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ABSTRACT

There has been increasing legal interest in identifying possible copyright viola-
tions committed by Large Language Model (LLM) trainers. Many works devel-
oping individual membership inference attacks have recently been shown to be
weaker than previously thought, due to implicit distributional shifts. To combat
this, progress has been made by considering large datasets and aggregating mul-
tiple different membership attacks. A hidden assumption in these methods is that
if the LLM has improperly used a dataset, the LLM was trained on that exact
dataset. By challenging this assumption, we demonstrate, to our knowledge, the
first failure of any large-scale dataset inference (DI) attack. In particular, we study
LLM fine-tuning for both short and long text datasets. We adaptively transform
the datasets before fine-tuning, enabling an increase in model performance while
avoiding dataset inference. In the case of long texts, we find that text summariza-
tion followed by rephrasing substantially reduces the success probability of DI
in our setting from over 95% to less than 5%. We also develop a new theoreti-
cal formulation of dataset inference specifically tailored to LLMs, which explains
the effectiveness of our method and sheds light on how parameters, such as the
number of training epochs, can affect dataset inference.

1 INTRODUCTION

Large language models are trained on internet-scale corpora, and there is an increasing interest in
identifying copyright violations that occur within this large space. For example, the recent lawsuit
between The New York Times and OpenAI/Microsoft (Grynbaum & Mac, 2023) highlights the risks
associated with training on copyrighted data. Anthropic’s massive $1.5 billion settlement on 500,000
copyrighted books (Metz, 2025) shows that these risks can be realized and lead to massive financial
penalties for LLM trainers. The corresponding machine learning problem is to determine, given an
LLM and a dataset, whether the LLM was trained on the dataset.

Historically, techniques focusing on understanding the training data of LLMs have primarily focused
on membership inference, in which a single document is assessed for membership in the training set
of an LLM (Shokri et al., 2017). However, it has been shown that existing MIA methods may have
incorrect success estimates due to distributional shifts. In particular, test data (i.e., guaranteed to be
private) often comes after the training date cutoff of the LLM to ensure there is no leakage (Maini
et al., 2024), but this causes the splits to be separated in time, so an LLM can distinguish between
them even if it was not trained on the hypothesized member.

Recent work in this area has focused on dataset inference (Maini et al., 2024; Puerto et al., 2025),
where we assess collections of documents for existence in training data rather than a single element,
with the hope that weak predictions can be combined into a strong one.

To our knowledge, due to their experimental setup, current LLM dataset inference methods assume
that if training occurred, it occurred on exactly the copyrighted dataset hypothesized to have been
stolen. For example, (Maini et al., 2024) studies the performance of dataset inference on splits of
the Pile, on which Pythia models were known to have been trained.

Effectively, this does not account for adversarial behavior by the LLM trainer. We find that even sim-
ple countermeasures can substantially degrade the performance of dataset inference. More specifi-
cally,
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1. We provide a technique that substantially decreases the likelihood of true positive detection
of the (Maini et al., 2024) attack while maintaining performance in false positive cases.

2. We demonstrate that it is possible to evade dataset inference through dataset transformation
while maintaining benchmark performance.

3. We provide a theoretical formulation and analysis of dataset inference that significantly
expands upon prior work (Maini et al., 2021) and offers a general functional form for the
dataset inference success rate.

Figure 1: We adaptively transform datasets with per-document changes before fine-tuning, blocking
most dataset inference attacks. For short texts, we use synonym substitution repeatedly until the
embedding similarity with the original is under a specified threshold. For long texts, we summa-
rize the text and then rephrase it. In either case, we preserve the overall meaning of a text, and
instead of fine-tuning on the original, we fine-tune on the transformed text. For evaluation of short
text transformations, we successfully (while evading DI) fine-tune GPT-2 on multiple benchmarks
(GSM-MC, BoolQ, MNLI) and achieve over 90% of the total possible benchmark improvement. For
long text transformation evaluation, we fine-tune multiple sizes of Pythia models on 12 datasets from
The Pile, and can evade dataset inference in over 95% of cases. In contrast, without our method,
dataset inference succeeds in over 95% of cases.

2 RELATED WORK

Membership Inference Attacks Membership inference is a smaller-scale version of dataset in-
ference in which we are interested in only a single token sequence, such as a sentence. Membership
inference attacks have been well studied in several prior works, with numerous proposals for attack
methods (Shokri et al., 2017; Mattern et al., 2023; Shi et al., 2024). There have been multiple evalu-
ation methods for these attacks as well (Fu et al., 2024; Liang & You, 2024). Related problems with
applications in model inversion (Fredrikson et al., 2015) and stealing training data (Carlini et al.,
2021) have also received attention.

Dataset Inference Maini et al. (2024) showed that most membership inference attacks are roughly
no better than random chance. In particular, the positive results shown in prior works occur due to
a confounding variable of distributional shifts over time. A key part of the new problem setting in
Maini et al. (2024) is having two separate variations of a dataset, both drawn from the same distri-
bution (a “dataset space“) in which only one could have been used for LLM training, for example,
with several versions of a book chapter, only one of which is ultimately published. Aggregating over
multiple membership inference attacks is also crucial for amplifying any weak signal that a single
attack may reveal. On the theoretical side, Maini et al. (2021) contains an important analysis of
dataset inference, which we compare to extensively.
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3 THEORETICAL JUSTIFICATION

Figure 2: Theoretical formulation of LLM
Dataset Inference. In our model of dataset
inference, there is a dataset D, two indepen-
dent and identically distributed (iid) samples
Dprivate and Dpublic, and we can compute
the corresponding sample centers, Cpublic

and Cprivate. We are able to noisily evalu-
ate the average data point, Dobserved, of the
nearby training distribution. The decision
boundary between public and private splits
is the perpendicular bisector hyperplane be-
tween the centers, and we check the side
Dobserved is on.

3.1 THEORETICAL GOALS

A popular theoretical justification of dataset inference is given by Maini et al. (2021). We iden-
tify several shortcomings of the prior analysis and thus corresponding goals for a new formulation
specific to LLMs:

1. The analysis of Maini et al. (2021) relies on the victim model being a linear classifier,
with an exact pre-specified learning algorithm and a constant learning rate. The authors
justify this by noting that more parameters lead to even greater success of dataset inference.
While this may be true in practice due to memorization (Zhang et al., 2017; Feldman,
2020; Carlini et al., 2019), it does not account for the randomness present in the training or
generation process of an LLM or, significantly, our paper’s method.

2. Both LLM trainers and copyright holders will be interested in knowing how the specific
dataset and training dynamics affect dataset inference success probabilities. The analysis in
Maini et al. (2021) does not reflect the influence of training parameters such as learning rate,
number of epochs, number of parameters in the model, or any parameters of the particular
dataset.

3. The conclusion of Maini et al. (2021) is that the number of training samples (i.e., dataset
size) does not influence the probability of dataset inference succeeding. This result is in-
consistent with recent studies, as well as the paper’s own results (Puerto et al., 2025; Maini
et al., 2024; 2021), which show that the success probability increases rapidly as the dataset
size increases. A theoretical justification of this phenomenon would help contextualize
prior results and inform possible future work.

4. The analysis in Maini et al. (2021) only considers the leading order terms in N , the dimen-
sions of a relevant space. The effects of the lower-order terms are unclear, and the result is
a conclusion that holds in expectation. We aim to more precisely characterize the success
probability and provide a high-probability bound.

To our knowledge, a formulation and corresponding theoretical result that achieves even one of
these goals (e.g., explaining theoretically why LLM dataset inference becomes more successful as
the dataset size increases) would be novel. We believe that we adequately address all of them.

3.2 THEORETICAL FORMULATION

We view all the training data coming to the LLM as existing in a latent space.

Let N be the dimension of the latent space and let µ ∈ RN represent the latent space. The dataset
distribution is assumed to be an isotropic Gaussian:

D ∼ N (µ, IN ).
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We draw n samples to create two dataset splits (public and private), and have access to the dataset
centers. This setup is inspired by Maini et al. (2024), which assumes access to two IID splits coming
from a larger distribution.

The dataset centers can be interpreted as independent Gaussian perturbations of µ:

Cpub = µ+A, Cpriv = µ+B,

with
A, B

iid∼ N
(
0, σ2

splitIN
)
.

A dataset inference attack is interpreted as the ability to observe the average over the training data
of an LLM in the region close to the dataset, e.g., by using a prompt that elicits an appropriate
conditional probability distribution.

In particular, we observe a point Dobs which is a noisy weighted interpolation between the population
mean and one of the centers. If the true source is “pub” then

Dobs = ϵCpub + (1− ϵ)µ+ η = µ+ ϵA+ η,

and similarly if the source is “priv” then Dobs = µ+ ϵB + η. Here

η ∼ N
(
0, σ2

obsIN
)

is observation noise, and 0 ≤ ϵ ≤ 1 is the mixture weight assigned to the split of D.

The observation noise accounts for the randomness that can occur during the attack, as well as
methods that can be used to noise the dataset, such as ours.

The mixture weight accounts for the unrelated training data close in the latent space to the splits
under consideration. The unrelated training data has weight 1 − ϵ. Note that if there were no
consideration of mixture, Dobs would simply be a noisy observation of one of the dataset centers.
However, this does not make sense, particularly in the case of small m.

The decision rule is:

decide “pub” if and only if ∥Dobs − Cpub∥ < ∥Dobs − Cpriv∥.

This rule can be interpreted as finding the perpendicular bisector hyperplane between Cpublic and
Cprivate and checking which side Dobserved is on. Due to our formulation of Dobserved being closer
in expectation to the dataset center it is trained on, this decision rule is the best possible, assuming
equal priors.

Formally, the success probability of dataset inference under our model is the probability that the
above decision rule returns the correct class.

3.3 THEORETICAL RESULTS

We now provide theoretical results for the setting described in the previous section.
Theorem 1. Suppose we denote psuccess as the success probability of dataset inference. Then, there
exists a constant C such that with probability 1− δ, the following holds:

Φ

 2ϵNσ2
split − 4σ2

split

√
Nt

2σobs

√
2Nσ2

split + 8σ2
split

√
Nt

 ≤ psuccess ≤ Φ

 2ϵNσ2
split + 2σ2

split

√
Nt

2σobs

√
2Nσ2

split − 8σ2
split

√
Nt


where t = log(6/δ)

C .

Proof. See Appendix A.

Corollary 1. To leading order in N , the success probability of LLM dataset inference is

psuccess ≈ Φ

(
ϵσ

σobs
·
√

N

2m

)

Proof. See Appendix B.
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3.4 INTERPRETATION

In our model, ϵ is regarded as a weighting parameter for the dataset being trained compared to other
nearby distributions in the latent space.

In the regime of small m, ϵ will increase linearly in m because the dataset as a whole has corre-
spondingly more relative weight. For a similar reason, ϵ will scale with the learning rate α and
the number of epochs, E. We additionally propose that the dimensionality of the appropriate latent
space increases linearly with the number of parameters in the model being tested, θ.

Along with Corollary 1, we have that in the small-ϵ regime, we have

psuccess ≈ Φ

(
mαEϵ0σ

σobs
·
√

N0θ

2m

)
= Φ

(
ασEϵ0
σobs

·
√

N0θm

2

)
(1)

Similarly, in the large-ϵ regime (close to 1), we have

psuccess ≈ Φ

(
σ

σobs
·
√

N0θ

2m

)
(2)

We can justify assuming that N is large in Corollary 1 because the latent token space of GPT-2 is
already as much as 1600-dimensional (Radford et al., 2019), and we are dealing with datasets for
which each element is many tokens, not just one.

In the case of small ϵ, Equation 1 shows that success probability increases with m. This relationship
explains the results from multiple works on dataset inference, which have shown that in practice the
attack metrics (e.g., AUROC, probability of detection) improve as the sample size increases (Maini
et al., 2021; 2024; Puerto et al., 2025).

In the case of large ϵ, Equation 2 shows that the success probability decreases with m. This decrease
has a corollary which, at first glance, seems absurd: an LLM trainer who steals and trains on an
extremely large amount of copyrighted data is less likely to be detected (at least through model-
based methods) than a trainer who steals a moderate amount of data. However, we argue that this
is actually intuitive. In particular, as the sample size increases, the centers of the private and public
splits will become close together in latent space (the typical distance between the corresponding
centers is of order σ/

√
m, which goes to 0 as m increases). The other datasets, which may be

nearby, become irrelevant. However, if a method with a constant per-element level of noise, such as
ours (or even a traditional stochastic training algorithm), is used, the tiny separation between centers
becomes irrelevant, and the DI attack turns into a coin flip.

Finally, σ can be regarded as a property of the dataset distribution, where a dataset that has many
very diverse examples has a higher value. We can interpret σobs as a constant representing the
strength of a dataset inference attack in comparison with defense methods, with the sharpest attacks
having lower values and the most effective defenses having higher values.

4 METHOD

We expect synonym substitution to be effective because it adds noise to the label parameters; in other
words, there can be crossover between the public and private splits. We expect it to still retain much
of the original meaning due to the close semantic similarity of synonyms (Taraba, 2020; Bhagat &
Hovy, 2013). For example, the argument to Φ in Section 3 may change from 2 to 1 due to σobs

doubling. In this case, the success probability goes from 0.977 to 0.841, a substantial reduction.

We expect summarization to be effective because it is a form of dimensionality reduction (Rodrigues
et al., 2025; Bartakke et al., 2021; Abdelrahman et al., 2023). We empirically observe that our
method reduces the number of tokens by approximately a factor of 3 (see Appendix D). Therefore,
we estimate that N0 from Section 3 goes down by a factor of 3. Since we also rephrase, this increases
σobs as in the synonym substitution case. If we suppose σobs goes from 1 to

√
3, it could be that the

argument of Φ goes from 3 to 3 · 1√
3
· 1√

3
= 1. These values imply a naive DI success probability of

0.999, whereas our method yields a success probability of 0.841.
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Algorithm 1 Evading Dataset Inference on Short Benchmarks

Require: A pre-trained LLM L, a possibly copyrighted dataset D with private version Dprivate,
an embedding model emb(), a synonym substituter sym, a fine-tuning method fine-tune(), a
dataset inference method attack(), and a list of similarities to consider, similarities.

1: i = 0
2: while i < len(similarities) do
3: D′ = []
4: for d ∈ D do
5: einit = emb(d)
6: while cosine-similarity(einit, emb(d)) > similarities[i] do
7: d← sym(d)
8: end while
9: Add d to D′.

10: end for
11: L′ ← fine-tune(L,D′)
12: p = attack(L,D,Dprivate)
13: if p > 0.1 then
14: return L′

15: end if
16: i← i+ 1
17: end while
18: return L

Algorithm 2 Evading Dataset Inference on Large Corpora

Require: A dataset d, a pre-trained LLM L, and a fine-tuning method fine-tune().
1: d′ = []
2: for text t in d do
3: t′ ← Call Mistral-7B-Instruct-v0.3 on prompt

“Summarize the following \n Text: {t}\nTLDR: ”
4: t′ ← Call Mistral-7B-Instruct-v0.3 on prompt

“Rephrase the following text with synonyms and rearrangement.
Do not output anything but the rephrased text.\n\n Text: {t′} \n\n Rephrased: ”

5: Append t′ to d′

6: end for
7: L′ ← fine-tune(L,D′)
8: return L′

Note that in both cases, a final probability of 0.841 may seem high. However, some notion of
statistical significance is involved because, in a real legal case, care would be taken to avoid judg-
ments based on a statistic that could have occurred randomly. At a p = 0.1 level, a probability of
0.841 < 0.9 is not significant.

5 RESULTS

Due to constrained computation resources, we analyze the fine-tuning setting. However, we expect
that dataset inference attacks are more successful in this setting (Puerto et al., 2025) due to the lower
learning rate used during pre-training (Team, 2025), as well as the internet-scale corpus employed.

5.1 SETUP FOR PILE EXPERIMENTS

For each dataset in The Pile, we train on the first 1000 validation examples. This method requires
us to restrict our attention to datasets within The Pile that have at least 1000 validation and test
examples. We include all such datasets, except for DM Mathematics, which consists of each element
as a long list of math questions, making it unsuitable for summarization. This elimination leads to a
total of 12 datasets.

6
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Figure 3: Adaptively transforming Pile data with summaries and rephrasings. Each number in the
heatmap represents an aggregate p-value from Equation 3. We want the p-value to be as high as
possible because it indicates a low likelihood of a DI attack succeeding. Almost uniformly across
datasets, the p-value for the true positive is very low while the false positive is high. These results
are what we expect and are analogous to Figure 4 in Maini et al. (2024). Our method, which involves
summarization followed by rephrasing, achieves relatively high p-values across all datasets for both
Pythia-410m and Pythia-1.4b. We use a threshold of p = 0.1, as in Maini et al. (2024). The high p-
values demonstrate an ability to evade dataset inference, because DI is expected to give low p-values
(chance of training on the private split) in the true positive case.

Table 1: Number of Pile subsets evading LLM Dataset Inference.

Method Pythia-70m Pythia-410m Pythia-1b Pythia-1.4b

Baseline 1 0 0 0
Summarized 11 8 6 7
Summarized + Rephrased 11 12 12 12

After training on each of these, we run the attack of (Maini et al., 2024), using the 1000 validation
examples as the possibly copyright-violated split and the first 1000 test examples as the private split.
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We aggregate probabilities in the same way as (Maini et al., 2024), with the formula

Pcombined = 1− exp

(
n∑

i=1

log(1− pi)

)
(3)

We run five separate attacks for each fine-tuned LLM on each dataset. We train on multiple sizes of
LLMs, so we adaptively adjust the learning rate according to the formula α = 1.5

θ , where θ is the
number of model parameters.

The results are pictured in Figure 3 and Table 1. Overall, we succeed in defending against the dataset
inference attack in most cases, in particular for the summarize + rephrase technique, it defends the
LLM in 23

24 ≈ 96% of cases.

Figure 4: Experiment fine-tuning GPT-2 on
benchmarks. The orange dots represent the
probability of the alternative hypothesis using
the (Maini et al., 2024) method. The blue dots
represent performance on the respective bench-
mark test sets. The red circle marks the point
with the highest accuracy such that the evasion
probability is at least 0.1 and the similarity is
either 0 or 1, if such a point exists. The green
circle represents the point with the highest accu-
racy, ensuring that the evasion probability is at
least 0.1, regardless of the similarity parameter.
The blue circle represents the highest possible
accuracy across all similarity parameters.

5.2 SETUP FOR BENCHMARK EXPERIMENTS

In addition to the usual participants, such as an LLM and a dataset, Algorithm 1 also requires an
embedding model and a synonym augmenter. We use all-MiniLM-L6-v2 as the embedding model,
and nlpaug as the synonym augmenter.

For each benchmark, we fine-tune the model on training examples with a benchmark-specific format
and then evaluate it on the validation split. We focus on multiple-choice benchmarks so they are easy
to evaluate. For the DI attack, we employ the method presented in (Maini et al., 2024), running each
attack twice and averaging the p-values.

The results are pictured in Figure 4. Note that we can fine-tune safely (without detection) in all three
cases and achieve significant benchmark performance improvements.
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5.3 ABLATION STUDY

In the case of short texts, the results for higher similarities than the green dot can be regarded as a
form of ablation (i.e., not running the method to completion). In most cases, the evasion probability
is very low, and all of the iterations are substantially needed to evade DI.

In the case of long texts, we provide results on the effect of just summarizing in Figure 3. We see that
in many cases, dataset inference would succeed without the rephrasing step. In particular, in 8 out
of 24 cases across Pythia-70m and Pythia-410m, dataset inference succeeds, which is significantly
higher than the corresponding 1 out of 24 cases if rephrasing also occurs.

6 DISCUSSION

Our method is largely successful across all tested Pile datasets, but it can be observed that some
datasets are more successful than others. For example, Wiki and PubMed Abstracts both have low
p-values across all model sizes for the summarize method, and this is also observed to some extent
for the summarize + rephrase method. To apply our method in practice, the parameters of the
method should vary depending on the properties of the specific dataset. We did not address this to
avoid complications from over-parameterization and overfitting.

Recall that we adaptively varied the learned rate as α = 1.5/
√
θ. Even though the number of

parameters of large closed-source LLMs is often not released (OpenAI, 2024), adaptive variation is
a feasible practice because the learning rate is selected by the LLM trainer, not the attacker. Recall
that our theoretical formulation of LLM dataset inference predicts that success probability in cases

of small training set size should be approximately Φ

(
ασEϵ0
σobs

·
√

N0θm
2

)
.

The linear dependence inside the Φ on α and E appears to be well-motivated by the theoretical
formulation. However, the dependence on the number of parameters, θ, is less clear (in our formula,
we suppose that there is a

√
θ dependence inside the Φ). If we plug in our chosen learning rate

value we have Φ

(
ασEϵ0
σobs

·
√

N0θm
2

)
Φ

(
1.5σEϵ0

σobs
·
√

N0m
2

)
. In other words, we expect the α and

√
θ terms to cancel out due to our choice of learning rate, resulting in similar results across models.

Indeed, the heatmaps across models are qualitatively similar (see Figure 3 and Figure 5), as shown
in Table 1 as well. This similarity provides initial evidence for the

√
θ dependence, but additional

research is needed to validate or refute this finding.

7 CONCLUSION

The strong results in the past literature on dataset inference (Maini et al., 2024; Puerto et al., 2025)
can be viewed as relying on the assumption that we have access to the exact dataset on which an
LLM was trained. This assumption can be easily broken in practice by the LLM trainer, specifi-
cally by taking a copyrighted dataset and transforming the elements in some way before training on
them. Existing techniques are not robust to this method and actually fail even in simple semantic-
preserving scenarios.

These results underscore a critical limitation in current dataset inference methodology. Future work
should explore principled methods that remain effective under text transformations, and further in-
vestigate trade-offs between utility preservation, attack resistance, and legal or ethical guarantees.

Our theoretical results indicate the existence of a “tipping point”, where, after a certain number of
samples, dataset inference starts becoming harder, contrasting with the small sample behavior of
becoming easier (i.e., higher success probabilities as samples grow). Additional research is needed
to determine if such a point exists and, if so, to identify relevant practical bounds. Even the existence
of such a point may foreshadow a need to eventually move beyond the traditional assumptions of
dataset inference.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 ETHICS STATEMENT

Our adaptive text transformation method can be viewed as a mechanism for training on copyrighted
datasets while avoiding adverse legal consequences. We aim to expose the potential issues with
traditional approaches to dataset inference, enabling more research in this area. We believe this
will allow for more robust copyright protections in the future. Additionally, our method can be
utilized positively to prevent the leakage of training data. For example, if it is known that an LLM is
trained on some arXiv collections but not others, a dataset inference attack could plausibly be used
to extract which ones it was trained on. This information could be regarded as proprietary by the
model creator, necessitating protection.

9 REPRODUCIBILITY STATEMENT

The mathematical claims made in the paper are proven in the main text or the appendix. All code
used to generate results and figures will be made public upon acceptance, along with documentation
on how to reproduce the results.
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A PROOF OF THEOREM 1

By symmetry, it suffices to compute the success probability conditional on the true class being
“pub”.

A.1 CONDITIONAL DISTRIBUTION OF SUCCESS PROBABILITY ON A AND B

Assume the true class is “pub”, so Dobs = µ+ ϵA+ η. Compute the two residuals:

Dobs − Cpub = (µ+ ϵA+ η)− (µ+A) = −(1− ϵ)A+ η,

Dobs − Cpriv = (µ+ ϵA+ η)− (µ+B) = ϵA−B + η.

Define the test statistic
∆ := ∥Dobs − Cpub∥2 − ∥Dobs − Cpriv∥2.

We have

∥Dobs − Cpub∥2 = ∥ − (1− ϵ)A+ η∥2

= (−(1− ϵ)A+ η) · (−(1− ϵ)A+ η)

= (1− ϵ)2∥A∥2 − 2(1− ϵ)A · η + ∥η∥2.
In addition,

∥Dobs − Cpriv∥2 = ∥ϵA−B + η∥2

= (ϵA−B + η) · (ϵA−B + η)

= ϵ2∥A∥2 + ∥B∥2 + ∥η∥2

− 2ϵA ·B + 2ϵA · η − 2B · η.

Substituting the expansions:

∆ =
(
(1− ϵ)2∥A∥2 − 2(1− ϵ)A · η + ∥η∥2

)
−
(
ϵ2∥A∥2 + ∥B∥2 + ∥η∥2 − 2ϵA ·B + 2ϵA · η − 2B · η

)
.

The ∥η∥2 terms cancel, leaving

∆ =
(
(1− ϵ)2 − ϵ2

)
∥A∥2 − 2(1− ϵ)A · η − ∥B∥2

+ 2ϵA ·B − 2ϵA · η + 2B · η.

Simplifying coefficient of ∥A∥2, we have

(1− ϵ)2 − ϵ2 = (1− 2ϵ+ ϵ2)− ϵ2 = 1− 2ϵ.

Grouping the η-dependent terms, we have

−2(1− ϵ)A · η − 2ϵA · η + 2B · η = −2A · η + 2B · η = −2(A−B) · η.

∆ = −2(A−B) · η + (1− 2ϵ)∥A∥2 + 2ϵA ·B − ∥B∥2. (4)

We expand each squared norm explicitly. Recall

Dobs − Cpub = −(1− ϵ)A+ η, Dobs − Cpriv = ϵA−B + η.
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The decision is correct if and only if ∆ < 0. Conditional on A,B the only randomness in ∆ is
through η. Since η ∼ N (0, σ2

obsIN ) and A,B are fixed in this conditioning,

(A−B) · η ∼ N
(
0, σ2

obs∥A−B∥2
)
.

Therefore, conditional on A,B,

∆ ∼ N
(
µ∆(A,B), 4σ2

obs∥A−B∥2
)
.

where
µ∆(A,B) = (1− 2ϵ)∥A∥2 + 2ϵA ·B − ∥B∥2. (5)

Hence, the conditional success probability (true = pub) is

Pr
(
correct | A,B

)
= Pr(∆ < 0 | A,B) = Φ

(
− µ∆(A,B)

2σobs∥A−B∥

)
, (6)

where Φ is the standard normal CDF.

The unconditional success probability is the expectation of equation 6 over the Gaussian law of
A,B:

Pr(correct) = EA,B

[
Φ
(
− µ∆(A,B)/(2σobs∥A−B∥)

) ]
. (7)

A.2 HIGH-DIMENSIONAL HIGH-PROBABILITY BOUND

Fix a failure probability parameter 0 < δ < 1.

It is known that as the dimension (i.e., N ) grows, the 2-norm of a random vector drawn from the
normal distribution becomes close to

√
n and the dot product between two such random vectors

becomes close to 0 Vershynin (2018). In particular, we leverage the following high-probability
statements Vershynin (2018):

Pr
{
|∥A∥2 −Nσ2

split| ≥ 2σ2
split

√
Nt
}
≤ 2e−C1t,

Pr
{
|∥B∥2 −Nσ2

split| ≥ 2σ2
split

√
Nt
}
≤ 2e−C1t,

Pr
{
|A ·B| ≥ 2σ2

split

√
Nt
}
≤ 2e−C2t,

for some constants C1 and C2.

By a union bound, with probability at least 1 − 6e−min(C1,C2)t, all three of the following events
occur:{
|∥A∥2 −Nσ2

split| ≤ 2σ2
split

√
Nt, |∥B∥2 −Nσ2

split| ≤ 2σ2
split

√
Nt, |A ·B| ≤ 2σ2

split

√
Nt
}

(8)

Thus to guarantee total failure probability ≤ δ choose

t =
log(6/δ)

min(C1, C2)
.

From the inequalities in equation 8 we obtain corresponding bounds for ∥A−B∥. Using

∥A−B∥2 = ∥A∥2 + ∥B∥2 − 2A ·B,

and applying the three inequalities yields

2Nσ2
split − 8σ2

split

√
Nt ≤ ∥A−B∥2 ≤ 2Nσ2

split + 8σ2
split

√
Nt. (9)

Recall from equation 4

µ∆(A,B) = (1− 2ϵ)∥A∥2 + 2ϵA ·B − ∥B∥2.
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Using the inequalities in equation 8, we have

µ∆(A,B) ≥ (1− 2ϵ)
(
Nσ2

split − 2σ2
split

√
Nt
)
− 2ϵ(2σ2

split

√
Nt)−

(
Nσ2

split + 2σ2
split

√
Nt
)

= −2ϵNσ2
split − 2σ2

split

√
Nt,

and similarly

µ∆(A,B) ≤ (1− 2ϵ)
(
Nσ2

split + 2σ2
split

√
Nt
)
+ 2ϵ(2σ2

split

√
Nt)−

(
Nσ2

split − 2σ2
split

√
Nt
)

= −2ϵNσ2
split + 4σ2

split

√
Nt.

Thus,
−2ϵNσ2

split − 2σ2
split

√
Nt ≤ µ∆(A,B) ≤ −2ϵNσ2

split + 4σ2
split

√
Nt, (10)

The denominator in the argument of Φ is 2σobs∥A−B∥.
From equation 9 we obtain,

2σobs

√
2Nσ2

split − 8σ2
split

√
Nt ≤ 2σobs∥A−B∥ ≤ 2σobs

√
2Nσ2

split + 8σ2
split

√
Nt,

We are finally able to state the theorem: with probability at least 1− δ,

Φ

 2ϵNσ2
split − 4σ2

split

√
Nt

2σobs

√
2Nσ2

split + 8σ2
split

√
Nt

 ≤ Pr(correct) ≤ Φ

 2ϵNσ2
split + 2σ2

split

√
Nt

2σobs

√
2Nσ2

split − 8σ2
split

√
Nt

 (11)

where t = log(6/δ)
min(C1,C2)

.

B PROOF OF COROLLARY 1

If we assume N is large, then N ≫
√
N . If we ignore such

√
N terms, the left and right-hand sides

of the inequality in Theorem 1 become the same. In addition to the fact that the Gaussian CDF is
smooth, we have

psuccess ≈ Φ

 2ϵNσ2
split

2σobs

√
2Nσ2

split

 = Φ

(
ϵ
√
Nσsplit

σobs
√
2

)

The Gaussian distribution is a well-known example of a stable distribution. In other words, the
average of Gaussians is Gaussian, and more specifically, we have

σ2
split =

σ2

m

Plugging this in, we have

Φ

(
ϵ
√
Nσsplit

σobs
√
2

)
= Φ

(
ϵσ

σobs
·
√

N

2m

)

as desired.
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C ADDITIONAL EXPERIMENTS

We extend Figure 3 with the models Pythia-70m and Pythia-1b, with substantially similar results,
and finding only one failure of our method (PubMed Abstracts, Pythia-70m), corresponding to a
success of dataset inference.

Figure 5: Extensions to Figure 3, with Pythia-70m and Pythia-1b.
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D TOKEN COUNTS FOR SUMMARIZATION AND REPHRASING

Figure 6: We visualize how the token counts change for our long text operations, both summarization
and rephrasing. In the case of summarization, we observe a substantial decrease in token count by a
factor of approximately 3. For rephrasing, we observe that the token counts remain about the same,
as expected.

We can see in Figure 6 that token counts substantially decrease following summarization. In addi-
tion, we allow for a maximum of 2000 new tokens to be generated for each summary, and we found
that it was rare for summaries to reach close to the 2000-token limit. For models other than Mistral-
7B-Instruct-v0.3, we observed that summaries sometimes repeated themselves or diverged from the
original text till they hit the token limit. This repetition did not occur with Mistral-7B-Instruct-v0.3,
raising our confidence in a coherent/high-quality summary.
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E METHOD EXAMPLES

Figure 7: Summarization and rephrase example.

Figure 8: Synonym substitution example.

F HYPERPARAMETERS

Table 2: Hyperparameters for our paper.

Pile Experiment

Hyperparameter Value
Learning rate 1.5/θ
Batch size 4
Number of epochs 2
Weight Decay 0.01
Warmup Steps 25
Seed 42

Benchmark Experiment

Hyperparameter Value
Learning rate 0.0005
Batch size 4
Maximum Steps 4000
Weight Decay 0.01
Warmup Steps 100
Seed 42

Summarization, Rephrase

Hyperparameter Value
Temperature 0.7, 0.8
Top P 0.9
Max New Tokens 2000
Seed 42
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