

H DATASET DETAILS

Caltech-101 = [’accordion’, ’airplane’, ’anchor’, ’ant’, ’barrel’, ’bass’, ’beaver’,
’binocular’, ’bonsai’, ’brain’,’brontosaurus’, ’buddha’, ’butterfly’, ’camera’,
’cannon’, ’car_side’, ’ceiling_fan’, ’cellphone’, ’chair’, ’chandelier’, ’cougar_body’,
’cougar_face’, ’crab’, ’crayfish’, ’crocodile’, ’crocodile_head’, ’cup’, ’dalmatian’,
’dollar_bill’, ’dolphin’, ’dragonfly’, ’electric_guitar’, ’elephant’, ’emu’,
’euphonium’, ’ewer’, ’face’, ’ferry’, ’flamingo’, ’flamingo_head’,’garfield’, ’gerenuk’,
’gramophone’, ’grand_piano’, ’hawksbill’, ’headphone’, ’hedgehog’, ’helicopter’,
’leopard’, ’motorbike’, ’ibis’, ’inline_skate’, ’joshua_tree’, ’kangaroo’, ’ketch’,
’lamp’, ’laptop’, ’llama’, ’lobster’, ’lotus’, ’mandolin’, ’mayfly’, ’menorah’,
’metronome’, ’minaret’, ’nautilus’, ’octopus’, ’okapi’, ’pagoda’, ’panda’, ’pigeon’,
’pizza’, ’platypus’, ’pyramid’, ’revolver’, ’rhino’, ’rooster’, ’saxophone’, ’schooner’,
’scissors’, ’scorpion’, ’sea_horse’, ’snoopy’, ’soccer_ball’, ’stapler’, ’starfish’,
’stegosaurus’, ’stop_sign’, ’strawberry’, ’sunflower’, ’tick’, ’trilobite’, ’umbrella’,
’watch’, ’water_lilly’, ’wheelchair’, ’wild_cat’, ’windsor_chair’, ’wrench’, ’yin_yang’]

ImageNet1 = [’leatherback sea turtle’, ’bolo tie’, ’perfume’, ’sea slug’, ’Soft-coated
Wheaten Terrier’, ’eastern hog-nosed snake’, ’Briard’, ’radio’, ’sliding door’,
’cannon’, ’horse chestnut seed’, ’frilled-necked lizard’, ’barbershop’, ’wild boar’,
’radiator grille’, ’Dandie Dinmont Terrier’, ’cowboy boot’, ’thatched roof’, ’beer
glass’, ’catamaran’, ’wallet’, ’jellyfish’, ’Clumber Spaniel’, ’hen of the woods
mushroom’, ’Irish Terrier’, ’Sealyham Terrier’, ’gondola’, ’jeep’, ’product packet _
packaging’, ’pill bottle’, ’paper towel’, ’viaduct’, ’geyser’, ’coucal’, ’pineapple’,
’cardigan’, ’otter’, ’toy terrier’, ’Schipperke’, ’rotisserie’, ’German Shorthaired
Pointer’, ’monitor’, ’baseball’, ’hook’, ’trombone’, ’Cairn Terrier’, ’Gordon Setter’,
’ice cream’, ’platypus’, ’soda bottle’, ’mongoose’, ’guillotine’, ’grey wolf’, ’dung
beetle’, ’dugong’, ’Carolina anole’, ’Leonberger’, ’printer’, ’Cocker Spaniel’,
’Pekingese’, ’electric ray’, ’matchstick’, ’waffle iron’, ’window shade’, ’cauldron’,
’chain mail’, ’hot dog’, ’crayfish’, ’Irish Water Spaniel’, ’baby bib’, ’French
Bulldog’, ’marmoset’, ’salt shaker’, ’trench coat’, ’black-footed ferret’, ’chimpanzee’,
’night snake’, ’English foxhound’, ’freight car’, ’hay’, ’common sorrel horse’, ’common
redshank’, ’sleeping bag’, ’stretcher’, ’threshing machine’, ’rifle’, ’conch’, ’wool’,
’Pickelhaube’, ’block plane’, ’minibus’, ’fox squirrel’, "yellow lady’s slipper", ’Lhasa
Apso’, ’lacewing’, ’bow tie’, ’vespa’, ’Afghan Hound’, ’prairie grouse’, ’barbell’]

ImageNet2 = [’go-kart’, ’zebra’, ’grey fox’, ’throne’, ’black-and-white colobus’,
’apiary’, ’swing’, ’race car’, ’CD player’, ’moving van’, ’sulphur butterfly’, ’agaric’,
’hunting bow’, ’house finch’, ’computer keyboard’, ’Chesapeake Bay Retriever’, ’eggnog’,
’fur coat’, ’tick’, ’Shetland Sheepdog’, ’sloth bear’, ’snail’, ’Mexican hairless
dog (xoloitzcuintli)’, ’stingray’, ’bee’, ’tank’, ’paintbrush’, ’Giant Schnauzer’,
’mud turtle’, ’hummingbird’, ’flagpole’, ’tusker’, ’great egret’, "Geoffroy’s spider
monkey", ’tea cup’, ’pencil case’, ’car wheel’, ’automated teller machine’, ’dough’,
’half-track’, ’southern black widow’, ’water tower’, ’tarantula’, ’lakeshore’, ’drink
pitcher’, ’library’, ’Saharan horned viper’, ’brain coral’, ’Basset Hound’, ’leaf
beetle’, ’one-piece bathing suit’, ’sawmill’, ’wok’, ’sulphur-crested cockatoo’,
’Yorkshire Terrier’, ’rickshaw’, ’sailboat’, ’cherimoya (custard apple)’, ’tailed frog’,
’boathouse’, ’mobile home’, ’Flat-Coated Retriever’, ’gibbon’, ’saxophone’, ’tree frog’,
’sea cucumber’, ’vine snake’, ’semi-trailer truck’, ’refrigerator’, ’Japanese Chin’,
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’African rock python’, ’goose’, ’necklace’, ’desk’, ’disc brake’, ’water jug’, ’ground
beetle’, ’Border Terrier’, ’cockroach’, ’tights’, ’great white shark’, ’volcano’, ’cliff
dwelling’, ’swim trunks _ shorts’, ’patio’, ’American coot’, ’convertible’, ’common
gallinule’, ’stethoscope’, ’stopwatch’, ’guacamole’, ’shipwreck’, ’European green
lizard’, ’space heater’, ’manhole cover’, ’tile roof’, ’shoe store’, ’steel drum’,
’Papillon’, ’totem pole’]

ImageNet3 = [’fiddler crab’, ’gyromitra’, ’spatula’, ’stinkhorn mushroom’, ’rugby ball’,
’armadillo’, ’tandem bicycle’, ’combination lock’, ’rain barrel’, ’picket fence’, ’fire
screen’, ’slip-on shoe’, ’brussels griffon’, ’siamang’, ’overskirt’, ’ladle’, ’espresso
machine’, ’great grey owl’, ’plastic bag’, ’Staffordshire Bull Terrier’, ’eel’,
’barrel’, ’corn cob’, ’Bloodhound’, ’envelope’, ’bullock cart’, ’ladybug’, ’airplane
wing’, ’Bouvier des Flandres dog’, ’peafowl’, ’through arch bridge’, ’pedestal’,
’Bullmastiff’, ’trash can’, ’American black bear’, ’hare’, ’Norwegian Elkhound’,
’badger’, ’missile’, ’shower cap’, ’hot tub’, ’terrapin’, ’Maltese’, ’West Highland
White Terrier’, ’Golden Retriever’, ’music speaker’, ’whiskey jug’, ’violin’, ’fire
salamander’, ’four-poster bed’, ’diaper’, ’brown bear’, ’black swan’, ’snow leopard’,
’bagel’, ’Pomeranian’, ’agama’, ’pole’, ’safe’, ’cheetah’, ’ocarina’, ’jaguar’, ’Shih
Tzu’, ’tiger beetle’, ’grocery store’, ’iPod’, ’lab coat’, ’Rottweiler’, ’promontory’,
’water buffalo’, ’Bedlington Terrier’, ’dome’, ’notebook computer’, ’syringe’, ’screw’,
’wall clock’, ’traffic or street sign’, ’howler monkey’, ’barn’, ’Greater Swiss Mountain
Dog’, ’daisy’, ’poncho’, ’chain-link fence’, ’shoji screen _ room divider’, ’balance
beam’, ’can opener’, ’cradle’, ’sunscreen’, ’bustard’, ’quilt’, ’nematode’, ’zucchini’,
’wombat’, ’borzoi’, ’safety pin’, ’greenhouse’, ’spotted salamander’, ’pipe organ’,
’home theater’, ’bolete’]

ImageNet4 = [’solar thermal collector’, ’hatchet’, ’bassoon’, ’orangutan’, ’American
Staffordshire Terrier’, ’sombrero’, ’oxygen mask’, ’dock’, ’mousetrap’, ’hair wig’,
’fly’, ’gazelle’, ’Vizsla’, ’bald eagle’, ’lynx’, ’porcupine’, ’knee pad’, "potter’s
wheel", ’gar fish’, ’boa constrictor’, ’European polecat’, ’electric guitar’,
’lampshade’, ’tow truck’, ’sandbar’, ’radiator’, ’acorn’, ’frying pan’, ’muzzle’,
’gong’, ’honeycomb’, ’mashed potatoes’, ’airliner’, ’drumstick’, ’maraca’, ’punching
bag’, ’spindle’, ’meatloaf’, ’mountain’, ’Saluki’, ’doormat’, ’lighter’, ’pool
table’, ’hornbill’, ’reflex camera’, ’airship’, ’holster’, ’Otterhound’, ’artichoke’,
’bulletproof vest’, ’lifeboat’, ’umbrella’, ’red-breasted merganser’, ’Siberian Husky’,
’coffeemaker’, ’graduation cap’, ’earth star fungus’, ’leafhopper’, ’pillow’, ’mixing
bowl’, ’microwave oven’, ’cliff’, ’Brittany dog’, ’bobsleigh’, ’car mirror’, ’Christmas
stocking’, ’bottle cap’, ’orange’, ’Malinois’, ’Indian cobra’, ’baguette’, ’backpack’,
’jigsaw puzzle’, ’parallel bars’, ’partridge’, ’container ship’, ’Dungeness crab’,
’lion’, ’suit’, ’Crock Pot’, ’cardboard box _ carton’, ’vacuum cleaner’, ’coral fungus’,
’digital clock’, ’chocolate syrup’, ’acoustic guitar’, ’washing machine’, ’tabby
cat’, ’sweatshirt’, ’worm snake’, ’English Setter’, ’Labrador Retriever’, ’gas pump’,
’dhole’, ’rock crab’, ’fountain pen’, ’toy store’, ’Kerry Blue Terrier’, ’dining table’,
’dumbbell’]

ImageNet5 = [’seat belt’, ’Norfolk Terrier’, ’drum’, ’dust jacket’, ’table lamp’,
’Great Dane’, ’Alaskan Malamute’, ’Pembroke Welsh Corgi’, ’china cabinet’, ’vase’,
’cornet’, ’bubble’, ’photocopier’, ’hot pot’, ’jackfruit’, ’chainsaw’, ’hammerhead
shark’, ’cauliflower’, ’lipstick’, ’sea snake’, ’Entlebucher Sennenhund’, ’sandal’,
’ping-pong ball’, ’crossword’, ’teddy bear’, ’Komodo dragon’, ’cowboy hat’, ’longhorn
beetle’, ’radio telescope’, ’binoculars’, ’goblet’, ’golf cart’, ’tram’, ’corn’,
’Groenendael dog’, ’tripod’, ’smooth newt’, ’white-headed capuchin’, ’tennis ball’,
’comic book’, ’bittern bird’, ’sink’, ’carbonara’, ’gas mask or respirator’, ’alligator
lizard’, ’ruddy turnstone’, ’white stork’, ’lotion’, ’traffic light’, ’oil filter’,
’jacamar’, ’amphibious vehicle’, ’military hat (bearskin or shako)’, ’military uniform’,
’tray’, ’marmot’, ’aircraft carrier’, ’Nile crocodile’, ’upright piano’, ’giant
panda’, ’echidna’, ’king penguin’, ’flamingo’, ’chambered nautilus’, ’St. Bernard’,
’rock beauty fish’, ’bassinet’, ’high-speed train’, ’CRT monitor’, ’coffee mug’, ’sea
lion’, ’harmonica’, ’ocean liner’, ’wardrobe’, ’rooster’, ’Dobermann’, ’fountain’,
’Toy Poodle’, ’station wagon’, ’suspension bridge’, ’pufferfish’, ’stupa’, ’church’,
’King Charles Spaniel’, ’rocking chair’, ’ruler measuring stick’, ’hourglass’, ’soap
dispenser’, ’Irish Setter’, ’whistle’, ’turnstile’, ’American alligator’, ’Alpine ibex’,
’tiger’, ’hockey puck’, ’African wild dog’, ’folding chair’, ’vending machine’, ’wooden
spoon’, ’analog clock’]
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ImageNet6 = [’scarf’, ’clownfish’, ’sidewinder rattlesnake’, ’lorikeet’, ’laptop
computer’, ’cottontail rabbit’, ’measuring cup’, ’revolver’, ’banana’, ’baluster
_ handrail’, ’coral reef’, ’pinwheel’, ’bathtub’, ’jay’, ’lawn mower’, ’dog sled’,
’chiton’, ’bighorn sheep’, ’box turtle’, ’mosque’, ’soup bowl’, ’broom’, ’snowplow’,
’dishwasher’, ’slug’, ’balloon’, ’ringlet butterfly’, ’warthog’, ’green iguana’,
’Australian Silky Terrier’, ’indri’, ’sundial’, ’Rhodesian Ridgeback’, ’construction
crane’, ’Redbone Coonhound’, ’Australian Terrier’, ’Dalmatian’, ’abaya’, ’recreational
vehicle’, ’bridegroom’, ’limpkin’, ’barometer’, ’strawberry’, ’bakery’, ’duck’,
’dishcloth’, ’payphone’, ’tape player’, ’poke bonnet’, ’feather boa’, ’cleaver’, ’piggy
bank’, ’acorn squash’, ’electric locomotive’, ’palace’, ’Polaroid camera’, ’dunlin’,
’T-shirt’, ’banded gecko’, ’corkscrew’, ’polar bear’, ’academic gown’, ’bra’, ’English
Springer Spaniel’, ’vulture’, ’bell tower’, ’dragonfly’, ’Italian Greyhound’, ’cello’,
’scabbard’, ’Ibizan Hound’, ’pickup truck’, ’tiger cat’, ’cassette’, ’red panda’,
’messenger bag’, ’hair clip’, ’dowitcher’, ’basketball’, ’spiral or coil’, ’pajamas’,
’trifle’, ’bell pepper’, ’beer bottle’, ’cucumber’, ’crutch’, ’small white butterfly’,
’Beagle’, ’ring binder’, ’magnetic compass’, ’mobile phone’, ’sunglasses’, ’quail’,
’grasshopper’, ’limousine’, ’Band-Aid’, ’green mamba’, ’macaw’, ’spider web’, ’apron’]

ImageNet7 = [’black stork’, ’Samoyed’, ’Great Pyrenees dog’, ’Persian cat’, ’Norwich
Terrier’, ’Border Collie’, ’ant’, ’Arctic fox’, ’chickadee’, ’hamper’, ’chameleon’,
’parachute’, ’smooth green snake’, ’cougar’, ’slot machine’, ’snoek fish’, ’Newfoundland
dog’, ’bookcase’, ’bulbul’, ’Kuvasz’, ’sneaker’, ’shield’, ’gown’, ’lens cap’, ’isopod’,
’moped’, ’hand-held computer’, ’clothes iron’, ’pelican’, ’planetarium’, ’motorboat’,
’filing cabinet’, ’pencil sharpener’, ’prison’, ’football helmet’, ’pretzel’, ’guenon’,
’red wine’, ’abacus’, ’mountain bike’, ’barber chair’, ’cricket insect’, ’ram
(adult male sheep)’, ’railroad car’, ’grand piano’, ’baboon’, ’pirate ship’, ’mop’,
’breastplate’, ’tobacco shop’, ’rotary dial telephone’, ’German Shepherd Dog’, ’baby
pacifier’, ’weevil’, ’oscilloscope’, ’breakwater’, ’maypole’, ’kingsnake’, ’Alaskan
tundra wolf’, ’guinea pig’, ’Asian elephant’, ’chain’, ’storage chest’, ’Affenpinscher’,
’French horn’, ’plectrum’, ’cassette player’, ’cuirass’, ’impala (antelope)’, ’sea
anemone’, ’brambling’, ’sturgeon’, ’bookstore’, ’joystick’, ’trimaran’, ’stick insect’,
’ring-necked snake’, ’American robin’, ’mink’, ’hen’, ’water bottle’, ’grey whale’,
’loupe magnifying glass’, ’Treeing Walker Coonhound’, ’monarch butterfly’, ’megalith’,
’velvet fabric’, ’face powder’, ’ballpoint pen’, ’fig’, ’shopping basket’, ’website’,
’yellow garden spider’, ’European garden spider’, ’Basenji’, ’sock’, ’trolleybus’,
’weighing scale’, ’toilet paper’, ’little blue heron’]

ImageNet8 = [’canoe’, ’pig’, ’electrical switch’, ’tool kit’, ’assault rifle’, ’flute’,
’sarong’, ’school bus’, ’stage’, ’Australian Kelpie’, ’pan flute’, ’entertainment
center’, ’wine bottle’, ’spiny lobster’, ’Old English Sheepdog’, ’kit fox’, ’sea
urchin’, ’ring-tailed lemur’, ’hammer’, ’paddle’, ’maze’, ’red fox’, ’altar’, ’American
lobster’, ’golf ball’, ’mushroom’, ’Sussex Spaniel’, ’banjo’, ’toaster’, ’Boston
Terrier’, ’junco’, ’desktop computer’, ’tiger shark’, ’submarine’, ’proboscis monkey’,
’tractor’, ’candle’, ’plunger’, ’coyote’, ’rapeseed’, ’desert grassland whiptail
lizard’, ’wolf spider’, ’Dutch oven’, ’remote control’, ’eraser’, ’tricycle’, ’wallaby’,
’marimba’, ’cheeseburger’, ’Komondor’, ’albatross’, ’praying mantis’, ’modem’, ’paddle
wheel’, ’lemon’, ’teapot’, ’Bernese Mountain Dog’, ’cardoon’, ’handkerchief’, ’hyena’,
’mortar and pestle’, ’llama’, ’medicine cabinet’, ’killer whale’, ’yurt’, ’hair
dryer’, ’front curtain’, ’triumphal arch’, ’Standard Schnauzer’, ’Scottish Terrier’,
’projector’, ’soccer ball’, ’padlock’, ’park bench’, ’carved pumpkin’, ’purse’, ’window
screen’, ’dam’, ’couch’, ’scoreboard’, ’bison’, ’Gila monster’, ’farm plow’, ’pot pie’,
’centipede’, ’popsicle’, ’Granny Smith apple’, ’slide rule’, ’knot’, ’jeans’, ’valley’,
’goldfish’, ’silver salmon’, ’Siamese cat’, ’oboe’, ’oystercatcher’, ’American dipper’,
’neck brace’, ’sewing machine’, ’television’]

ImageNet9 = [’african grey parrot’, ’Whippet’, ’beaver’, ’hermit crab’, ’shower
curtain’, ’quill’, ’toilet seat’, ’Keeshond’, ’Egyptian Mau’, ’garter snake’,
’black grouse’, ’Bluetick Coonhound’, ’Cardigan Welsh Corgi’, ’strainer’, ’Boxer’,
’volleyball’, ’odometer’, ’police van’, ’scorpion’, ’red admiral butterfly’, ’candy
store’, ’milk can’, ’carousel’, ’mailbox’, ’Appenzeller Sennenhund’, ’plate’, ’bath
towel’, ’skunk’, ’stone wall’, ’baseball player’, ’lionfish’, ’kimono’, ’croquet
ball’, ’ambulance’, ’pizza’, ’vestment’, ’pier’, ’Chow Chow’, ’schooner’, ’mosquito
net’, ’wheelbarrow’, ’starfish’, ’three-toed sloth’, ’fishing casting reel’, ’hard
disk drive’, ’digital watch’, ’keyboard space bar’, ’spotlight’, ’ostrich’, ’Tibetan
Mastiff’, ’vaulted or arched ceiling’, ’gymnastic horizontal bar’, ’military aircraft’,
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’red king crab’, ’kite (bird of prey)’, ’steam locomotive’, ’hamster’, ’microphone’,
’pug’, ’dingo’, ’Petri dish’, ’snorkel’, ’arabian camel’, ’titi monkey’, ’cocktail
shaker’, ’ptarmigan’, ’lighthouse’, ’indigo bunting’, ’snowmobile’, ’flatworm’,
’consomme’, ’Chihuahua’, ’hoop skirt’, ’koala’, ’Tibetan Terrier’, ’American bullfrog’,
’sports car’, ’Black and Tan Coonhound’, ’metal nail’, ’Welsh Springer Spaniel’,
’birdhouse’, ’red wolf or maned wolf’, ’Miniature Poodle’, ’trilobite’, ’horse-drawn
vehicle’, ’loggerhead sea turtle’, ’mask’, ’parking meter’, ’torch’, ’harp’, ’African
bush elephant’, ’power drill’, ’eastern diamondback rattlesnake’, ’Standard Poodle’,
’fire truck’, ’clogs’, ’drilling rig’, ’plant pot’, ’bikini’, ’cicada’]

ImageNet10 = [’meerkat’, ’weasel’, ’combine harvester’, ’newt’, ’water snake’,
’obelisk’, ’crash helmet’, ’hippopotamus’, ’pomegranate’, ’butcher shop’, ’tent’,
’Angora rabbit’, ’unicycle’, ’Scottish Deerhound’, ’Miniature Schnauzer’, ’accordion’,
’space shuttle’, ’Airedale Terrier’, ’common squirrel monkey’, ’forklift’, ’ford model
t’, ’racket’, ’computer mouse’, ’husky’, ’cabbage’, ’burrito’, ’gorilla’, ’taxicab’,
’magpie’, ’prayer rug’, ’bell or wind chime’, ’Windsor tie’, ’Wire Fox Terrier’,
’ski’, ’miniskirt’, ’plate rack’, ’broccoli’, ’scuba diver’, ’mitten’, ’Curly-coated
Retriever’, ’brass memorial plaque’, ’patas monkey’, ’garbage truck’, ’tench’,
’split-rail fence’, ’shovel’, ’electric fan’, ’restaurant’, ’shopping cart’, ’Lakeland
Terrier’, ’espresso’, ’stove’, ’swimming cap’, ’barn spider’, ’Irish Wolfhound’,
’typewriter keyboard’, ’damselfly’, ’triceratops’, ’movie theater’, ’leopard’, ’buckle’,
’fireboat’, ’hair spray’, ’chiffonier’, ’menu’, ’beach’, ’butternut squash’, ’axolotl’,
’Miniature Pinscher’, ’crate’, ’letter opener’, ’goldfinch’, ’ox’, ’collie’, ’spaghetti
squash’, ’castle’, ’gossamer-winged butterfly’, ’thimble’, ’harvestman’, ’Weimaraner’,
’macaque’, ’beaker’, ’spoonbill’, ’monastery’, ’rhinoceros beetle’, ’minivan’, ’rose
hip’, ’ruffed grouse’, ’hartebeest’, ’balaclava ski mask’, ’crane bird’, ’bucket’,
’screwdriver’, ’bee eater’, ’toucan’, ’infant bed’, ’langur’, ’cloak’]

Flower-102 = [’pink primrose’, ’hard-leaved pocket orchid’, ’canterbury bells’,
’sweet pea’, ’english marigold’, ’tiger lily’, ’moon orchid’, ’bird of paradise’,
’monkshood’, ’globe thistle’, ’snapdragon’, "colt’s foot", ’king protea’, ’spear
thistle’, ’yellow iris’, ’globe-flower’, ’purple coneflower’, ’peruvian lily’, ’balloon
flower’, ’giant white arum lily’, ’fire lily’, ’pincushion flower’, ’fritillary’,
’red ginger’, ’grape hyacinth’, ’corn poppy’, ’prince of wales feathers’, ’stemless
gentian’, ’artichoke’, ’sweet william’, ’carnation’, ’garden phlox’, ’love in the mist’,
’mexican aster’, ’alpine sea holly’, ’ruby-lipped cattleya’, ’cape flower’, ’great
masterwort’, ’siam tulip’, ’lenten rose’, ’barbeton daisy’, ’daffodil’, ’sword lily’,
’poinsettia’, ’bolero deep blue’, ’wallflower’, ’marigold’, ’buttercup’, ’oxeye daisy’,
’common dandelion’, ’petunia’, ’wild pansy’, ’primula’, ’sunflower’, ’pelargonium’,
’bishop of llandaff’, ’gaura’, ’geranium’, ’orange dahlia’, ’pink-yellow dahlia’,
’cautleya spicata’, ’japanese anemone’, ’black-eyed susan’, ’silverbush’, ’californian
poppy’, ’osteospermum’, ’spring crocus’, ’bearded iris’, ’windflower’, ’tree poppy’,
’gazania’, ’azalea’, ’water lily’, ’rose’, ’thorn apple’, ’morning glory’, ’passion
flower’, ’lotus’, ’toad lily’, ’anthurium’, ’frangipani’, ’clematis’, ’hibiscus’,
’columbine’, ’desert-rose’, ’tree mallow’, ’magnolia’, ’cyclamen’, ’watercress’,
’canna lily’, ’hippeastrum’, ’bee balm’, ’ball moss’, ’foxglove’, ’bougainvillea’,
’camellia’, ’mallow’, ’mexican petunia’, ’bromelia’, ’blanket flower’, ’trumpet
creeper’, ’blackberry lily’]
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