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A Technical Appendices and Supplementary Material

A.1 Comparison of Results for Gemini with Different Format Transformations

Gemini attained optimal performance metrics for sensitive category and format transformation
scenarios tasks, surpassing all comparator models in maximum achievable performance. The focus
was then placed on Gemini’s ability to recognize and restore both original and transformed data.
The experimental results are shown in Table 1. In the main text section Experiments, due to space
constraints, only four key observations were analyzed, as follows:

i) The LRAcc and DRAcc of total format transformed data is less than original data, which indicates
that it is more difficult to recognize and restore data after format transformed.

ii) Gemini’s recognition of URL-encoded data is the best, as URL encoding only involves transforming
Chinese characters and some symbols, making it relatively easy for large language models to restore
the original data and significantly enhancing the recognition of sensitive categories.

iii) Gemini’s recognition of data transformed into binary, octal, and hexadecimal formats is poor.
These transformations only affect numbers, and only the IMEI and IMSI (purely numeric) sensitive
categories support such transformations. Due to the lack of contextual information in the sample data,
large language models may confuse these with personal identifiers, mobile numbers, and MEID. They
are more likely to identify them as more severe leaks (e.g., personal identifiers and mobile numbers),
resulting in LRAcc values below 20%.

iv) Additionally, Gemini can almost fully restore binary and octal-transformed data to their origi-
nal form, but it cannot distinguish between hexadecimal-transformed data and hexadecimal MAC
addresses, leading to a DRAcc of 0% for hexadecimal format transformations.

In addition, further key observations have been noted, as follows.

i) The reason why the overall dataset’s DRAcc is higher than LRAcc: Some sensitive data categories
containing numbers are easily confused, such as Personal ID, IMEI, IMSI, Passport, MAC, Driver’s
License, MEID, etc. Therefore, LRAcc is relatively low. Some encoding methods are easily restored,
especially ASCII encoding, Unicode encoding, etc. Data encoded through these encoding methods
are more regular and easily restored, therefore, DRAcc is relatively high. Although the data is easily
restored, large language models cannot accurately recognize the label of restored data. This can be
foreseen from the LRAcc for original data (around 70%), which indicates that not all restored data
can be recognized.
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ii) The LRAcc for numerical capitalization is less than 50%, specifically because it only processes
numerical data types. As mentioned earlier, sensitive data categories containing numbers are easily
confused, which leads to a decrease in LRAcc.

iii) The DRAcc for simplified-to-traditional Chinese is lower than LRAcc, because large language
models sometimes consider that the encoded data has undergone simplified-to-traditional Chinese
transformation, but sometimes they also consider that it has not undergone transformation, leading to
a decrease in DRAcc for simplified-to-traditional Chinese, which is lower than LRAcc.

iv) The DRAcc for character decomposition is also lower than LRAcc. Although large language
models can correctly recognize the content obtained after decomposition, if large language models
are not explicitly reminded to associate the decomposed content, they will not merge the decomposed
content into the whole to restore the data. For example, "功" is decomposed into "工" and "力". The
large language model will consider that there are two characters, "工" and "力", here.

Table 1: Comparison of Results for Gemini with Different Format Transformations
Type LRAcc (%) DRAcc (%)
Binary 18.00 98.00
Octal 18.00 98.00
Hexadecimal 16.00 0.00
ASCII encoding 69.57 95.74
Unicode encoding 71.39 97.17
UTF-8 encoding 72.43 95.53
Base64 encoding 59.02 66.47
URL encoding 86.02 97.49
HTML entity encoding 70.64 94.78
Morse encoding 63.37 69.77
Braille encoding 52.71 46.51
Nested encoding 57.68 60.21
Acrostic poetry 71.85 76.30
Character decomposition 66.35 61.54
Text inversion 68.57 57.96
Martian text 61.25 58.27
Simplified to traditional Chinese 74.04 50.96
Numerical capitalization 47.86 78.35
Inserting special characters 66.02 68.71
Inserting Chinese characters 80.14 85.82
Inserting English letters/numbers 65.38 58.65

All Above Format Transformed Data 64.39 75.26
Original data 72.58 95.08

A.2 Empirical Validation of Format Transformations in DataSIR

In DataSIR, a comprehensive empirical validation was conducted to ensure the realism and credibility
of all 21 format transformation types. These transformations were not artificially constructed but
were instead derived through large-scale observation and synthesis of real-world evasion tactics
documented across industrial threat intelligence reports and adversarial NLP research.

A.2.1 Sources of Transformation Design

The selection of transformation types was informed by two complementary evidence sources: (1)
adversarial techniques reported in recent academic literature, and (2) industrial incident analyses
describing real-world evasion and obfuscation practices. By integrating insights from both domains,
each transformation was designed to represent practically observable adversarial behaviors rather
than synthetic perturbations, thereby enhancing the dataset’s ecological validity.

A.2.2 Overlap with Existing Adversarial Research

The correspondence between the transformations adopted in DataSIR and those identified in recent
adversarial studies and industrial analyses is summarized in Table 2. A substantial degree of overlap
can be observed, indicating that the transformation space represented in DataSIR has been well
aligned with real-world adversarial practices.
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Table 2: Overlap between adversarial research and format transformations in DataSIR
Source Evasion Scenario Overlap Example Types

HackAPrompt’23 [3] Obfuscation and encoding 7 Base64, Chinese conversion,
Martian text

Elastic PowerShell Report Dynamic script evasion 5 Text inversion, Numeral caps,
Decomposition

ThreatDown Report Code obfuscation 7 Binary, ASCII, Unicode, Nested
encoding

StructuralSleight’23[1] Character-level obfuscation 8 Base64, Hex, URL, HTML en-
coding

LLM Jailbreak Survey[2] Natural language obfuscation 6 Acrostic, Martian text, Inversion

A.2.3 Empirical Mapping to Real-World Evidence

To further substantiate the authenticity of each transformation, a detailed empirical mapping was
constructed linking every transformation type to its corresponding real-world evidence, as shown in
Table 3 . Each mapping is grounded in documented adversarial incidents or recognized obfuscation
methodologies across both cybersecurity and NLP domains.

Table 3: Empirical mapping between 21 format transformations and real-world adversarial scenarios

Format
Transformation

Real-World Adversarial Scenario Supporting Evidence

Binary Deserialization attacks, IoT malware
injection

Microsoft Security Guidelines; Akamai
Threat Report

Octal Data leakage prevention evasion Springer: Multi-base encoding strategies
Hexadecimal LLM prompt injection, filter evasion 0din.ai; promptfoo
ASCII encoding Data exfiltration LinkedIn Copilot study; SCWorld report
Unicode encoding Homoglyph phishing MITRE CAPEC-71; heise Security
UTF-8 encoding Overlong encoding bypasses USD Labs: CVE-2023-26302
Base64 encoding Credential hiding, malware distribution OPSWAT; VMRay
URL encoding Injection evasion Google Cloud; Huawei Cloud WAF
HTML entity
encoding

XSS evasion OWASP guidelines

Braille encoding Covert communication, LLM red teaming arXiv; CyberInfoBlog
Nested encoding Multi-layer obfuscation Unit42; OWASP
Acrostic poetry Phishing evasion MIT Computational Linguistics; AAAI
Character
decomposition

Chinese steganography ResearchGate study

Text inversion Script obfuscation Elastic Security report
Martian text Homoglyph and content evasion Hexatic; AAAI
Simplified↔Traditional
Chinese

Keyword filtering bypass ResearchGate

Numerical
capitalization

Financial fraud OWASP Top 10-2021

Inserting special
characters

Text obfuscation Elastic report

Inserting Chinese
characters

Phishing text OWASP injection model

Inserting English
letters/numbers

AI validation bypass Elastic: numeral ratio detection

The above evidence collectively demonstrates that the format transformations in DataSIR are empiri-
cally grounded in real-world adversarial behavior, rather than hypothetical or synthetic perturbations.
By aligning dataset construction with verified industrial incidents and academic findings, DataSIR
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achieves strong ecological validity and transferability for adversarial robustness evaluation. This
evidence-based justification enhances the transparency and credibility of the dataset’s design process.

A.3 Definition and Explanation of Metrics

A.3.1 Definition

LRAcc (Label Recognition Accuracy)

Label Recognition Accuracy (LRAcc) is used to evaluate the model’s ability to recognize different
categories of sensitive data under various format transformation conditions. Essentially, this metric
reflects the accuracy of the model in label recognition tasks—that is, the proportion of sensitive
information categories correctly identified by the model.

DRAcc (Data Restoration Accuracy)

Data Restoration Accuracy (DRAcc) measures the model’s ability to restore the content of data
under different format transformation conditions. In essence, it is also an accuracy-based metric that
indicates the extent to which the model can successfully recover the original data from formatted or
perturbed inputs.

Precision

Precision measures the accuracy of the model’s predictions for a specific sensitive data type. It is
defined as:

Precision =
TP

TP + FP
(1)

In this study, since sensitive data include multiple categories (e.g., mobile numbers, IMEI, IP
addresses, etc.), correctly predicted samples within each category are treated as positive instances,
and incorrectly predicted samples as negative instances. Precision is then computed separately for
each category.

Recall

Recall evaluates the model’s coverage in identifying a particular type of sensitive data. It is defined
as:

Recall =
TP

TP + FN
(2)

In other words, recall describes the completeness of the model’s recognition for a specific sensitive
data type.

F1-score

F1-score provides a balanced measure between precision and recall. It is the harmonic mean of the
two, defined as:

F1-Score = 2× Precision × Recall
Precision + Recall

(3)

This metric captures the trade-off between precision and recall, offering a more comprehensive view
of model performance.

A.3.2 Explanation of Metric Adjustments

To quantitatively evaluate the model’s recognition performance across different types of sensitive infor-
mation, we reformulated each category’s prediction task as a binary classification problem—treating
correctly predicted samples within a category as positive instances and incorrectly predicted samples
as negative instances. Based on this formulation, classical evaluation metrics such as Precision,
Recall, and F1-score were employed to measure model performance.

It is important to note that the calculation of LRAcc is mathematically identical to Recall, but differs
in evaluation scope. While Recall measures, for a specific category, the proportion of correctly
detected instances within that category, LRAcc aggregates this computation across all categories (e.g.,
via micro-averaging or global statistics). Therefore, LRAcc can be viewed as a global recognition
accuracy measure derived from a recall-based calculation.
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A.4 Dependencies and Model Configurations

A.4.1 NLP Libraries and Models

Table 4: NLP Libraries and Model Configurations

Package/Model Name Version Parameter Settings

HanLP 2.1.1 hanlp.pretrained.mtl.CLOSE_TOK_POS_NER_SRL_DEP_SDP_
CON_ELECTRA_SMALL_ZH

spaCy 3.8.4 en_core_web_sm / zh_core_web_sm
NLTK 3.8.1 averaged_perceptron_tagger
Presidio 2.2.359 hanlp.pretrained.mtl.CLOSE_TOK_POS_NER_SRL_DEP_SDP_

CON_ELECTRA_SMALL_ZH / en_core_web_sm

A.4.2 LLM API Configurations

Table 5: Large Language Model (LLM) API Configurations

Model Version Parameter Settings

DeepSeek DeepSeek-V3-
0324

temperature: 0, max_tokens: 4096, top_p: 1.0,
frequency_penalty: 0, presence_penalty: 0, stream: True,
logprobs: false, timeout: 15

Qwen3 qwen3-235b-a22b temperature: 0, max_tokens: 129024, top_p: 1.0, top_k: 0,
presence_penalty: 0.5, stream: True, timeout: 15, seed: 1234

GPT gpt-4.1-2025-04-14 temperature: 0, stream: True, top_p: 1, store: True, truncation:
disabled, timeout: 15

Gemini gemini-2.5-flash-
preview-04-17

temperature: 0, stream: True, top_p: 0.95, top_k: 64,
candidateCount: 1, timeout: 15

References
[1] B. Li, H. Xing, C. Huang, J. Qian, H. Xiao, L. Feng, and C. Tian. Exploiting uncommon

text-encoded structures for automated jailbreaks in llms. arXiv preprint arXiv:2406.08754, 2024.

[2] L. Nan, D. Yidong, J. Haoyu, N. Jiafei, and Y. Ping. Jailbreak attack for large language models:
A survey. Journal of Computer Research and Development, 61(5):1156–1181, 2024.

[3] S. Schulhoff et al. Ignore this title and hackaprompt: exposing systemic vulnerabilities of llms
through a global scale prompt hacking competition (2023). arXiv preprint arXiv:2311.16119,
2024.

5


	Technical Appendices and Supplementary Material
	Comparison of Results for Gemini with Different Format Transformations
	Empirical Validation of Format Transformations in DataSIR
	Sources of Transformation Design
	Overlap with Existing Adversarial Research
	Empirical Mapping to Real-World Evidence

	Definition and Explanation of Metrics
	Definition
	Explanation of Metric Adjustments

	Dependencies and Model Configurations
	NLP Libraries and Models
	LLM API Configurations



