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Supplementary Note 1: Spiking Neural Networks

Spiking Neural Network (SNN)

Various models for spiking neurons mathematically describe the properties of a cell in the nervous
system with varying degrees of detail. Normally, three conditions are considered by these models:
resting, depolarization, and hyperpolarization. When a neuron is resting, it maintains a constant
membrane potential. The change in membrane potential can be either a decrease or an increase
relative to the resting potential. An increase in the membrane potential is called depolarization, which
enhances a cell’s ability to generate an action potential; it is excitatory. In contrast, hyperpolarization
describes a reduction in the membrane potential, which makes the associated cell less likely to
generate an action potential, and, as such, is inhibitory. All inputs and outputs of a spiking neuron
model are sequences of spikes.

A sequence of spikes is called a spike train and is defined as s(t) = Σt(f)∈Fδ(t − t(f)), where F
represents the set of times at which the individual spikes occur [1]. Typical spiking neuron models
set the resting potential to 0. However, existing models achieve depolarization and hyperpolarization
in substantially different ways. In the following, we review two commonly used models: the spike
response model (SRM) [2] and leaky integrate-and-fire (LIF) model [3].

Spike Response Model (SRM) An SRM first converts an incoming spike train si(t) into a spike
response signal as (ε ∗ si)(t), where ε(·) is a spike response kernel. Then, the generated spike
response signal is scaled by a synaptic weight wi. Depolarization is achieved by summing all the
scaled spike response signals: Σiwi(ε ∗ si)(t). When incoming spike trains trigger a spike s(t),
the SRM models hyperpolarization by defining a refractory potential as (ζ ∗ s)(t), where ζ(·) is
a refractory kernel. With an SRM, a feedforward SNN architecture with nl layers can be defined.
Given N l incoming spike trains at layer l, sli(t), the forward propagation process of the network is
mathematically defined as follows [2, 1]:

vl+1
i (t) =

N l∑
j=1

wij(ε ∗ slj)(t) + (ζ ∗ sl+1
i )(t− 1), (1)

sl+1
i (t) = fs(v

l+1
i (t)), (2)

fs(v) : v → s, s(t) := s(t) + δ(t− t(f+1)), (3)

tf+1 = min{t : v(t) = Θ, t > t(f)}, (4)
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where fs(·) is a spike function and Θ is the membrane potential threshold, which is static and the
same for all neurons in the network. This static threshold is the one that we replace with the proposed
dynamic threshold.

Leaky Integrate-and-Fire (LIF) An LIF model is a simplified variant of an SRM. This scheme directly
processes incoming spike trains and ignores the spike response kernel. Hyperpolarization is achieved
by a simple decay function fd(·). The forward propagation process of the network can be defined as:

vl+1
i (t) =

N l∑
j=1

wijs
l
j(t) + vl+1

i (t− 1)fd(s
l+1
i (t− 1)) + bl+1

i , (5)

sl+1
i (t) = fs(v

l+1
i (t)), (6)

fd(s(t)) =

{
D s(t) = 0

0 s(t) = 1,
(7)

where bl+1
i is an adjustable bias that is learned to mimic a dynamic threshold behavior. However,

the biases of this model are static during forwarding propagation. In contrast, the proposed dynamic
threshold is dynamic and automatically adapts to membrane potentials.

Supplementary Note 2: Related Mathematical Definitions

In this section, we provide mathematical definitions for DT1, DT2, and Loihi weight transferring. In
addition, we formally define the proposed homeostasis metrics.

DT1 Hao [4] noted that neurons do not (or barely) fire when their thresholds are too large, which can
negatively affect model performance. Therefore, they proposed DT1 to slow threshold growth. For
the i-th neuron in the l-th layer, DT1 at timestamp t is mathematically defined as:

Θl
DT1,i(t) = Θconst + (−Θl

DT1,i(t− 1) +
Θinitial

|2Θl
DT1,i(t− 1)−Θinitial|

nl∑
i=1

sli(t)), (8)

where Θconst and Θinitial are two hyperparameters; the dynamic threshold is mainly controlled by a
dynamic scaling factor Θinitial

|2Θl
DT1,i(t−1)−Θinitial|

; nl is the total number of neurons in the l-th layer. For

fair comparisons with other competing approaches, we apply grid search to find the optimal values of
Θinitial and Θconst and ensure that the host SNNs of DT1 offer similar success rates (SRs) in the
static obstacle avoidance task to those of other approaches. Based on the grid search, Θinitial is set
to 10.0; 0.5 and 0.2 are the optimal values of Θconst for the LIF-based and SRM-based host SNNs,
respectively.

DT2 Inspired by the observed homeostasis in biology, Kim [5] proposed DT2 to maintain neurons’
firing rates at a predefined constant target frequency. Mathematically, for the i-th neuron in the l-th
layer, DT2 at timestamp t is defined as:

Θl
DT2,i(t) = Θl

DT2,i(t− 1) + (

nl∑
i=1

sli(t))− f ltarget)×Θl
DT2,i(t− 1)× γ, (9)

where f ltarget is the predefined constant target frequency; γ is a homeostasis factor that determines
the threshold changing rate. Based on our grid search, we set f ltarget to 85 (1/3 of 256) for the three
256-neuron layers and γ to 0.004 to achieve the same static obstacle avoidance performance as that
of other competing SNNs.

8-Bit Loihi Weights In our weight uncertainty (WU) experiments, we scale and round up the learned
floating-point synaptic weights to low-precision 8-bit weights. The weight scaling process is defined
as:
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rl =
wLoihi

max

wl
max

, (10)

w
(l)(Loihi)
ij = round(rlwl

ij), (11)

Θ
(l)(Loihi)
i (t) = round(rlΘl

i(t)), (12)

vli(t) = v
(l)(Loihi)
i (t)/rl, (13)

where rl is the rescaling ratio of layer l; wLoihi
max is the maximum weight that Loihi supports; wl

max is
the maximum weight of the l-th layer of the host SNN; wl

ij is the synaptic weight between the i-th

neuron in the l-th layer and the j-th neuron in the (l− 1)-th layer, and w(l)(Loihi)
ij is the corresponding

rescaled weight on Loihi; Θl
i(t) and Θ

(l)(Loihi)
i (t) are the original membrane threshold and the

corresponding threshold for Loihi of the i-th neuron in the l-th layer at timestamp t, respectively;
round(x) is a rounding function that returns the rounded version of x. Notably, to estimate Θl

i(t),
we need to know the original membrane potentials. However, all the membrane potentials on Loihi
are rescaled. Therefore, to obtain the original membrane potentials, we need to reverse the process
defined in Eq 13.

Homeostasis Metrics We leverage three statistical metrics to quantify the homeostasis of an SNN.
Mathematically, they are defined as follows:

FRm = µ(FRp
m) for p = 1, 2, ..., P, (14)

FRm
std = µ(FRp

std) for p = 1, 2, ..., P, (15)

FRs
std = σ(FRp

std) for p = 1, 2, ..., P, (16)

FRp
m = µ(f l,pi ) for i = 1, 2, ..., N l l = 1, 2, ..., L, (17)

FRp
std = σ(f l,pi ) for i = 1, 2, ..., N l l = 1, 2, ..., L, (18)

f l,pi =

∑Tp

tp=1 s
l
i(t

p)

T p
, (19)

where, T p is the time taken for the p-th trial and f l,pi is the firing rate of the i-th neuron in the l-th
layer during the p-th trial. FRp

m denotes the mean firing rate of all neurons of an SNN during the p-th
trial, and FRp

std is the standard deviation of all neuron firing rates for an SNN during the p-th trial.
The definitions of FRm, FRm

std, and FRs
std are defined in the main paper.
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Figure 1: a. The structure of a neuron. b. We demonstrate a sodium (Na+) voltage-gated channel
under resting, activated, and inactivated (refractory) states. The Na+ channel enters an inactivated
state after depolarization and returns to a resting state only after the membrane potential is restored to
its resting potential. c. The process of action potential generation, which is based on the Hodgkin-
Huxley model [6], involves the sequential opening of voltage-gated Na+ and K+ channels. The Na+
and K+ conductance curves are adapted from the Hodgkin-Kuxley model [6].

Supplementary Note 3: Biological Concepts

A typical biological neuron has four morphological regions: a cell body, dendrites, an axon, and
synaptic terminals. Inside the cell body (the soma), a nuclear envelope contains the cell’s genes. The
short tree-like dendrites branch out from the cell body, and they are the main apparatus for receiving
incoming signals from other neurons. The long tubular axon covered by the myelin sheath extends
some distance from the cell body and carries action potential to other neurons through synaptic
terminals. A typical nerve neuron is illustrated in Figure 1a.

In a nerve cell that is at rest, the extracellular surface of the cell membrane has an excess positive
charge, while the cytoplasmic side has an excess negative charge. The cell membrane maintains the
separation of charge as a barrier against the diffusion of ions; see Figure 1b. The electrical potential
difference across the membrane is defined as the membrane potential, which has three different
statuses: resting, depolarization, and hyperpolarization. At rest, no net charge movement across the
membrane occurs, and the resting membrane potential is maintained. By convention, the potential
outside the cell is defined as zero, and hence, the resting potential is a negative value. A net flow
of cations or anions into or out of a cell disturbs the resting membrane, causing depolarization or
hyperpolarization, respectively. Depolarization indicates less negative membrane potential, while
hyperpolarization signifies more negative potential; see Figure 1c.

Dynamic Thresholds in Biological Neurons

The Hodgkin-Huxley model [6] has served as an archetype for compartmental models of the elec-
trophysiology of biological membranes (see Figure 1a). Many numerical methods leverage the
Hodgkin-Huxley model as their testbeds, which can be applied to more complex models [7, 8, 9]. We
use the Hodgkin-Huxley model to introduce the concept of threshold in biological neurons. Based
on the Hodgkin-Huxley model, an action potential is produced when the membrane potential is
higher than a particular threshold; this involves the following sequence of processes. First, when the
membrane potential is higher than a threshold, the associated depolarization opens sodium (Na+)
channels, resulting in an inward Na+ current. By discharging the membrane capacitance, the inward
current causes further depolarization and the opening of more Na+ channels, resulting in a further
increase in the inward current. Second, under prolonged depolarization, the voltage-gated Na+
channels become inactive. Furthermore, after some delay, the voltage-gated potassium (K+) channels
begin to open, causing an outward K+ current that tends to repolarize the membrane (see Figure 1b).
The second process underlies the absolute refractory period [10], a period during which no action
potential can be elicited. After that, with some K+ channels being closed and some Na+ channels
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recovering from inactivation, the membrane enters a relative refractory period [10] (see Figure 1c).
During this period, it is possible to trigger an action potential, but this requires a higher threshold.

Note that a small subthreshold depolarization cannot trigger an action potential, as it not only increases
the inward Na+ current but also increases the outward K+ current [6]. Only at a specific membrane
potential value does the net ionic current become inward, depositing a net positive charge on the
inside of the membrane capacitance. This specific value is the potential (or spike) threshold [11].

The threshold changes dynamically, widely observed in the different nervous systems [12, 13, 14, 7,
15, 16, 17, 18, 19]. A thread of studies leverage the Hodgkin-Huxley model to verify the observed
threshold dynamics [20, 7]. However, not all spike initiation dynamics of biological neurons can be
accurately described by the Hodgkin-Huxley model [21].
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Supplementary Note 4: Additional Details on Obstacle Avoidance Experiments

Experimental Setup

In the obstacle avoidance experiments, our evaluation baseline model and test environment are
modified variants of the spiking actor network (SAN) [22] and its original simulated test environ-
ment, respectively. The SAN is a part of the spiking deep deterministic policy gradient (SDDPG)
framework [22], which is a fully connected four-layer SNN (three 256-neuron hidden layers and one
two-neuron output layer). This network maps a state s of a robot to a control action a. Specifically,
a state s = {Gdis, Gdir, ν, ω, L} is encoded into 24 Poisson spike trains as inputs of the SAN, and
each spike train has T timesteps. Gdis and Gdir are the relative 1-D distances from the robot to
the goal and a 2-D direction (right and left directions), respectively; ν and ω are the robot’s 1-D
linear and 2-D angular velocities (rightward and leftward angular velocities); L denotes the distance
measurements obtained from a Robo Peak light detection and ranging (RPLIDAR) laser range scanner
(range: 0.2-40 m), which has a field of view of 180 degrees with 18 range measurements, each with
a 10-degree resolution. The two output spike trains are decoded to control the robot via an action
a = {νL, νR}, where νL and νR are the left and right wheel speeds of the differential-drive mobile
robot, respectively [22].

Figure 2: Illustrations of the training, static testing and dynamic testing environments. a. The
training environments of the obstacle avoidance tasks. The training processes of all competing SNNs
start from Env1 and end with Env4. b. Static testing environment. c. Dynamic testing environment.
In addition to static obstacles, 11 dynamic obstacles are inserted.

Training

The SAN and its modified versions are trained with the original SDDPG framework. The training
environments consist of four different maps, as shown in Figure 2a. In particular, during the training
process, we set 100, 200, 300, and 400 start-goal pairs in the Env1, Env2, Env3, and Env4, respectively.
The training starts from Env1 and ends with Env4. Following the training protocol described by Tang
[22], the hyperparameters related to training are set as follows: D = 0.75 for the LIF; η = 0.01
and ψ = 4.0 for the dynamic energy threshold (DET); C = 3.0 for the dynamic temporal threshold
(DTT); τs = τr = 1.0 for the SRM; collision reward = −20; goal reward = 30; step reward = 15;
goal l2 distance threshold = 0.5 m; obstacle l2 distance threshold = 0.35 m; ϵ ranges for Env1 to
Env4 of (0.9, 0.1), (0.6, 0.1), (0.6, 0.1), and (0.6, 0.1), respectively; and corresponding ϵ-decays of
0.999 for the four environments. During the training procedure, we set the batch size to 256 and the
learning rates to 0.00001 for both the actor and critic networks. We use PyTorch [23] to train and test
all competing SNNs with an i7-7700 CPU and an NVIDIA GTX 1080Ti GPU. We direct the readers
to the SAN algorithm [22] for details.

Assessment—Success Rate

We evaluate the obstacle avoidance capabilities of the proposed method by using SR as a metric. The
SR is the percentage of successful passes out of 200 trials. A successful pass is a trial in which the
robot can reach its destination without touching any static or dynamic obstacle within 1000 steps. In
addition to the SR, we also report the overtime percentage (OTP), the percentage of overtime trials
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out of the total trials (200 trials), where overtime is defined as a trial in which the robot cannot reach
the goal within 1000 steps but does not touch any obstacle.

We use the Gazebo simulator to construct a 20 × 20 m2 static test environment (see Figure 2b)
and adopt the randomly sampled 200 start-goal location pairs used for testing the SAN [22]. For
fairness, we apply grid searches on all tunable hyperparameters to ensure that the SRs of all competing
approaches are relatively the same (within ±2%) when testing in the static testing environment. The
quantitative experimental results obtained by all competing dynamic threshold methods in the static
obstacle avoidance tasks are shown in Table 1. Due to space limits, we only report the experimental
results based on T = 5 in the main manuscript. Here, we offer the quantitative performance with
both T = 5 and T = 25.

Based on Table 1, compared to the SRs obtained with T = 5, the SRs obtained under T = 25 only
change slightly (±0.5%), indicating that all competing SNNs are not sensitive to the T value in static
obstacle avoidance tasks. The observations related to the T value also hold in the dynamic obstacle
experiments (see Table 2). However, we observe that the SRs decrease as the T value increases for
most degraded input and weight uncertainty experiments.

Tables 2, 3, and 4 show the quantitative performance of all competing approaches in dynamic
obstacle, degraded inputs, and weight uncertainty experiments, respectively. The SRs are also shown
in Figures 4a and b. In terms of the OTPs, we witness high levels of overtime trials in the “0.2" section
of the degraded inputs condition and the “GN weight" section of the weight uncertainty condition.
As discussed in the main manuscript, with the “0.2" setup, the three disturbed lasers generate more
spikes than they are supposed to, making the robot more cautious. Thus, the robot’s speed slows,
leading to more overtime trials. As expected, adding Gaussian noise to the learned weights reduces
the effectiveness of the avoidance policy. However, our approach faces the most negligible impact,
offering the best SRs under all experimental results. In the following, we provide a more detailed
analysis for each degraded condition.

Dynamic Obstacles As discussed, we introduce 11 dynamically moving cylinders to the static testing
environment; see Figure 2c. Table 2 shows the corresponding experimental results obtained under
this condition. Our approach delivers the highest SRs with both the LIF and SRM neuron models.
Notably, under both the T = 5 and T = 25 settings, the proposed approach outperforms the
runners-up by significant margins (by at least 9% over the LIF model and 12% over the SRM). The
results demonstrate that the proposed bioinspired dynamic threshold scheme provides substantial
environmental adaptability to the host SNNs. Since all the synaptic weights and static thresholds of
both the SAN and the SAN with no resting operation (SAN-NR) are learned from the environments
with static obstacles only, we expect that they cannot adapt well to an environment with dynamic
objects. Surprisingly, compared to the static threshold scheme, the two heuristic dynamic threshold
schemes, DT1 and DT2, obtain lower SRs. The threshold dynamics provided by DT1 rely on two
hyperparameters, the constant potential and initial potential. DT2 requires a target firing count
to be set. These hyperparameters are justified during the training process but fixed during testing.
We believe that these hyperparameters dramatically impact the adaptability of the tested heuristic
dynamic threshold schemes. In contrast, the dynamics offered by the proposed bioinspired dynamic
energy-temporal threshold (BDETT) scheme are dynamically based on layerwise statistical cues.

Degraded Inputs In this experiment, as discussed in our main manuscript, in addition to the presence
of dynamic obstacles, we disturb the obtained range measurements in three different ways: a) “0.2":
we set the 3rd, 9th, and 15th laser ranges to 0.2 m. In this case, the three modified measurements
always report obstacles in their perception fields even when none are present; b) “6.0": the ranges
of the same three lasers are set to 6.0 m, which is the average visible range in the test environment.
This means that the three lasers cannot perceive any object; c) “GN": we add Gaussian noise
(clip(sinput +N (0, 1.0), 0.2, 6.0), as suggested in a study regarding long short-term memory with a
local map critic (LSTM-LMC) [24]) to each of the 18 range measurements. The experimental results
obtained under these settings are shown in Table 3.

In all degraded input experiments, the SRs offered by our BDETT scheme still remain the highest
and outperform the runners-up by at least 10%. This reflects that the proposed dynamic threshold
scheme provides the host SNNs with strong adaptability to all designed degraded inputs, which is
highly desired and appreciated in mobile robot applications. In the “0.2" setup, the three disturbed
lasers generate more spikes than they are supposed to, making the robot more cautious. All host
SNNs obtain lower SRs than those obtained under the dynamic obstacle settings. However, the
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Figure 3: The success rate heatmaps. The heatmaps yielded by the best and runner-up performers
under four different conditions indicate the areas with lower success rates (those shown in red).

SRM-based host SNNs are significantly impacted. We believe the reason for this is that the spike
response and refractory kernels of the SRM amplify the intense spikes triggered by the three modified
measurements. In the “6.0" experiments, the three modified measurements trigger fewer spikes, and
the robot becomes more relaxed due to the ‘hyperopia’ effect. Therefore, we expect more failed
passes than in the “0.2" setup. This is true for the LIF-based SNNs but not for the SRM-based SNNs.
Since the three farsighted lasers reduce the signal amplification effects caused by the two kernels,
the SRM-based SNNs perform better here than in the “0.2” experiments. Under the “GN" condition,
the SRs of all competing host SNNs decrease, but our approach is the least affected and induces the
lowest SR drops. Remarkably, under all degraded input experiments, the proposed BDETT improves
upon the SRs of both the LIF-based and SRM-based baseline models (SAN-NR) by at least 10%
and 17%, respectively. The success rates of the best and runner-up performers under “0.2” and “6.0”
conditions are also qualitatively illustrated in Figure 3.

Weight Uncertainty Neuromorphic hardware (Loihi) achieves computing efficiency by sacrificing
the weight precision, and an 8-bit integer normally yields the highest precision. Therefore, when
deploying an SNN on neuromorphic hardware, one needs to scale and round up the learned floating-
point synaptic weights to low-precision weights. We mimic this scenario by mapping the learned
weights to Intel’s Loihi 8-bit integer weights. The mapping equations are provided in Supplementary
Note 2. In addition, we design two extra weight pollution experiments. “GN weight" involves
adding Gaussian noise (wij + N (0, 0.05)) to all synaptic weights; under “30% zero weight", we
reandomly set 30% of the synaptic weights between every two adjacent layers to 0. To reduce the
impact caused by the randomness introduced in the two additional experiments, we report the average
SRs of 5-round tests.

As shown in Table 4, the proposed BDETT can effectively reduce the impact caused by degraded
synaptic weights and deliver the best SRs under all experimental settings. Low-precision weight
convergence slightly reduces the SRs of all competing host SNNs slightly. We observe that the
effectiveness of the SRM-based SNNs is dramatically impacted by the “GN weight" and “30% zero
weight" pollution settings, especially the SAN. This means that SRM-based models are more sensitive
to weight changes than LIF-based SNNs. Again, under the three degraded conditions, the proposed
BDETT increases the SRs of the baseline model SAN-NR by at least 9.5%, 14.2%, and 14.8%. The
success rates of the best and runner-up performers under “8-bit Loihi weight” and “30% zero weight”
conditions are also qualitatively illustrated in Figure 3.
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Table 1: Quantitative performance of obstacle avoidance with static obstacles.

LIF (T = 5) SRM (T = 5) LIF (T = 25) SRM (T = 25)

Name SR↑ OTP SR↑ OTP SR↑ OTP SR↑ OTP
SAN 98% 0.0% 96.5% 0.0% 98% 0.0% 96% 0.0%
SAN-NR 98% 0.0% 95.5% 0.0% 98.5% 0.0% 95.5% 0.0%
DT1 [4] 96.5% 0.0% 95% 0.0% 96% 0.0% 94.5% 0.5%
DT2 [5] 97% 0.0% 95% 0.0% 97% 0.0% 94% 0.0%
DET only 96% 0.0% 95.5% 0.0% 95.5% 0.0% 95% 0.0%
DTT only 97% 0.0% 95.5% 0.0% 97% 0.0% 95% 0.0%
BDETT 98.5% 0.0% 96.5% 0.0% 98% 0.0% 97% 0.0%

Table 2: Quantitative performance of obstacle avoidance with dynamic obstacles.

LIF (T = 5) SRM (T = 5) LIF (T = 25) SRM (T = 25)

Name SR↑ OTP SR↑ OTP SR↑ OTP SR↑ OTP
SAN 81.5% 0.0% 78.5% 0.0% 81% 0.0% 77.5% 0.0%
SAN-NR 83.5% 0.0% 77.5% 0.5% 83.5% 0.0% 77% 1.0%
DT1 [4] 74.5% 0.0% 68.5% 0.0% 74% 0.5% 68.5% 0.5%
DT2 [5] 80% 0.0% 71.5% 0.5% 80% 0.0% 71.5% 0.0%
DET only 81% 0.0% 78.5% 0.5% 80.5% 0.0% 78.5% 1.0%
DTT only 88% 0.0% 83.5% 0.0% 86.5% 0.0% 82% 0.0%
BDETT 92.5% 0.0% 90.5% 0.0% 93% 0.0% 89.5% 0.5%

Table 3: Quantitative performance of obstacle avoidance under degraded input conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 25) SRM (T = 25)

Type Name SR↑ OTP SR↑ OTP SR↑ OTP SR↑ OTP

0.2

SAN 78.5% 1.5% 68% 1.0% 74% 2.5% 60.5% 1.0%
SAN-NR 80% 2.5% 59% 3.0% 76% 3.0% 39.5% 4.5%
DT1 [4] 65.5% 4.0% 64% 3.5% 60.5% 3.5% 58.5% 5.0%
DT2 [5] 78% 3.0% 53.5% 3.5% 72.5% 4.0% 49% 3.5%
DET only 83% 2.0% 71.5% 3.0% 77.5% 3.5% 67.5% 3.0%
DTT only 78.5% 3.5% 64.5% 1.0% 72.5% 3.5% 62% 2.5%
BDETT 90% 2.5% 79.5% 3.5% 87.5% 3.5% 76% 4.5%

6.0

SAN 71% 0.0% 70% 0.0% 73% 0.0% 72% 0.0%
SAN-NR 70% 0.0% 61.5% 0.0% 71% 0.0% 65.5% 0.0%
DT1 [4] 62% 0.0% 67% 0.0% 64% 0.0% 66.5% 0.0%
DT2 [5] 61.5% 0.0% 55% 0.5% 61.5% 0.0% 57.5% 0.0%
DET only 80% 0.0% 79% 0.0% 79.5% 0.0% 79.5% 0.0%
DTT only 80% 0.0% 75.5% 0.0% 81% 0.0% 76% 0.0%
BDETT 84.5% 0.0% 83% 0.0% 86% 0.0% 83.5% 0.0%

GN

SAN 71.5% 0.0% 57% 0.0% 63% 0.0% 51.5% 0.5%
SAN-NR 72% 0.0% 65.5% 1.0% 67% 0.5% 54.5% 2.0%
DT1 [4] 60.5% 0.5% 58% 0.0% 56.5% 0.5% 55.5% 0.0%
DT2 [5] 71.5% 1.5% 61.5% 0.0% 68% 1.0% 57% 1.5%
DET only 78.5% 1.0% 75.5% 0.5% 76% 2.0% 71% 0.5%
DTT only 75.5% 0.0% 69% 0.0% 70.5% 0.0% 66.5% 0.5%
BDETT 84.5% 0.0% 82.5% 0.0% 81.5% 0.0% 79% 0.5%
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Figure 4: The experimental results obtained for the robot obstacle avoidance tasks. a & b. The
SRs of obstacle avoidance under normal and different degraded conditions under the T = 5 and
T = 25 settings, respectively. ‘SO’ denotes the static obstacle condition; ‘DO’ represents the dynamic
obstacle condition; ‘0.2’, ‘6.0’, and ‘GN’ are the three degraded input conditions; ‘8-bit’, ‘GNW’,
and ‘30%’ denotes the 8-bit Loihi weights, GN weights, and 30% zero weights, respectively. c & d.
Homeostasis measurements obtained with the T = 5 setting by the LIF- and SRM-based host SNNs.
e & f. The homeostasis results obtained with the T = 25 setup by the LIF- and SRM-based host
SNNs, respectively.

Table 4: Quantitative performance of obstacle avoidance under weight uncertainty conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 25) SRM (T = 25)

Type Name SR↑ OTP SR↑ OTP SR↑ OTP SR↑ OTP

8-bit
Loihi

weight

SAN 78.5% 0.0% 77% 0.0% 77.5% 0.0% 74.5% 0.0%
SAN-NR 79.5% 0.0% 76.5% 0.5% 79% 0.0% 75.5% 0.0%
DT1 [4] 70% 0.0% 67% 0.0% 67.5% 0.5% 65.5% 0.0%
DT2 [5] 78.5% 0.0% 67.5% 1.0% 77% 0.0% 67% 0.5%
DET only 77.5% 0.0% 75% 0.0% 74.5% 0.5% 75% 0.0%
DTT only 86% 0.0% 80.5% 0.0% 81.5% 0.0% 80% 0.0%
BDETT 90% 0.0% 88.5% 0.0% 88.5% 0.0% 87.5% 0.0%

GN
weight

(5 rounds)

SAN 51.3% (σ-6.8) 1.2% 0% (σ-0) 20.3% 36.2% (σ-7.3) 3.6% 0% (σ-0) 18.4%
SAN-NR 52.5% (σ-7.1) 1.6% 37.2% (σ-7.6) 2.4% 39.0% (σ-7.8) 3.1% 38.4% (σ-8.9) 2.1%
DT1 [4] 54.6% (σ-7.9) 2.3% 44.9% (σ-11.4) 3.0% 35.7% (σ-9.2) 3.3% 32.4% (σ-9.6) 4.7%
DT2 [5] 73.2% (σ-7.4) 2.1% 43.6% (σ-4.4) 2.4% 56.2% (σ-9.3) 2.0% 30.3% (σ-5.7) 2.9%
DET only 61.8% (σ-12.0) 1.8% 43.3% (σ-4.6) 2.5% 47.0% (σ-11.3) 2.3% 34.1% (σ-5.4) 2.6%
DTT only 77.1% (σ-8.8) 1.5% 46.4% (σ-8.0) 1.6% 64.7% (σ-8.0) 1.8% 36.8% (σ-10.2) 1.4%
BDETT 87.7% (σ-3.3) 0.8% 61.8% (σ-2.9) 1.3% 70.1% (σ-4.2) 0.4% 52.6% (σ-4.0) 2.5%

30%
Zero

weight
(5 rounds)

SAN 59.3% (σ-10.5) 0.0% 0% (σ-0) 17.7% 51.2% (σ-11.3) 0.0% 0% (σ-0) 19.4%
SAN-NR 61.6% (σ-7.5) 0.0% 46.5% (σ-12.4) 0.0% 53.6% (σ-6.7) 0.0% 36.5% (σ-9.9) 0.2%
DT1 [4] 41.2% (σ-7.7) 0.7% 44.3% (σ-11.7) 0.0% 32.2% (σ-9.1) 1.3% 31.7% (σ-12.6) 0.6%
DT2 [5] 55.6% (σ-9.3) 0.3% 49.1% (σ-10.8) 0.8% 48.0% (σ-10.5) 0.0% 37.8% (σ-10.2) 1.1%
DET only 46.2% (σ-8.5) 0.0% 39.8% (σ-11.5) 1.4% 33.6% (σ-8.5) 0.8% 29.3% (σ-12.3) 2.5%
DTT only 60.6% (σ-9.5) 0.0% 45.4% (σ-7.4) 0.5% 50.3% (σ-8.7) 0.4% 38.8% (σ-8.0) 1.3%
BDETT 77.2% (σ-3.6) 0.0% 65.2% (σ-2.7) 0.3% 68.4% (σ-5.2) 0.0% 56.5% (σ-4.3) 0.7%
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Table 5: The raw homeostasis measurements of successful trials and the corresponding changes with
respect to the baseline condition in obstacle avoidance tasks with the T = 5 setting.

LIF (T = 5) SRM (T = 5)

Type Name FRm(∆) FRm
std(∆) FRs

std(∆) FRm(∆) FRm
std(∆) FRs

std(∆)

Dynamic
obstacle
(baseline

condition)

SAN 0.523 0.325 0.000891 0.278 0.301 0.000596
SAN-NR 0.515 0.330 0.001029 0.487 0.309 0.006853
DT1 [4] 0.443 0.325 0.001738 0.482 0.310 0.002942
DT2 [5] 0.400 0.345 0.002136 0.418 0.309 0.005873
DET only 0.508 0.336 0.001024 0.380 0.276 0.002564
DTT only 0.456 0.320 0.000902 0.475 0.294 0.002284
BDETT 0.439 0.312 0.000916 0.501 0.298 0.001759

0.2

SAN 0.556 (0.033) 0.329 (0.004) 0.000750 (0.000141) 0.293 (0.015) 0.247 (0.054) 0.000746 (0.000150)
SAN-NR 0.565 (0.050) 0.326 (0.004) 0.000738 (0.000291) 0.508 (0.021) 0.333 (0.024) 0.001069 (0.005784)
DT1 [4] 0.479 (0.036) 0.387 (0.062) 0.000973 (0.000765) 0.518 (0.036) 0.348 (0.038) 0.003993 (0.001051)
DT2 [5] 0.412 (0.012) 0.370 (0.025) 0.001293 (0.000843) 0.438 (0.020) 0.325 (0.016) 0.001709 (0.004164)
DET only 0.495 (0.013) 0.353 (0.017) 0.001523 (0.000499) 0.380 (0.000) 0.244 (0.032) 0.003969 (0.001405)
DTT only 0.481 (0.025) 0.335 (0.015) 0.000768 (0.000134) 0.420 (0.055) 0.335 (0.041) 0.002040 (0.000244)
BDETT 0.444 (0.005) 0.315 (0.003) 0.000851 (0.000065) 0.494 (0.007) 0.310 (0.012) 0.001884 (0.000125)

6.0

SAN 0.564 (0.041) 0.342 (0.017) 0.001454 (0.000563) 0.275 (0.003) 0.306 (0.005) 0.000747 (0.000151)
SAN-NR 0.558 (0.043) 0.339 (0.009) 0.001548 (0.000519) 0.483 (0.004) 0.306 (0.003) 0.002533 (0.004320)
DT1 [4] 0.432 (0.011) 0.318 (0.007) 0.002862 (0.001124) 0.471 (0.011) 0.315 (0.005) 0.004224 (0.001282)
DT2 [5] 0.407 (0.007) 0.354 (0.009) 0.003785 (0.001649) 0.408 (0.010) 0.320 (0.011) 0.005417 (0.000456)
DET only 0.515 (0.007) 0.374 (0.038) 0.003088 (0.002064) 0.377 (0.003) 0.230 (0.046) 0.003889 (0.001325)
DTT only 0.450 (0.006) 0.325 (0.005) 0.003057 (0.002155) 0.403 (0.072) 0.290 (0.004) 0.002855 (0.000571)
BDETT 0.440 (0.001) 0.317 (0.005) 0.000960 (0.000044) 0.501 (0.000) 0.300 (0.002) 0.001870 (0.000111)

GN

SAN 0.534 (0.011) 0.310 (0.015) 0.001416 (0.000525) 0.287 (0.009) 0.204 (0.097) 0.000727 (0.000131)
SAN-NR 0.527 (0.012) 0.314 (0.016) 0.001622 (0.000593) 0.497 (0.010) 0.298 (0.011) 0.007395 (0.000542)
DT1 [4] 0.451 (0.008) 0.319 (0.006) 0.000982 (0.000756) 0.502 (0.020) 0.302 (0.008) 0.004634 (0.001692)
DT2 [5] 0.405 (0.005) 0.337 (0.008) 0.001654 (0.000482) 0.423 (0.005) 0.283 (0.026) 0.005578 (0.000295)
DET only 0.502 (0.006) 0.361 (0.025) 0.001228 (0.000204) 0.390 (0.010) 0.283 (0.007) 0.002454 (0.000110)
DTT only 0.445 (0.011) 0.315 (0.005) 0.001453 (0.000551) 0.390 (0.085) 0.308 (0.014) 0.001968 (0.000316)
BDETT 0.443 (0.004) 0.307 (0.005) 0.000880 (0.000036) 0.500 (0.001) 0.301 (0.003) 0.001886 (0.000127)

8-bit
Loihi

weight

SAN 0.520 (0.003) 0.319 (0.006) 0.000988 (0.000097) 0.288 (0.010) 0.314 (0.013) 0.000731 (0.000135)
SAN-NR 0.513 (0.002) 0.334 (0.004) 0.001286 (0.000257) 0.479 (0.008) 0.315 (0.006) 0.005527 (0.001326)
DT1 [4] 0.437 (0.006) 0.319 (0.006) 0.001589 (0.000149) 0.473 (0.009) 0.325 (0.015) 0.002084 (0.000858)
DT2 [5] 0.407 (0.007) 0.340 (0.005) 0.001853 (0.000283) 0.425 (0.007) 0.316 (0.007) 0.005638 (0.000235)
DET only 0.505 (0.003) 0.341 (0.005) 0.000868 (0.000156) 0.385 (0.005) 0.285 (0.009) 0.002185 (0.000379)
DTT only 0.446 (0.010) 0.325 (0.005) 0.000787 (0.000115) 0.460 (0.015) 0.301 (0.007) 0.002436 (0.000152)
BDETT 0.439 (0.000) 0.308 (0.004) 0.000932 (0.000016) 0.500 (0.001) 0.293 (0.005) 0.001570 (0.000189)

GN
weight

(5 rounds)

SAN 0.501 (0.022) 0.338 (0.013) 0.001192 (0.000301) - - -
SAN-NR 0.490 (0.025) 0.338 (0.008) 0.001281 (0.000252) 0.498 (0.011) 0.326 (0.017) 0.004461 (0.002392)
DT1 [4] 0.407 (0.036) 0.349 (0.024) 0.001902 (0.000164) 0.487 (0.005) 0.319 (0.009) 0.003573 (0.000631)
DT2 [5] 0.391 (0.009) 0.335 (0.010) 0.001356 (0.000780) 0.410 (0.008) 0.291 (0.018) 0.010002 (0.004129)
DET only 0.516 (0.008) 0.375 (0.039) 0.002225 (0.001201) 0.399 (0.019) 0.212 (0.064) 0.003675 (0.001111)
DTT only 0.467 (0.011) 0.327 (0.007) 0.001244 (0.000342) 0.387 (0.088) 0.301 (0.007) 0.002387 (0.000103)
BDETT 0.444 (0.005) 0.318 (0.006) 0.001013 (0.000097) 0.498 (0.003) 0.299 (0.001) 0.001602 (0.000157)

30%
Zero

weight
(5 rounds)

SAN 0.448 (0.075) 0.321 (0.004) 0.001490 (0.000599) - - -
SAN-NR 0.454 (0.061) 0.335 (0.005) 0.001399 (0.000370) 0.470 (0.017) 0.331 (0.022) 0.009941 (0.003088)
DT1 [4] 0.387 (0.056) 0.313 (0.012) 0.002045 (0.000307) 0.456 (0.026) 0.334 (0.024) 0.005103 (0.002161)
DT2 [5] 0.377 (0.023) 0.358 (0.013) 0.001834 (0.000302) 0.403 (0.015) 0.332 (0.023) 0.003469 (0.002404)
DET only 0.520 (0.012) 0.387 (0.051) 0.002582 (0.001558) 0.356 (0.024) 0.235 (0.041) 0.005036 (0.002472)
DTT only 0.470 (0.014) 0.337 (0.017) 0.002551 (0.001649) 0.394 (0.081) 0.274 (0.020) 0.003706 (0.001422)
BDETT 0.444 (0.005) 0.316 (0.004) 0.000993 (0.000077) 0.497 (0.004) 0.318 (0.020) 0.003855 (0.002096)

Assessment—Homeostatic

In the main manuscript, we show the quantified homeostasis changes induced during all successful tri-
als with respect to the base condition (the homeostasis obtained in the dynamic obstacle experiments)
under the T = 5 setting. Table 5 provides the raw homeostasis measurements and the corresponding
changes used for plotting the polar chart in the main manuscript.

We also offer the measured homeostasis and corresponding changes obtained under the T = 25
setting in Table 6. The corresponding polar plots are shown in Figures 4e and f. Similar to the
observations obtained in the experiments with T = 5, the association between homeostasis and
the obstacle avoidance SR still holds for T = 25; stronger homeostasis offers better performance.
Notably, our approach induces the smallest changes in the three metrics across all experimental
settings, except for the FRm

std obtained in the SRM-based 8-bit Loihi weight experiment. Furthermore,
the proposed BDETT delivers the best obstacle avoidance SRs in all designed experimental conditions
with T = 25; see Tables 2, 3, and 4 and Figures 4e and f.
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Table 6: The raw homeostasis measurements of successful trials and the corresponding changes with
respect to the baseline condition in obstacle avoidance tasks with the T = 25 setting.

LIF (T = 25) SRM (T = 25)

Type Name FRm(∆) FRm
std(∆) FRs

std(∆) FRm(∆) FRm
std(∆) FRs

std(∆)

Dynamic
obstacle
(baseline

condition)

SAN 0.524 0.325 0.002098 0.285 0.306 0.001504
SAN-NR 0.515 0.331 0.001440 0.488 0.312 0.003486
DT1 [4] 0.447 0.324 0.002155 0.485 0.319 0.002473
DT2 [5] 0.401 0.347 0.002470 0.420 0.314 0.005771
DET only 0.509 0.336 0.001206 0.384 0.279 0.002483
DTT only 0.449 0.317 0.001736 0.475 0.301 0.002515
BDETT 0.439 0.311 0.001035 0.501 0.301 0.002394

0.2

SAN 0.556 (0.032) 0.330 (0.005) 0.000798 (0.001300) 0.294 (0.009) 0.245 (0.061) 0.001004 (0.000500)
SAN-NR 0.566 (0.051) 0.326 (0.005) 0.000768 (0.000670) 0.536 (0.048) 0.351 (0.039) 0.001224 (0.002260)
DT1 [4] 0.481 (0.034) 0.387 (0.063) 0.001097 (0.001060) 0.517 (0.032) 0.344 (0.025) 0.003823 (0.001350)
DT2 [5] 0.415 (0.014) 0.370 (0.023) 0.001662 (0.000810) 0.438 (0.018) 0.326 (0.012) 0.001781 (0.003990)
DET only 0.496 (0.013) 0.353 (0.017) 0.001424 (0.000218) 0.380 (0.004) 0.246 (0.033) 0.003362 (0.000879)
DTT only 0.485 (0.036) 0.336 (0.019) 0.000972 (0.000760) 0.420 (0.055) 0.335 (0.034) 0.003116 (0.000601)
BDETT 0.444 (0.005) 0.314 (0.003) 0.001104 (0.000069) 0.494 (0.007) 0.310 (0.010) 0.002238 (0.000160)

6.0

SAN 0.558 (0.034) 0.341 (0.016) 0.001415 (0.000683) 0.275 (0.010) 0.303 (0.003) 0.000839 (0.000665)
SAN-NR 0.550 (0.035) 0.340 (0.009) 0.001165 (0.000275) 0.484 (0.004) 0.306 (0.006) 0.003828 (0.000342)
DT1 [4] 0.433 (0.014) 0.319 (0.005) 0.002449 (0.000294) 0.471 (0.014) 0.315 (0.004) 0.003621 (0.001148)
DT2 [5] 0.406 (0.005) 0.353 (0.006) 0.003206 (0.000736) 0.406 (0.014) 0.320 (0.006) 0.005094 (0.000667)
DET only 0.516 (0.007) 0.374 (0.038) 0.003172 (0.001966) 0.377 (0.007) 0.241 (0.038) 0.003248 (0.000765)
DTT only 0.450 (0.001) 0.327 (0.010) 0.002744 (0.001008) 0.413 (0.062) 0.289 (0.012) 0.002742 (0.000227)
BDETT 0.440 (0.001) 0.316 (0.005) 0.001247 (0.000212) 0.501 (0.000) 0.300 (0.001) 0.002092 (0.000302)

GN

SAN 0.538 (0.014) 0.311 (0.014) 0.002522 (0.000424) 0.288 (0.003) 0.209 (0.097) 0.000883 (0.000621)
SAN-NR 0.530 (0.015) 0.318 (0.013) 0.003055 (0.001615) 0.503 (0.015) 0.299 (0.013) 0.005029 (0.001543)
DT1 [4] 0.452 (0.005) 0.319 (0.005) 0.001408 (0.000747) 0.502 (0.017) 0.302 (0.017) 0.004470 (0.001997)
DT2 [5] 0.405 (0.004) 0.336 (0.011) 0.002005 (0.000465) 0.423 (0.003) 0.283 (0.031) 0.005235 (0.000536)
DET only 0.500 (0.009) 0.367 (0.031) 0.001424 (0.000218) 0.392 (0.008) 0.286 (0.007) 0.003130 (0.000647)
DTT only 0.445 (0.004) 0.311 (0.006) 0.001260 (0.000476) 0.401 (0.074) 0.310 (0.009) 0.001795 (0.000720)
BDETT 0.443 (0.004) 0.306 (0.005) 0.001085 (0.000050) 0.498 (0.003) 0.301 (0.000) 0.001962 (0.000432)

8-bit
Loihi

weight

SAN 0.519 (0.005) 0.319 (0.006) 0.001106 (0.000992) 0.290 (0.005) 0.315 (0.009) 0.000961 (0.000543)
SAN-NR 0.510 (0.005) 0.336 (0.005) 0.001153 (0.000287) 0.478 (0.010) 0.317 (0.005) 0.005220 (0.001734)
DT1 [4] 0.435 (0.012) 0.318 (0.006) 0.001467 (0.000688) 0.472 (0.013) 0.327 (0.008) 0.001854 (0.000619)
DT2 [5] 0.411 (0.010) 0.339 (0.008) 0.001802 (0.000668) 0.428 (0.008) 0.317 (0.003) 0.005032 (0.000739)
DET only 0.504 (0.005) 0.341 (0.005) 0.000924 (0.000282) 0.387 (0.003) 0.288 (0.009) 0.002816 (0.000333)
DTT only 0.446 (0.003) 0.327 (0.010) 0.001302 (0.000434) 0.462 (0.013) 0.303 (0.002) 0.002038 (0.000477)
BDETT 0.439 (0.000) 0.308 (0.003) 0.001107 (0.000072) 0.502 (0.001) 0.297 (0.004) 0.002164 (0.000230)

GN
weight

(5 rounds)

SAN 0.503 (0.021) 0.340 (0.015) 0.001241 (0.000857) - - -
SAN-NR 0.488 (0.027) 0.340 (0.009) 0.001796 (0.000356) 0.499 (0.011) 0.328 (0.016) 0.004204 (0.000718)
DT1 [4] 0.413 (0.034) 0.346 (0.022) 0.002318 (0.000163) 0.491 (0.006) 0.320 (0.001) 0.003065 (0.000592)
DT2 [5] 0.390 (0.011) 0.336 (0.011) 0.001382 (0.001088) 0.411 (0.007) 0.292 (0.017) 0.008895 (0.003124)
DET only 0.516 (0.007) 0.372 (0.036) 0.002643 (0.001437) 0.397 (0.013) 0.218 (0.061) 0.003384 (0.000901)
DTT only 0.467 (0.018) 0.328 (0.011) 0.001352 (0.000384) 0.393 (0.082) 0.303 (0.002) 0.003581 (0.001066)
BDETT 0.444 (0.005) 0.318 (0.007) 0.001163 (0.000128) 0.498 (0.003) 0.300 (0.001) 0.001923 (0.000471)

30%
Zero

weight
(5 rounds)

SAN 0.443 (0.081) 0.320 (0.005) 0.000862 (0.001236) - - -
SAN-NR 0.457 (0.058) 0.338 (0.007) 0.002461 (0.001021) 0.472 (0.016) 0.332 (0.020) 0.009380 (0.005894)
DT1 [4] 0.388 (0.059) 0.312 (0.012) 0.001257 (0.000898) 0.456 (0.029) 0.334 (0.015) 0.005820 (0.003347)
DT2 [5] 0.372 (0.029) 0.359 (0.012) 0.001930 (0.000540) 0.403 (0.017) 0.332 (0.018) 0.003060 (0.002711)
DET only 0.524 (0.015) 0.368 (0.032) 0.002974 (0.001786) 0.360 (0.024) 0.245 (0.034) 0.004378 (0.001895)
DTT only 0.472 (0.023) 0.334 (0.017) 0.002013 (0.000277) 0.402 (0.073) 0.280 (0.021) 0.004420 (0.001905)
BDETT 0.446 (0.007) 0.316 (0.005) 0.001502 (0.000467) 0.488 (0.013) 0.316 (0.015) 0.004638 (0.002244)

Assessment—Ablation Studies

We conduct ablation studies to validate the effectiveness of the DET and DTT components of the
proposed BDETT. The results obtained under different degraded conditions are reported in the rows
named “DET only” and “DTT only” in Tables 1, 2, 3, and 4. The ablation study results are also
illustrated in Figure 4. All listed evaluations validate that the BDETT scheme performs better than
any single component. The dynamic threshold scheme with only one component cannot effectively
regulate the firing rate statuses of the host SNNs, prohibiting meaningful homeostasis. One extreme
example is illustrated in Figure 4f. The ∆FRm changes induced under the ‘DTT only’ setting are the
largest among all competing approaches under all experimental conditions. Notably, when combined
with the other component, the proposed BDETT provides the strongest homeostasis for the host
SNNs. This validates the biologically observed positive correlation encoded by the DET and the
negative correlation enforced by the DTT, which are equally essential for effectively maintaining the
homeostasis of an SNN.
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Supplementary Note 5: Additional Details on Continuous Control
Experiments—HalfCheetah-v3

Training

The adopted population-coded SAN (PopSAN) and its modified variants are trained by using the
twin-delayed deep deterministic policy gradient (TD3) off-policy algorithm [25] and the following
hyperparameter settings: D = 0.75 for the LIF; η = 0.01 and ψ = 6.0 for the DET; C = 3.0 for the
DTT; and τs = τr = 1.0 for the SRM. Compared to the settings of the obstacle avoidance tasks, the
only different setting is the value of ψ for the DET. Following the training protocol of the PopSAN,
we set the batch size to 100 and the learning rates to 0.0001 for both the actor and critic networks.
The reward discount factor is set to 0.99, and the maximum length of the replay buffer is set to 1
million. We use PyTorch [23] to train all competing SNNs with an i7-7700 CPU and an NVIDIA
GTX 1080Ti GPU.

Figure 5: The experimental results obtained in the HalfCheetah-v3 tasks. a & b. The rewards obtained
under normal and different degraded conditions with T = 5 and T = 25 settings, respectively. ‘Base’
indicates the base condition; ‘RP’ indicates random joint position; ‘RV’ denotes random joint
velocity; ‘8-bit’, ‘GNW’, and ‘30%’ denote the 8-bit Loihi weights, GN weights, and 30% zero
weights, respectively. c & d. Homeostasis measurements obtained with the T = 5 setting for the LIF-
and SRM-based host SNNs, respectively. e & f. Homeostasis results obtained with the T = 25 setup
for the LIF- and SRM-based host SNNs, respectively.

Assessment—Reward

After determining the evaluation settings of the PopSAN [26], we train ten models corresponding to
ten random seeds, and the best-performing model is used for our assessments under different degraded
conditions. In particular, the best-performing model is evaluated ten times under each experimental
condition, and the mean reward of the ten evaluations represents the model’s performance. Each
evaluation consists of ten episodes, and each episode lasts for a maximum of 1000 execution steps.
Table 7 shows the ten evaluations’ average rewards and the corresponding standard deviations of all
competing SNNs under a normal testing condition. Here, we also present the quantitative performance

13



Table 7: Quantitative Performance of Mujoco HalfCheetah-v3 Tasks under standard testing condition.

LIF (T = 5) SRM (T = 5) LIF (T = 25) SRM (T = 25)

Name Reward↑ Reward↑ Reward↑ Reward↑
PopSAN 10989 (σ-49) 11268 (σ-149) 11137 (σ-70) 11247 (σ-132)
DT1 [4] 6572 (σ-85) 7085 (σ-69) 6438 (σ-102) 7001 (σ-82)
DT2 [5] 5110 (σ-30) 5262 (σ-77) 5523 (σ-67) 5311 (σ-113)
DET only 9794 (σ-107) 9694 (σ-112) 9704 (σ-125) 9619 (σ-105)
DTT only 10104 (σ-44) 10332 (σ-106) 10221 (σ-57) 10563 (σ-83)
BDETT 11064 (σ-28) 11960 (σ-86) 11209 (σ-56) 11956 (σ-95)

achieved under the T = 5 and T = 25 settings. With both the LIF and SRM models, the proposed
BDETT offers the host SNNs the best rewards in all experimental settings under normal testing
conditions (the base conditions).

Unlike in the obstacle avoidance tasks, even with grid searches, the rewards offered by DT1 and
DT2 are significantly lower than those provided by the baseline PopSAN model. This indicates
that dynamic threshold schemes may perform worse than a simple static threshold, especially for
heuristic-based schemes. More importantly, we observe similar patterns in the obstacle avoidance
tasks; the SRs offered by DT1 and DT2 are lower than those of the baseline SAN-NR model in most
experimental conditions.

Tables 8 and 9 show the quantitative performance of all competing approaches under degraded input
and weight uncertainty conditions, respectively. The results are also illustrated in Figures 5a and b for
the T = 5 and T = 25 settings, respectively. We provide a more detailed analysis for each degraded
condition in the following.

Degraded Inputs In the HalfCheetah-v3 continuous control task, an observation (state) s represents
17-dimensional data consisting of 8-dimensional joint position information and 9-dimensional joint
velocity information. Similar to the degraded input experiments conducted in the robot obstacle
avoidance tasks, we disturb a HalfCheetah-v3’s observations in three different ways. a) “Random
joint position": for each episode, one of the eight joint positions is randomly selected, and its
original position is replaced by a random number sampled from a Gaussian distribution N (0, 0.1).
b) “Random joint velocity": we randomly select one of the nine joint velocities in each episode and
change its observed velocity to a random number sampled from a Gaussian distribution N (0, 10.0).
c) “GN": For each episode, we add Gaussian noise (sinput + N (0, 1.0), as suggested in a study
regarding LSTM-LMC [24]) to each of the 17 joint states. The average rewards obtained from the
ten evaluations conducted under these three different conditions are shown in Table 8.

Under all experimental settings, the proposed BDETT offers the host SNNs the highest rewards,
significantly improving upon the rewards of the baseline PopSAN model by at least 438 with T = 5,
and 358 with T = 25. Compared to the other two degraded input conditions, the “GN" condition
disturbs all dimensions of the HalfCheetah-v3 state. Therefore, we observe that the lowest rewards
obtained by all host SNNs occur with the “GN" setting. Even though the DT1 method hosted by an
LIF-based SNN reduces the rewards of the baseline PopSAN model by almost half, it outperforms the
baseline model with both T settings under the “GN" condition. Furthermore, the proposed BDETT
provides the most stable performance, highlighted by it obtaining the smallest standard deviations
under all the degraded input settings.

Weight Uncertainty We leverage the same weight uncertainty conditions as those introduced in robot
obstacle avoidance experiments to demonstrate the effectiveness of all competing dynamic threshold
schemes, and the corresponding results are shown in Table 9. The proposed BDETT remains the best
performer under the weight uncertainty conditions. Note that the SRM-based BDETT outperforms
other methods by significant margins under the “GN weight" settings, highlighting that the proposed
dynamic threshold scheme can effectively deal with weight uncertainty errors. We also notice that
the DT2 scheme produces the lowest rewards under all experimental weight uncertainty settings,
indicating that predefining a target firing rate does not work well with weight uncertainty conditions.
Surprisingly, even with low-precision 8-bit weights, the proposed BDETT helps the SRM-based host
SNN achieve higher rewards than those obtained with high-precision weights under the T = 5 and
T = 25 settings (11767 vs. 11268 with T = 5 and 11760 vs. 11247 with T = 25).
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Table 8: Quantitative performance of Mujoco HalfCheetah-v3 tasks under degraded input conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 25) SRM (T = 25)

Type Name Reward↑ Reward↑ Reward↑ Reward↑

Random
joint

position

PopSAN 7832 (σ-222) 7120 (σ-214) 7947 (σ-253) 7167 (σ-197)
DT1 [4] 3923 (σ-204) 6830 (σ-140) 3835 (σ-248) 6792 (σ-157)
DT2 [5] 3750 (σ-171) 3230 (σ-239) 3950 (σ-192) 3213 (σ-230)
DET only 7954 (σ-103) 3582 (σ-284) 8051 (σ-148) 3502 (σ-323)
DTT only 6817 (σ-221) 7428 (σ-234) 6922 (σ-202) 7493 (σ-182)
BDETT 8465 (σ-121) 7883 (σ-78) 8463 (σ-130) 7846 (σ-70)

Random
joint

velocity

PopSAN 7020 (σ-146) 6576 (σ-147) 7223 (σ-165) 6583 (σ-168)
DT1 [4] 3187 (σ-142) 3836 (σ-181) 3203 (σ-148) 3855 (σ-202)
DT2 [5] 3395 (σ-209) 3031 (σ-239) 3506 (σ-208) 2965 (σ-241)
DET only 6664 (σ-179) 6392 (σ-206) 6498 (σ-219) 6435 (σ-213)
DTT only 7249 (σ-137) 6772 (σ-299) 7363 (σ-150) 6762 (σ-247)
BDETT 8302 (σ-84) 7116 (σ-146) 8422 (σ-94) 7127 (σ-131)

GN

PopSAN 2440 (σ-199) 3457 (σ-187) 2393 (σ-214) 3494 (σ-187)
DT1 [4] 2790 (σ-187) 2210 (σ-124) 2773 (σ-198) 2355 (σ-120)
DT2 [5] 1994 (σ-175) 2307 (σ-272) 2281 (σ-223) 2210 (σ-251)
DET only 2831 (σ-157) 3013 (σ-130) 2807 (σ-163) 3061 (σ-155)
DTT only 2974 (σ-194) 2851 (σ-81) 3281 (σ-173) 2855 (σ-115)
BDETT 3909 (σ-101) 3895 (σ-81) 3965 (σ-83) 3852 (σ-69)

Table 9: Quantitative performance of Mujoco HalfCheetah-v3 tasks under weight uncertainty condi-
tions.

LIF (T = 5) SRM (T = 5) LIF (T = 25) SRM (T = 25)

Type Name Reward↑ Reward↑ Reward↑ Reward↑

8-bit
Loihi

weight

PopSAN 10728 (σ-47) 10802 (σ-32) 10926 (σ-59) 10850 (σ-44)
DT1 [4] 6026 (σ-63) 6569 (σ-46) 5883 (σ-102) 6420 (σ-97)
DT2 [5] 4372 (σ-54) 4629 (σ-50) 4301 (σ-87) 4636 (σ-74)
DET only 9455 (σ-125) 9398 (σ-60) 9474 (σ-137) 9376 (σ-82)
DTT only 9803 (σ-44) 9636 (σ-84) 9968 (σ-69) 9645 (σ-113)
BDETT 10823 (σ-37) 11767 (σ-45) 10990 (σ-61) 11760 (σ-68)

GN
weight

PopSAN 4640 (σ-510) 3583 (σ-347) 4816 (σ-583) 3597 (σ-426)
DT1 [4] 4483 (σ-491) 4128 (σ-754) 4365 (σ-466) 4051 (σ-760)
DT2 [5] 1334 (σ-616) 2028 (σ-1026) 1402 (σ-721) 1982 (σ-993)
DET only 5251 (σ-859) 5032 (σ-705) 5313 (σ-801) 5035 (σ-652)
DTT only 4013 (σ-423) 6250 (σ-368) 4238 (σ-468) 6327 (σ-403)
BDETT 6928 (σ-373) 8381 (σ-320) 6957 (σ-429) 8321 (σ-352)

30%
Zero

weight

PopSAN 5020 (σ-923) 3233 (σ-879) 5078 (σ-1031) 3304 (σ-950)
DT1 [4] 3995 (σ-1319) 3503 (σ-571) 3927 (σ-1406) 3484 (σ-772)
DT2 [5] 2721 (σ-1281) 3056 (σ-555) 2713 (σ-1352) 3002 (σ-582)
DET only 4436 (σ-801) 4682 (σ-540) 4406 (σ-822) 4692 (σ-515)
DTT only 3583 (σ-692) 3268 (σ-641) 3604 (σ-662) 3359 (σ-705)
BDETT 6551 (σ-679) 5386 (σ-443) 6619 (σ-712) 5474 (σ-388)

Assessment—Homeostatic

In the main manuscript, the changes in the quantified homeostasis values with respect to the base
condition (the normal Mujoco testing condition) under T = 5 are illustrated. The raw homeostasis
measurements and the corresponding changes used for plotting the polar chart in the main manuscript
are reported in Table 10. In addition, we also provide the experimental homeostasis results obtained
under T = 25 in Table 11. The corresponding polar plots obtained under the T = 5 and T = 25
setups are shown in Figures 5c-f.

The results are consistent with those obtained in the obstacle avoidance tasks. The proposed BDETT
scheme offers the strongest homeostasis, indicating the effectiveness of the proposed dynamic thresh-
old scheme. The essential goal of homeostasis is to enhance the host SNN’s performance. Therefore,
we expect the SNNs with stronger homeostasis (smaller ∆FRm, ∆FRm

std, and ∆FRs
std values) to

outperform those with weaker homeostasis. Our experimental results confirm this expectation.
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Table 10: The raw homeostasis measurements and the corresponding changes with respect to the
baseline condition in Mujoco HalfCheetah-v3 tasks with T = 5.

LIF (T = 5) SRM (T = 5)

Type Name FRm(∆) FRm
std(∆) FRs

std(∆) FRm(∆) FRm
std(∆) FRs

std(∆)

baseline
condition

PopSAN 0.433 0.228 0.000978 0.427 0.241 0.002146
DT1 [4] 0.412 0.239 0.001342 0.474 0.248 0.002166
DT2 [5] 0.697 0.298 0.000911 0.530 0.302 0.001472
DET only 0.284 0.220 0.001084 0.335 0.243 0.001558
DTT only 0.646 0.257 0.002291 0.501 0.334 0.002541
BDETT 0.249 0.190 0.001152 0.212 0.160 0.000952

Random
joint

position

PopSAN 0.426 (0.007) 0.237 (0.009) 0.001230 (0.000252) 0.440 (0.013) 0.258 (0.017) 0.002852 (0.000706)
DT1 [4] 0.435 (0.023) 0.252 (0.013) 0.001713 (0.000371) 0.426 (0.048) 0.269 (0.021) 0.004145 (0.001979)
DT2 [5] 0.686 (0.011) 0.289 (0.009) 0.001239 (0.000328) 0.508 (0.022) 0.333 (0.031) 0.002164 (0.000692)
DET only 0.289 (0.005) 0.227 (0.007) 0.001323 (0.000239) 0.347 (0.012) 0.261 (0.018) 0.002006 (0.000448)
DTT only 0.640 (0.006) 0.263 (0.006) 0.002077 (0.000214) 0.521 (0.020) 0.380 (0.046) 0.003124 (0.000583)
BDETT 0.246 (0.003) 0.186 (0.004) 0.001268 (0.000116) 0.209 (0.003) 0.152 (0.008) 0.001071 (0.000119)

Random
joint

velocity

PopSAN 0.439 (0.006) 0.240 (0.012) 0.001502 (0.000524) 0.453 (0.026) 0.314 (0.073) 0.001513 (0.000633)
DT1 [4] 0.381 (0.031) 0.259 (0.020) 0.002602 (0.001260) 0.510 (0.036) 0.261 (0.013) 0.004051 (0.001885)
DT2 [5] 0.690 (0.007) 0.289 (0.009) 0.001725 (0.000814) 0.487 (0.043) 0.340 (0.038) 0.001896 (0.000424)
DET only 0.280 (0.004) 0.214 (0.006) 0.000905 (0.000179) 0.351 (0.016) 0.219 (0.024) 0.001846 (0.000288)
DTT only 0.656 (0.010) 0.246 (0.011) 0.002027 (0.000264) 0.550 (0.049) 0.355 (0.021) 0.002891 (0.000350)
BDETT 0.245 (0.004) 0.186 (0.004) 0.001336 (0.000184) 0.204 (0.008) 0.168 (0.008) 0.001104 (0.000152)

GN

PopSAN 0.418 (0.015) 0.243 (0.015) 0.001400 (0.000422) 0.476 (0.049) 0.221 (0.020) 0.002481 (0.000335)
DT1 [4] 0.423 (0.011) 0.225 (0.014) 0.001623 (0.000281) 0.535 (0.061) 0.283 (0.035) 0.004810 (0.002644)
DT2 [5] 0.680 (0.017) 0.312 (0.014) 0.001273 (0.000362) 0.481 (0.049) 0.362 (0.060) 0.002215 (0.000743)
DET only 0.278 (0.006) 0.212 (0.008) 0.001353 (0.000269) 0.302 (0.033) 0.277 (0.034) 0.002411 (0.000853)
DTT only 0.638 (0.008) 0.269 (0.012) 0.002448 (0.000157) 0.434 (0.067) 0.301 (0.033) 0.002062 (0.000479)
BDETT 0.245 (0.004) 0.184 (0.006) 0.001300 (0.000148) 0.225 (0.013) 0.171 (0.011) 0.001093 (0.000141)

8-bit
Loihi

weight

PopSAN 0.430 (0.003) 0.221 (0.007) 0.001061 (0.000083) 0.420 (0.007) 0.252 (0.011) 0.001847 (0.000299)
DT1 [4] 0.424 (0.012) 0.248 (0.009) 0.001285 (0.000057) 0.442 (0.032) 0.230 (0.018) 0.002520 (0.000354)
DT2 [5] 0.678 (0.019) 0.285 (0.013) 0.001022 (0.000111) 0.492 (0.038) 0.320 (0.018) 0.001701 (0.000229)
DET only 0.290 (0.006) 0.229 (0.009) 0.001211 (0.000127) 0.327 (0.008) 0.235 (0.008) 0.001303 (0.000255)
DTT only 0.655 (0.009) 0.264 (0.007) 0.002402 (0.000111) 0.488 (0.013) 0.343 (0.009) 0.002707 (0.000166)
BDETT 0.249 (0.000) 0.186 (0.004) 0.001114 (0.000038) 0.215 (0.003) 0.163 (0.003) 0.000907 (0.000045)

GN
weight

PopSAN 0.456 (0.023) 0.210 (0.018) 0.001249 (0.000271) 0.464 (0.037) 0.305 (0.064) 0.003358 (0.001212)
DT1 [4] 0.426 (0.014) 0.223 (0.016) 0.001004 (0.000338) 0.429 (0.045) 0.285 (0.037) 0.003702 (0.001536)
DT2 [5] 0.678 (0.019) 0.316 (0.018) 0.001381 (0.000470) 0.503 (0.027) 0.362 (0.060) 0.002172 (0.000700)
DET only 0.271 (0.013) 0.227 (0.007) 0.001385 (0.000301) 0.364 (0.029) 0.208 (0.035) 0.001042 (0.000516)
DTT only 0.626 (0.020) 0.281 (0.024) 0.001972 (0.000319) 0.562 (0.061) 0.287 (0.047) 0.004133 (0.001592)
BDETT 0.256 (0.007) 0.185 (0.005) 0.001264 (0.000112) 0.219 (0.007) 0.165 (0.005) 0.001049 (0.000097)

30%
Zero

weight

PopSAN 0.502 (0.069) 0.220 (0.008) 0.001441 (0.000463) 0.412 (0.015) 0.279 (0.038) 0.003522 (0.001376)
DT1 [4] 0.439 (0.027) 0.256 (0.017) 0.001784 (0.000442) 0.436 (0.038) 0.263 (0.015) 0.001216 (0.000950)
DT2 [5] 0.675 (0.022) 0.325 (0.027) 0.001327 (0.000416) 0.472 (0.058) 0.258 (0.044) 0.000994 (0.000478)
DET only 0.268 (0.016) 0.210 (0.010) 0.001329 (0.000245) 0.370 (0.035) 0.210 (0.033) 0.003205 (0.001647)
DTT only 0.680 (0.034) 0.338 (0.081) 0.002804 (0.000513) 0.485 (0.016) 0.317 (0.017) 0.001024 (0.001517)
BDETT 0.243 (0.006) 0.184 (0.006) 0.001306 (0.000154) 0.217 (0.005) 0.154 (0.006) 0.001058 (0.000106)

Assessment—Ablation Studies

The ablation study results are reported in the rows named “DET only” and “DTT only” in Tables 7,
8, and 9. In addition, the results are illustrated in Figure 5. The results reflect the same facts that
we observed in the obstacle avoidance tasks. The dynamic threshold schemes with only the DET or
DTT components cannot effectively regulate the firing rate statuses of the host SNNs, prohibiting
meaningful homeostasis. For the LIF-based host SNNs, one extreme example is illustrated in the
“30% Zero weight" sections of Figures 5c and e, where ‘DTT only’ reports the largest change among
all competing approaches under all experimental conditions in terms of ∆FRm

std. With the T = 25
setup, as shown in Figures 5d and f, the ∆FRm values of ‘DTT only’ in the “GN weight" sections are
the largest across all experimental settings.
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Table 11: The raw homeostasis measurements and the corresponding changes with respect to the
baseline condition in Mujoco HalfCheetah-v3 tasks with the T = 25 setup.

LIF (T = 25) SRM (T = 25)

Type Name FRm(∆) FRm
std(∆) FRs

std(∆) FRm(∆) FRm
std(∆) FRs

std(∆)

baseline
condition

PopSAN 0.436 0.230 0.001156 0.440 0.252 0.002217
DT1 [4] 0.420 0.240 0.001158 0.470 0.247 0.001869
DT2 [5] 0.676 0.290 0.000939 0.521 0.305 0.001785
DET only 0.292 0.225 0.001237 0.341 0.253 0.001631
DTT only 0.635 0.257 0.002433 0.493 0.340 0.002722
BDETT 0.251 0.192 0.001292 0.215 0.173 0.001074

Random
joint

position

PopSAN 0.426 (0.010) 0.238 (0.008) 0.001381 (0.000225) 0.458 (0.018) 0.264 (0.012) 0.003048 (0.000831)
DT1 [4] 0.440 (0.020) 0.258 (0.018) 0.001721 (0.000563) 0.442 (0.028) 0.268 (0.021) 0.003632 (0.001763)
DT2 [5] 0.648 (0.028) 0.272 (0.018) 0.001348 (0.000409) 0.501 (0.020) 0.342 (0.037) 0.002384 (0.000599)
DET only 0.301 (0.009) 0.236 (0.011) 0.001464 (0.000227) 0.359 (0.018) 0.285 (0.032) 0.002179 (0.000548)
DTT only 0.630 (0.005) 0.265 (0.008) 0.002104 (0.000329) 0.518 (0.025) 0.372 (0.032) 0.003438 (0.000716)
BDETT 0.247 (0.004) 0.187 (0.005) 0.001431 (0.000139) 0.210 (0.005) 0.163 (0.010) 0.001242 (0.000168)

Random
joint

velocity

PopSAN 0.450 (0.014) 0.239 (0.009) 0.001425 (0.000269) 0.474 (0.034) 0.332 (0.080) 0.002922 (0.000705)
DT1 [4] 0.387 (0.033) 0.258 (0.018) 0.002474 (0.001316) 0.427 (0.043) 0.268 (0.021) 0.003572 (0.001703)
DT2 [5] 0.664 (0.012) 0.261 (0.029) 0.002582 (0.001643) 0.487 (0.034) 0.347 (0.042) 0.002529 (0.000744)
DET only 0.310 (0.018) 0.235 (0.010) 0.001582 (0.000345) 0.368 (0.027) 0.292 (0.039) 0.002544 (0.000913)
DTT only 0.627 (0.008) 0.269 (0.012) 0.001548 (0.000885) 0.515 (0.022) 0.370 (0.030) 0.003282 (0.000560)
BDETT 0.245 (0.006) 0.185 (0.007) 0.001478 (0.000186) 0.208 (0.007) 0.183 (0.010) 0.001305 (0.000231)

GN

PopSAN 0.423 (0.013) 0.252 (0.022) 0.001633 (0.000477) 0.403 (0.037) 0.236 (0.016) 0.002574 (0.000357)
DT1 [4] 0.433 (0.013) 0.221 (0.019) 0.002061 (0.000903) 0.552 (0.082) 0.271 (0.024) 0.003784 (0.001915)
DT2 [5] 0.642 (0.034) 0.310 (0.020) 0.001385 (0.000446) 0.480 (0.041) 0.373 (0.068) 0.002833 (0.001048)
DET only 0.281 (0.011) 0.219 (0.006) 0.001610 (0.000373) 0.304 (0.037) 0.290 (0.037) 0.003082 (0.001451)
DTT only 0.622 (0.013) 0.274 (0.017) 0.002762 (0.000329) 0.453 (0.040) 0.305 (0.035) 0.002048 (0.000674)
BDETT 0.243 (0.008) 0.184 (0.008) 0.001512 (0.000220) 0.226 (0.011) 0.180 (0.007) 0.001283 (0.000209)

8-bit
Loihi

weight

PopSAN 0.432 (0.004) 0.224 (0.006) 0.001310 (0.000154) 0.452 (0.012) 0.238 (0.014) 0.001849 (0.000368)
DT1 [4] 0.427 (0.007) 0.221 (0.019) 0.001035 (0.000123) 0.485 (0.015) 0.259 (0.012) 0.002363 (0.000494)
DT2 [5] 0.661 (0.015) 0.278 (0.012) 0.001174 (0.000235) 0.535 (0.014) 0.328 (0.023) 0.001976 (0.000191)
DET only 0.299 (0.007) 0.234 (0.009) 0.001379 (0.000142) 0.351 (0.010) 0.267 (0.014) 0.001275 (0.000356)
DTT only 0.644 (0.009) 0.242 (0.015) 0.002210 (0.000223) 0.506 (0.013) 0.354 (0.014) 0.002894 (0.000172)
BDETT 0.250 (0.001) 0.197 (0.005) 0.001393 (0.000101) 0.211 (0.004) 0.178 (0.005) 0.001169 (0.000094)

GN
weight

PopSAN 0.471 (0.035) 0.211 (0.019) 0.001637 (0.000481) 0.479 (0.039) 0.336 (0.084) 0.003181 (0.000964)
DT1 [4] 0.433 (0.013) 0.218 (0.022) 0.000904 (0.000254) 0.438 (0.032) 0.302 (0.055) 0.004041 (0.002172)
DT2 [5] 0.642 (0.034) 0.320 (0.030) 0.001683 (0.000744) 0.492 (0.029) 0.366 (0.061) 0.004585 (0.002800)
DET only 0.271 (0.021) 0.238 (0.013) 0.001720 (0.000483) 0.369 (0.028) 0.202 (0.051) 0.003927 (0.002296)
DTT only 0.607 (0.028) 0.289 (0.032) 0.003104 (0.000671) 0.569 (0.076) 0.301 (0.039) 0.004273 (0.001551)
BDETT 0.264 (0.013) 0.183 (0.009) 0.001512 (0.000220) 0.229 (0.014) 0.182 (0.009) 0.001199 (0.000125)

30%
Zero

weight

PopSAN 0.493 (0.057) 0.215 (0.015) 0.001892 (0.000736) 0.410 (0.030) 0.292 (0.040) 0.003237 (0.001020)
DT1 [4] 0.447 (0.027) 0.258 (0.018) 0.001859 (0.000701) 0.424 (0.046) 0.288 (0.041) 0.000926 (0.000943)
DT2 [5] 0.655 (0.021) 0.334 (0.044) 0.001674 (0.000735) 0.486 (0.035) 0.251 (0.054) 0.000896 (0.000889)
DET only 0.273 (0.019) 0.239 (0.014) 0.001692 (0.000455) 0.371 (0.030) 0.216 (0.037) 0.004106 (0.002475)
DTT only 0.677 (0.042) 0.305 (0.048) 0.002976 (0.000543) 0.426 (0.067) 0.312 (0.028) 0.001176 (0.001546)
BDETT 0.239 (0.012) 0.181 (0.011) 0.001642 (0.000350) 0.221 (0.006) 0.180 (0.007) 0.001183 (0.000109)
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Supplementary Note 6: Additional Details on Continuous Control
Experiments—Ant-v3

The training and experimental setups are the same as those used for the HalfCheetah-v3 tasks.

Figure 6: The experimental results obtained in the Ant-v3 tasks. a & b. The rewards obtained under
normal and different degraded conditions under the T = 5 and T = 25 settings, respectively. ‘Base’
denotes the base condition; ‘RP’ and ‘RV’ represent random joint position and random joint velocity,
respectively; ‘8-bit’, ‘GNW’, and ‘30%’ denote the 8-bit Loihi weights, GN weights, and 30% zero
weights, respectively. c & d. Homeostasis measurements obtained under the T = 5 setting for the
LIF- and SRM-based host SNNs, respectively. e & f. Homeostasis results obtained with the T = 25
setup for the LIF- and SRM-based host SNNs, respectively.

Assessment—Reward

As in the HalfCheetah-v3 tasks, we present the rewards of all competing host SNNs under the original
normal conditions with the T = 5 and T = 25 settings; see Table 12. Compared to HalfCheetah-v3’s
17-dimensional state, the state of an Ant-v3 task has 111 dimensions. Thus, the rewards obtained
from the Ant-v3 experiments are much lower than those obtained in the HalfCheetah-v3 tasks.
Nevertheless, the proposed BDETT offers the highest rewards in the Ant-v3 tasks, and it improves
upon the rewards of the LIF- and SRM-based baseline models by at least 173 and 236, respectively.

Relative to the HalfCheetah-v3 tasks, DT1 offers much better rewards in the Ant-v3 tasks under
normal conditions. However, the rewards provided by DT1 and DT2 are still lower than those of the
baseline PopSAN model. This observation is consistent with those obtained in the obstacle avoidance
and HalfCheetah-v3 experiments.

We show the quantitative performance of all competing methods under degraded input and weight
uncertainty conditions in Tables 13 and 14, respectively. In Figures 6a and b, we also intuitively
present the results. The proposed BDETT is still the best performer under all experimental conditions
based on the obtained results. A more detailed analysis for each degraded condition is provided in
the following.
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Table 12: Quantitative performance of Mujoco Ant-v3 tasks under standard testing condition.

LIF (T = 5) SRM (T = 5) LIF (T = 25) SRM (T = 25)

Name Reward↑ Reward↑ Reward↑ Reward↑
PopSAN 5526 (σ-81) 5643 (σ-84) 5711 (σ-105) 5612 (σ-105)
DT1 [4] 5272 (σ-142) 5179 (σ-157) 5218 (σ-164) 5121 (σ-117)
DT2 [5] 3454 (σ-183) 3925 (σ-483) 3628 (σ-180) 4016 (σ-445)
DET only 4836 (σ-82) 4971 (σ-128) 4957 (σ-113) 5125 (σ-144)
DTT only 5041 (σ-294) 4883 (σ-154) 5192 (σ-267) 4864 (σ-187)
BDETT 5726 (σ-61) 5879 (σ-117) 5884 (σ-97) 5942 (σ-136)

Table 13: Quantitative performance of Mujoco Ant-v3 tasks under degraded input conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 25) SRM (T = 25)

Type Name Reward↑ Reward↑ Reward↑ Reward↑

Random
joint

position

PopSAN 2503 (σ-503) 3004 (σ-131) 2544 (σ-337) 3036 (σ-152)
DT1 [4] 1435 (σ-130) 1333 (σ-122) 1380 (σ-158) 1258 (σ-150)
DT2 [5] 1280 (σ-234) 1330 (σ-99) 1335 (σ-206) 1364 (σ-152)
DET only 2907 (σ-320) 2836 (σ-392) 2862 (σ-342) 2994 (σ-332)
DTT only 2213 (σ-389) 2190 (σ-119) 2305 (σ-373) 2273 (σ-162)
BDETT 3339 (σ-111) 3450 (σ-75) 3320 (σ-126) 3427 (σ-115)

Random
joint

velocity

PopSAN 2890 (σ-115) 2372 (σ-390) 2858 (σ-149) 2287 (σ-427)
DT1 [4] 2628 (σ-232) 2508 (σ-166) 2643 (σ-259) 2574 (σ-232)
DT2 [5] 1579 (σ-89) 1025 (σ-139) 1595 (σ-131) 1009 (σ-208)
DET only 2720 (σ-365) 2809 (σ-296) 2802 (σ-197) 2896 (σ-372)
DTT only 2635 (σ-234) 2515 (σ-201) 2699 (σ-255) 2618 (σ-260)
BDETT 3103 (σ-95) 2984 (σ-176) 3217 (σ-119) 2996 (σ-195)

GN

PopSAN 977 (σ-320) 1031 (σ-212) 1022 (σ-358) 1059 (σ-217)
DT1 [4] 922 (σ-234) 958 (σ-156) 875 (σ-270) 1012 (σ-178)
DT2 [5] 560 (σ-179) 583 (σ-158) 664 (σ-163) 623 (σ-235)
DET only 782 (σ-246) 1048 (σ-345) 844 (σ-304) 1105 (σ-364)
DTT only 849 (σ-177) 1172 (σ-209) 906 (σ-170) 1255 (σ-218)
BDETT 1269 (σ-166) 1559 (σ-138) 1339 (σ-156) 1576 (σ-161)

Degraded Inputs Compared to that of a HalfCheetah-v3 agent, the observation (state) of an Ant-v3
agent s represents a 111-dimensional data consisting of 13-dimensional joint position information,
14-dimensional joint velocity information, and 84-dimensional contact force data. We disturb Ant-
v3’s observation in the same three ways introduced in the HalfCheetah-v3 tasks: “Random joint
position", “Random joint velocity", and “GN". The average rewards obtained in the ten evaluations
conducted under these three different conditions are shown in Table 13. Under all experimental
settings, the proposed BDETT offers the host SNNs the highest rewards, significantly improving
upon the reward of the baseline PopSAN model by at least 213.

Weight Uncertainty We leverage the same weight uncertainty conditions as those used in the robot
obstacle avoidance and HalfCheetah-v3 experiments. The experimental results are shown in Table 14.
The proposed BDETT remains the best performer under all weight uncertainty conditions. As in
the HalfCheetah-v3 experiments, even with low-precision 8-bit weights, the proposed BDETT helps
both the LIF- and SRM-based host SNNs achieve higher rewards than those offered by the baseline
counterparts with high-precision floating-point weights under T = 5 (5570 vs. 5526 and 5648 vs.
5643, respectively). With the T = 25 setup, the SRM-based host SNN exhibits the same pattern.

Assessment—Homeostatic

The raw homeostasis measurements obtained with both T=5 and T=25 are provided in Tables 15
and 16, respectively. The corresponding homeostasis plots are shown in Figures 6c-f.

The homeostasis results obtained in the Ant-v3 tasks demonstrate the effectiveness of the proposed
BDETT in terms of regulating the neuronal firing rates of the host SNNs, inducing minimal changes
in all three metrics when transferring from the base conditions to all other experimental settings. We
witness that the strongest homeostasis again provides the highest rewards.
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Table 14: Quantitative performance of Mujoco Ant-v3 tasks with weight uncertainty conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 25) SRM (T = 25)

Type Name Reward↑ Reward↑ Reward↑ Reward↑

8-bit
Loihi

weight

PopSAN 5347 (σ-175) 5285 (σ-158) 5504 (σ-210) 5228 (σ-139)
DT1 [4] 5004 (σ-88) 4889 (σ-163) 4826 (σ-102) 4902 (σ-182)
DT2 [5] 3122 (σ-77) 3463 (σ-99) 3266 (σ-93) 3676 (σ-86)
DET only 4561 (σ-135) 4634 (σ-111) 4663 (σ-156) 4727 (σ-153)
DTT only 4703 (σ-56) 4722 (σ-87) 4903 (σ-63) 4779 (σ-126)
BDETT 5570 (σ-59) 5648 (σ-73) 5606 (σ-52) 5620 (σ-143)

GN
weight

PopSAN 637 (σ-860) 467 (σ-951) 667 (σ-1002) 444 (σ-1105)
DT1 [4] 221 (σ-949) -57 (σ-1245) 155 (σ-839) 6 (σ-1722)
DT2 [5] -265 (σ-488) -173 (σ-640) -226 (σ-628) -198 (σ-883)
DET only 1208 (σ-855) 940 (σ-750) 1258 (σ-638) 923 (σ-883)
DTT only 1392 (σ-467) 1204 (σ-746) 1448 (σ-644) 1310 (σ-867)
BDETT 2782 (σ-599) 1658 (σ-640) 2780 (σ-621) 1669 (σ-612)

30%
Zero

weight

PopSAN 287 (σ-524) 372 (σ-994) 273 (σ-633) 407 (σ-959)
DT1 [4] 1247 (σ-801) 1450 (σ-863) 1200 (σ-1020) 1552 (σ-996)
DT2 [5] -548 (σ-354) -203 (σ-901) -563 (σ-743) -183 (σ-1125)
DET only 1007 (σ-960) 1136 (σ-1179) 1084 (σ-1092) 1186 (σ-1084)
DTT only 908 (σ-428) 1559 (σ-1167) 1038 (σ-487) 1563 (σ-1049)
BDETT 2931 (σ-544) 3046 (σ-886) 2978 (σ-605) 3152 (σ-924)

Table 15: The raw homeostasis measurements and the corresponding changes with respect to the
baseline condition in Mujoco Ant-v3 tasks with the T = 5 setting.

LIF (T = 5) SRM (T = 5)

Type Name FRm(∆) FRm
std(∆) FRs

std(∆) FRm(∆) FRm
std(∆) FRs

std(∆)

baseline
condition

PopSAN 0.548 0.262 0.002169 0.197 0.150 0.001823
DT1 [4] 0.531 0.253 0.002483 0.446 0.251 0.002172
DT2 [5] 0.770 0.223 0.004427 0.580 0.167 0.003238
DET only 0.289 0.246 0.001820 0.328 0.187 0.002027
DTT only 0.547 0.280 0.001554 0.443 0.276 0.002942
BDETT 0.271 0.204 0.001325 0.213 0.199 0.001535

Random
joint

position

PopSAN 0.556 (0.008) 0.242 (0.020) 0.003210 (0.001041) 0.208 (0.011) 0.134 (0.016) 0.003022 (0.001199)
DT1 [4] 0.521 (0.010) 0.209 (0.044) 0.002859 (0.000376) 0.420 (0.026) 0.275 (0.024) 0.002819 (0.000647)
DT2 [5] 0.757 (0.013) 0.211 (0.012) 0.002735 (0.001692) 0.529 (0.051) 0.188 (0.021) 0.002521 (0.000717)
DET only 0.262 (0.027) 0.270 (0.024) 0.002575 (0.000755) 0.339 (0.011) 0.210 (0.023) 0.002831 (0.000804)
DTT only 0.519 (0.028) 0.256 (0.024) 0.002481 (0.000927) 0.430 (0.013) 0.244 (0.032) 0.002454 (0.000488)
BDETT 0.275 (0.004) 0.209 (0.005) 0.001240 (0.000085) 0.207 (0.006) 0.192 (0.007) 0.001308 (0.000227)

Random
joint

velocity

PopSAN 0.526 (0.022) 0.223 (0.039) 0.001743 (0.000426) 0.180 (0.017) 0.117 (0.033) 0.003239 (0.001416)
DT1 [4] 0.516 (0.015) 0.221 (0.032) 0.003031 (0.000548) 0.415 (0.031) 0.278 (0.027) 0.002766 (0.000594)
DT2 [5] 0.760 (0.010) 0.220 (0.003) 0.003049 (0.001378) 0.534 (0.046) 0.182 (0.015) 0.002749 (0.000489)
DET only 0.265 (0.024) 0.266 (0.020) 0.001443 (0.000377) 0.345 (0.017) 0.206 (0.019) 0.003182 (0.001155)
DTT only 0.524 (0.023) 0.251 (0.029) 0.003020 (0.001466) 0.410 (0.033) 0.225 (0.051) 0.002385 (0.000557)
BDETT 0.265 (0.006) 0.206 (0.002) 0.001452 (0.000127) 0.207 (0.006) 0.193 (0.006) 0.001882 (0.000347)

GN

PopSAN 0.560 (0.012) 0.244 (0.018) 0.004782 (0.002613) 0.180 (0.017) 0.123 (0.027) 0.002589 (0.000766)
DT1 [4] 0.515 (0.016) 0.229 (0.024) 0.002723 (0.000240) 0.470 (0.024) 0.289 (0.038) 0.003259 (0.001087)
DT2 [5] 0.727 (0.043) 0.238 (0.015) 0.002130 (0.002297) 0.527 (0.053) 0.204 (0.037) 0.004192 (0.000954)
DET only 0.302 (0.013) 0.260 (0.014) 0.003762 (0.001942) 0.312 (0.016) 0.161 (0.026) 0.002495 (0.000468)
DTT only 0.506 (0.041) 0.241 (0.039) 0.003306 (0.001752) 0.390 (0.053) 0.320 (0.044) 0.004334 (0.001392)
BDETT 0.262 (0.009) 0.198 (0.006) 0.001539 (0.000214) 0.198 (0.015) 0.178 (0.021) 0.002068 (0.000533)

8-bit
Loihi

weight

PopSAN 0.540 (0.008) 0.269 (0.007) 0.001838 (0.000331) 0.206 (0.009) 0.167 (0.017) 0.001602 (0.000221)
DT1 [4] 0.519 (0.012) 0.261 (0.008) 0.002217 (0.000266) 0.459 (0.013) 0.237 (0.014) 0.002406 (0.000234)
DT2 [5] 0.758 (0.012) 0.217 (0.006) 0.003884 (0.000543) 0.566 (0.014) 0.193 (0.026) 0.002513 (0.000725)
DET only 0.281 (0.008) 0.250 (0.004) 0.001933 (0.000113) 0.323 (0.005) 0.194 (0.007) 0.001869 (0.000158)
DTT only 0.539 (0.008) 0.286 (0.006) 0.001463 (0.000091) 0.433 (0.010) 0.285 (0.009) 0.003206 (0.000264)
BDETT 0.274 (0.003) 0.206 (0.002) 0.001280 (0.000045) 0.215 (0.002) 0.203 (0.004) 0.001602 (0.000067)

GN
weight

PopSAN 0.507 (0.041) 0.291 (0.029) 0.003844 (0.001675) 0.190 (0.007) 0.138 (0.012) 0.004859 (0.003036)
DT1 [4] 0.475 (0.056) 0.261 (0.008) 0.004749 (0.002266) 0.519 (0.073) 0.328 (0.077) 0.003441 (0.001269)
DT2 [5] 0.722 (0.048) 0.305 (0.082) 0.003632 (0.000795) 0.503 (0.077) 0.212 (0.045) 0.004833 (0.001595)
DET only 0.242 (0.047) 0.218 (0.028) 0.000966 (0.000854) 0.402 (0.074) 0.209 (0.022) 0.003346 (0.001319)
DTT only 0.520 (0.027) 0.223 (0.057) 0.004540 (0.002986) 0.408 (0.035) 0.322 (0.046) 0.004416 (0.001474)
BDETT 0.268 (0.003) 0.208 (0.004) 0.001548 (0.000223) 0.208 (0.005) 0.190 (0.009) 0.002351 (0.000816)

30%
Zero

weight

PopSAN 0.488 (0.060) 0.290 (0.028) 0.006801 (0.004632) 0.140 (0.057) 0.130 (0.020) 0.004246 (0.002423)
DT1 [4] 0.460 (0.071) 0.328 (0.075) 0.004668 (0.002185) 0.411 (0.035) 0.223 (0.028) 0.003402 (0.001230)
DT2 [5] 0.696 (0.074) 0.326 (0.103) 0.002308 (0.002119) 0.511 (0.069) 0.203 (0.036) 0.004283 (0.001045)
DET only 0.250 (0.039) 0.279 (0.033) 0.001023 (0.000797) 0.364 (0.036) 0.213 (0.026) 0.003631 (0.001604)
DTT only 0.566 (0.019) 0.308 (0.028) 0.003243 (0.001689) 0.465 (0.022) 0.268 (0.008) 0.003563 (0.000621)
BDETT 0.258 (0.013) 0.217 (0.013) 0.001840 (0.000515) 0.194 (0.019) 0.191 (0.008) 0.002276 (0.000741)
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Table 16: The raw homeostasis measurements and the corresponding changes with respect to the
baseline condition in Mujoco Ant-v3 tasks with the T = 25 setup.

LIF (T = 25) SRM (T = 25)

Type Name FRm(∆) FRm
std(∆) FRs

std(∆) FRm(∆) FRm
std(∆) FRs

std(∆)

baseline
condition

PopSAN 0.535 0.258 0.002247 0.213 0.166 0.002027
DT1 [4] 0.530 0.252 0.002688 0.453 0.244 0.001694
DT2 [5] 0.753 0.230 0.004728 0.563 0.182 0.003493
DET only 0.302 0.250 0.001947 0.334 0.192 0.001872
DTT only 0.541 0.276 0.001526 0.451 0.281 0.002485
BDETT 0.275 0.204 0.001503 0.222 0.195 0.001829

Random
joint

position

PopSAN 0.549 (0.014) 0.242 (0.016) 0.003794 (0.001547) 0.248 (0.035) 0.140 (0.026) 0.003682 (0.001655)
DT1 [4] 0.522 (0.008) 0.223 (0.029) 0.003074 (0.000386) 0.426 (0.027) 0.277 (0.033) 0.002951 (0.001257)
DT2 [5] 0.692 (0.061) 0.211 (0.019) 0.003076 (0.001652) 0.513 (0.050) 0.219 (0.037) 0.002523 (0.000970)
DET only 0.276 (0.026) 0.286 (0.036) 0.002744 (0.000797) 0.352 (0.018) 0.224 (0.032) 0.002642 (0.000770)
DTT only 0.520 (0.021) 0.252 (0.024) 0.002636 (0.001110) 0.430 (0.021) 0.246 (0.035) 0.002206 (0.000279)
BDETT 0.280 (0.005) 0.210 (0.006) 0.001386 (0.000117) 0.216 (0.006) 0.188 (0.007) 0.001682 (0.000147)

Random
joint

velocity

PopSAN 0.510 (0.025) 0.224 (0.034) 0.001589 (0.000658) 0.189 (0.024) 0.121 (0.045) 0.003472 (0.001445)
DT1 [4] 0.510 (0.020) 0.220 (0.032) 0.003236 (0.000548) 0.424 (0.029) 0.281 (0.037) 0.002692 (0.000998)
DT2 [5] 0.688 (0.065) 0.203 (0.027) 0.003163 (0.001565) 0.522 (0.041) 0.220 (0.038) 0.002732 (0.000761)
DET only 0.263 (0.039) 0.294 (0.044) 0.002583 (0.000636) 0.353 (0.019) 0.209 (0.017) 0.003135 (0.001263)
DTT only 0.522 (0.019) 0.259 (0.017) 0.002184 (0.000658) 0.426 (0.025) 0.252 (0.029) 0.001921 (0.000564)
BDETT 0.267 (0.008) 0.206 (0.002) 0.001632 (0.000129) 0.213 (0.009) 0.190 (0.005) 0.002005 (0.000176)

GN

PopSAN 0.572 (0.037) 0.240 (0.018) 0.004581 (0.002334) 0.180 (0.033) 0.120 (0.046) 0.003148 (0.001121)
DT1 [4] 0.512 (0.018) 0.214 (0.038) 0.002012 (0.000676) 0.633 (0.018) 0.269 (0.025) 0.002885 (0.001191)
DT2 [5] 0.718 (0.035) 0.259 (0.029) 0.002833 (0.001895) 0.520 (0.043) 0.232 (0.050) 0.002148 (0.001345)
DET only 0.323 (0.021) 0.299 (0.049) 0.003665 (0.001718) 0.305 (0.029) 0.169 (0.023) 0.002684 (0.000812)
DTT only 0.512 (0.029) 0.244 (0.032) 0.003522 (0.001996) 0.412 (0.039) 0.328 (0.047) 0.003144 (0.000659)
BDETT 0.264 (0.011) 0.200 (0.004) 0.001400 (0.000103) 0.204 (0.018) 0.177 (0.018) 0.002129 (0.000300)

8-bit
Loihi

weight

PopSAN 0.546 (0.011) 0.275 (0.017) 0.002569 (0.000322) 0.225 (0.012) 0.179 (0.013) 0.002581 (0.000554)
DT1 [4] 0.542 (0.012) 0.264 (0.012) 0.003189 (0.000501) 0.421 (0.032) 0.257 (0.013) 0.001184 (0.000510)
DT2 [5] 0.738 (0.015) 0.220 (0.010) 0.003680 (0.001048) 0.545 (0.018) 0.194 (0.012) 0.003026 (0.000467)
DET only 0.316 (0.014) 0.236 (0.014) 0.002292 (0.000345) 0.346 (0.012) 0.212 (0.020) 0.002214 (0.000342)
DTT only 0.554 (0.013) 0.290 (0.014) 0.001174 (0.000352) 0.438 (0.013) 0.294 (0.013) 0.002763 (0.000278)
BDETT 0.270 (0.005) 0.200 (0.004) 0.001576 (0.000073) 0.218 (0.004) 0.199 (0.004) 0.001722 (0.000107)

GN
weight

PopSAN 0.493 (0.042) 0.295 (0.037) 0.003726 (0.001479) 0.190 (0.023) 0.141 (0.025) 0.005216 (0.003189)
DT1 [4] 0.482 (0.048) 0.277 (0.025) 0.004663 (0.001975) 0.522 (0.069) 0.287 (0.043) 0.003540 (0.001846)
DT2 [5] 0.715 (0.038) 0.286 (0.056) 0.003431 (0.001297) 0.486 (0.077) 0.235 (0.053) 0.004632 (0.001139)
DET only 0.257 (0.045) 0.215 (0.035) 0.001036 (0.000911) 0.394 (0.060) 0.227 (0.035) 0.003373 (0.001501)
DTT only 0.518 (0.023) 0.223 (0.053) 0.003998 (0.002472) 0.410 (0.041) 0.342 (0.061) 0.004025 (0.001540)
BDETT 0.265 (0.010) 0.211 (0.007) 0.001729 (0.000226) 0.212 (0.010) 0.206 (0.011) 0.002773 (0.000944)

30%
Zero

weight

PopSAN 0.510 (0.025) 0.288 (0.030) 0.005942 (0.003695) 0.168 (0.045) 0.137 (0.029) 0.004893 (0.002866)
DT1 [4] 0.457 (0.073) 0.307 (0.055) 0.004043 (0.001355) 0.406 (0.047) 0.220 (0.024) 0.003909 (0.002215)
DT2 [5] 0.685 (0.068) 0.309 (0.079) 0.002863 (0.001865) 0.517 (0.046) 0.236 (0.054) 0.005426 (0.001933)
DET only 0.252 (0.050) 0.243 (0.007) 0.001132 (0.000815) 0.376 (0.042) 0.232 (0.040) 0.004387 (0.002515)
DTT only 0.579 (0.038) 0.332 (0.056) 0.003538 (0.002012) 0.487 (0.036) 0.256 (0.025) 0.003692 (0.001207)
BDETT 0.263 (0.012) 0.213 (0.009) 0.001883 (0.000380) 0.204 (0.018) 0.183 (0.012) 0.002485 (0.000656)

Assessment—Ablation Studies

The experimental results obtained in the Ant-v3 task ablation studies under different conditions
are reported in the rows named ‘DET only’ and ‘DTT only’ in Tables 12, 13, and 14. All listed
evaluations validate that the BDETT scheme performs better than any single component. As shown
in Table 14, under the “GN weight" condition, both ‘DET only’ and ‘DTT only’ offer both the LIF-
and SRM-based host SNNs higher rewards than the other competing dynamic threshold schemes. As
in the other tasks, the dynamic threshold scheme with only one component cannot effectively regulate
the firing rate statuses of the host SNNs, prohibiting meaningful homeostasis. When combining the
DTT and DET components, we witness much more stable homeostasis for all host SNNs.
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Table 17: Quantitative performance of obstacle avoidance tasks with different constant coefficient
settings under static obstacle condition.

LIF (T = 5) SRM (T = 5)

Constant SR↑ SR↑
0.1 97.5% 96.5%
0.2(original) 98.5% 96.5%
0.3 98.5% 96.5%
0.4 97.5% 95.5%
0.5 98% 95%
1.0 93.5% 91.5%

Table 18: Quantitative performance of obstacle avoidance tasks with different constant coefficient
settings under dynamic obstacle condition.

LIF (T = 5) SRM (T = 5)

Constant SR↑ SR↑
0.1 91.5% 90.5%
0.2(original) 92.5% 90.5%
0.3 92% 90%
0.4 92% 89%
0.5 91% 89%
1.0 86% 80.5%

Supplementary Note 7: Impact of Constant Coefficient ‘0.2’ in the DET

In the proposed DET component, a constant ‘0.2’ is used for balancing the contributions of the
specifically designed bias items, 0.2(max(vli(t))−min(vli(t))) and 0.2(max(Θl

i(t))−min(Θl
i(t))).

Based on our experimental results, the effectiveness of the proposed BDETT is not sensitive to
this value. In the obstacle avoidance tasks (see Tables 18, 19, and 20), when the constant value
is within the range of [0.1, 0.5], the standard deviations of the SRs for the LIF- and SRM-based
host SNNs are 0.005 and 0.007, respectively. More importantly, even with an extreme value of
1.0, the corresponding SRs are higher than those offered by all other competing dynamic threshold
approaches.

In the HalfCheetah-v3 tasks (see Tables 21, 22, and 23) and the Ant-v3 tasks (see Table 24, 25,
and 26), the proposed BDETT method is more sensitive to the coefficient value than in the obstacle
avoidance tasks. When the constant value is within the range of [0.1, 0.5], the standard deviations
of the rewards are 94 and 107 for the LIF- and SRM-based host SNNs in the HalfCheetah-v3 tasks,
respectively. In the Ant-v3 experiments, the LIF- and SRM-based SNNs provide rewards of 114 and
111, respectively. With the extreme value of 1.0, under some experimental conditions, the rewards
offered by our approach are still higher than those provided by other methods (e.g., the “30% zero
weight" condition of HalfCheetah-v3 and the “GN weight" condition of Ant-v3). However, with the
extreme value of 1.0, the effectiveness of the proposed BDETT scheme is reduced. This means that
the sensitivity to the constant value increases as the complexity of the given task increases.

Note that the value of ‘0.2’ offers the most effective and robust performance across all three tasks
under all experimental conditions. Therefore, we set the coefficient to ‘0.2’ in our proposed dynamic
threshold scheme.

Table 19: Quantitative performance of obstacle avoidance tasks with different constant coefficient
settings under degraded input conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 5) SRM (T = 5) LIF (T = 5) SRM (T = 5)

Type Constant SR↑ SR↑ Type Constant SR↑ SR↑ Type Constant SR↑ SR↑

0.2

0.1 89% 78%

0.6

0.1 83.5% 82%

GN

0.1 83.5% 82%
0.2(original) 90% 79.5% 0.2(original) 84.5% 83% 0.2(original) 84.5% 82.5%
0.3 89% 77.5% 0.3 83% 81.5% 0.3 84% 82%
0.4 87% 75% 0.4 82% 79% 0.4 84% 81.5%
0.5 87.5% 75% 0.5 81.5% 80.5% 0.5 83% 81%
1.0 83.5% 70.5% 1.0 76% 76.5% 1.0 77% 70.5%
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Table 20: Quantitative performance of obstacle avoidance tasks with different constant coefficient
settings under weight uncertainty conditions.

LIF (T = 5)SRM (T = 5) LIF (T = 5)SRM (T = 5) LIF (T = 5)SRM (T = 5)

Type Constant SR↑ SR↑ Type Constant SR↑ SR↑ Type Constant SR↑ SR↑

8-bit
Loihi

weight

0.1 89.5% 87.5%

GN
weight

(5 rounds)

0.1 87.2% 60.5%
30%
Zero

weight
(5 rounds)

0.1 77.2% 64.0%
0.2(original) 90% 88.5% 0.2(original) 87.7% 61.8% 0.2(original) 77.2% 65.2%
0.3 90% 88% 0.3 86.3% 60.0% 0.3 75.8% 64.2%
0.4 88.5% 88% 0.4 85.7% 58.6% 0.4 74.3% 63.5%
0.5 87.5% 87% 0.5 84.1% 57.4% 0.5 72.8% 83.6%
1.0 83% 79.5% 1.0 80.3% 52.3% 1.0 67.1% 52.9%

Table 21: Quantitative performance of HalfCheetah-v3 tasks with different constant coefficient
settings under standard testing conditions.

LIF (T = 5) SRM (T = 5)

Constant Reward↑ Reward↑
0.1 11029 11903
0.2(original) 11064 11960
0.3 10987 11875
0.4 10976 11682
0.5 10793 11724
1.0 10028 11123

Table 22: Quantitative performance of HalfCheetah-v3 tasks with different constant coefficient
settings under degraded input conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 5) SRM (T = 5) LIF (T = 5) SRM (T = 5)

Type Constant Reward↑ Reward↑ Type Constant Reward↑ Reward↑ Type Constant Reward↑ Reward↑

Random
joint

position

0.1 8379 7767

Random
joint

velocity

0.1 8241 7023

GN

0.1 3832 3825
0.2(original) 8465 7883 0.2(original) 8302 7116 0.2(original) 3909 3895
0.3 8302 7748 0.3 8159 6968 0.3 3790 3810
0.4 8351 7703 0.4 8113 6743 0.4 3673 3724
0.5 8188 7615 0.5 8044 6702 0.5 3711 3641
1.0 7580 7180 1.0 7702 6231 1.0 3420 3172

Table 23: Quantitative performance of HalfCheetah-v3 tasks with different constant coefficient
settings under weight uncertainty conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 5) SRM (T = 5) LIF (T = 5) SRM (T = 5)

Type Constant Reward↑ Reward↑ Type Constant Reward↑ Reward↑ Type Constant Reward↑ Reward↑

8-bit
Loihi

weight

0.1 10780 11624

GN
weight

0.1 6798 8142

30%
Zero

weight

0.1 6428 5250
0.2(original) 10823 11767 0.2(original) 6928 8381 0.2(original) 6551 5386
0.3 10672 11584 0.3 6920 8077 0.3 6531 5188
0.4 10658 11467 0.4 6818 7936 0.4 6286 5102
0.5 10583 11385 0.5 6674 7769 0.5 6290 4975
1.0 9757 10648 1.0 6113 7019 1.0 5680 4562

Table 24: Quantitative performance of Ant-v3 tasks with different constant coefficient settings under
standard testing conditions.

LIF (T = 5) SRM (T = 5)

Constant Reward↑ Reward↑
0.1 5662 5803
0.2(original) 5726 5879
0.3 5648 5747
0.4 5570 5589
0.5 5394 5610
1.0 5104 5226
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Table 25: Quantitative performance of Ant-v3 tasks with different constant coefficient settings under
degraded inputs conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 5) SRM (T = 5) LIF (T = 5) SRM (T = 5)

Type Constant Reward↑ Reward↑ Type Constant Reward↑ Reward↑ Type Constant Reward↑ Reward↑

Random
joint

position

0.1 3241 3368

Random
joint

velocity

0.1 2983 2772

GN

0.1 1214 1478
0.2(original) 3339 3450 0.2(original) 3103 2984 0.2(original) 1269 1559
0.3 3188 3380 0.3 3032 2704 0.3 1148 1409
0.4 3213 3217 0.4 2844 2655 0.4 1003 1255
0.5 3062 3048 0.5 2697 2517 0.5 980 1261
1.0 2676 2572 1.0 2230 2280 1.0 772 1083

Table 26: Quantitative performance of Ant-v3 tasks with different constant coefficient settings under
weight uncertainty conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 5) SRM (T = 5) LIF (T = 5) SRM (T = 5)

Type Constant Reward↑ Reward↑ Type Constant Reward↑ Reward↑ Type Constant Reward↑ Reward↑

8-bit
Loihi

weight

0.1 5413 5600

GN
weight

0.1 2703 1596

30%
Zero

weight

0.1 2883 2925
0.2(original) 5570 5648 0.2(original) 2782 1658 0.2(original) 2931 3046
0.3 5373 5583 0.3 2636 1554 0.3 2945 2990
0.4 5230 5349 0.4 2488 1433 0.4 2802 2731
0.5 5022 5224 0.5 2523 1382 0.5 2652 2583
1.0 4448 4783 1.0 2205 1071 1.0 2217 1992
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Table 27: Quantitative performance of obstacle avoidance tasks under the standard static obstacle
conditions with respect to random seeds.

LIF (T = 5) SRM (T = 5)

Random Seed SR↑ SR↑
1 98.5% 96%
2 98.5% 96.5%%
3 97% 95%
4 96.5% 95.5%
5 98% 96%

Mean 97.7% 95.8%
Standard Deviation 0.008 0.005

Coefficient
of Variation 0.008 0.005

Table 28: Quantitative performance of obstacle avoidance tasks under dynamic obstacle conditions
with respect to random seeds.

LIF (T = 5) SRM (T = 5)

Random Seed SR↑ SR↑
1 92% 89.5%
2 92.5% 90.5%
3 91% 90.5%
4 92% 90%
5 92.5% 89.5%

Mean 92% 90%
Standard Deviation 0.005 0.004

Coefficient
of Variation 0.006 0.005

Supplementary Note 8: Impact of Random Seeds

In this section, we study the impact of the random seeds during the training process on the proposed
BDETT. For the obstacle avoidance tasks, we train five models for each LIF- and SRM-based host
SNN, corresponding to five different random seeds. The SRs and the corresponding error bars of the
trained host SNNs are reported in Figure 7a and Tables 27, 28, 29, and 30.

For the continuous control tasks, the rewards obtained in the HalfCheetah-v3 tasks under all experi-
mental conditions are shown in Figure 7b. The corresponding experimental results are reported in
Tables 31, 32, and 33. In Tables 34, 35, and 36, we report the experimental results of the Ant-v3
tasks under all experimental settings. The results are also illustrated in Figure 7c.

Since the mean success rates and rewards obtained in the three tasks differ significantly, we calculate
coefficients of variation to produce fair comparisons. We observe that the random seeds have the
lowest impact on the obstacle avoidance tasks and the most substantial influence on the Ant-v3 tasks.

Table 29: Quantitative performance of obstacle avoidance tasks under degraded input conditions with
respect to random seeds.

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

Type Random Seed SR↑ SR↑ Type Random Seed SR↑ SR↑ Type Random Seed SR↑ SR↑

0.2

1 89% 79%

0.6

1 83.5% 82%

GN

1 82.5% 81.5%
2 90% 79.5% 2 84.5% 83% 2 84.5% 82.5%
3 89.5% 79% 3 85% 82.5% 3 83% 81.5%
4 88% 78.5% 4 84% 81.5% 4 83.5% 81%
5 89% 78% 5 83% 82% 5 82% 82%

Mean 89.1% 78.8% Mean 84% 82.2% Mean 83.1% 81.7%
Standard Deviation 0.007 0.005 Standard Deviation 0.007 0.005 Standard Deviation 0.009 0.005

Coefficient
of Variation

0.007 0.006
Coefficient
of Variation

0.008 0.006
Coefficient
of Variation

0.010 0.006
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Table 30: Quantitative performance of obstacle avoidance tasks under weight uncertainty conditions
with respect to random seeds.

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

Type Random Seed SR↑ SR↑ Type Random Seed SR↑ SR↑ Type Random Seed SR↑ SR↑

8-bit
Loihi

weight

1 90% 87%

GN
weight

(5 rounds)

1 85.8% 61%

30%

Zero
weight

(5 rounds)

1 76.8% 64.5%
2 90% 88.5% 2 87.7% 61.8% 2 77.2% 65.2%
3 88.5% 86% 3 87.1% 61.3% 3 75.9% 63.9%
4 88.5% 88.5% 4 86.6% 60.2% 4 75.4% 64.5%
5 89% 86.5% 5 87.5% 60.8% 5 76.9% 65.0%

Mean 89.2% 87.3% Mean 86.9% 61% Mean 76.4% 64.6%
Standard Deviation 0.007 0.010 Standard Deviation 0.007 0.005 Standard Deviation 0.007 0.005

Coefficient
of Variation

0.008 0.012
Coefficient
of Variation

0.008 0.009
Coefficient
of Variation

0.009 0.007

Table 31: Quantitative performance of HalfCheetah-v3 tasks under standard testing condition with
respect to random seeds.

LIF (T = 5) SRM (T = 5)

Random Seed Reward↑ Reward↑
1 11064 11960
2 10979 11873
3 9848 10474
4 10881 11061
5 8992 11644
6 10977 10939
7 10975 11337
8 10869 11777
9 10932 10673
10 10993 11841

Mean 10651 11358
Standard Deviation 647 513

Coefficient
of Variation 0.061 0.045

Table 32: Quantitative performance of the HalfCheetah-v3 tasks under degraded input conditions
with respect to random seeds.

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

Type Random Seed Reward↑ Reward↑ Type Random Seed Reward↑ Reward↑ Type Random Seed Reward↑ Reward↑

Random
joint

position

1 8465 7883

Random
joint

position

1 8302 7116

GN

1 3909 3895
2 8452 7788 2 8239 7101 2 3820 3854
3 7617 6618 3 7575 5684 3 3292 2648
4 8399 7001 4 8274 6208 4 3797 2979
5 7003 7622 5 7216 6869 5 2816 3561
6 8320 7280 6 8226 6540 6 3675 3197
7 8339 7557 7 8288 6806 7 3790 3636
8 8348 7832 8 8129 6805 8 3743 3582
9 8329 6777 9 8118 6044 9 3858 2770
10 8423 7781 10 8208 6964 10 3806 3667

Mean 8169 7414 Mean 8058 6614 Mean 3651 3379
Standard Deviation 454 443 Standard Deviation 345 459 Standard Deviation 322 426

Coefficient
of Variation

0.056 0.06
Coefficient
of Variation

0.043 0.069
Coefficient
of Variation

0.088 0.126
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Table 33: Quantitative performance of the HalfCheetah-v3 tasks under weight uncertainty conditions
with respect to random seeds.

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

Type Random Seed Reward↑ Reward↑ Type Random Seed Reward↑ Reward↑ Type Random Seed Reward↑ Reward↑

8-bit
Loihi

weight

1 10823 11767

GN
weight

1 6928 8381

30%

Zero
weight

1 6551 5386
2 10767 11749 2 6704 8307 2 6486 5308
3 10062 10406 3 6155 7208 3 5671 3970
4 10648 10780 4 6858 7527 4 6296 4254
5 9368 11452 5 5857 8216 5 5217 5249
6 10532 11097 6 6656 7537 6 6282 5007
7 10284 11358 7 6838 8046 7 6341 5040
8 10617 11768 8 6729 8306 8 6231 5337
9 10788 10733 9 6740 7598 9 6537 4227
10 10787 11496 10 6765 8282 10 6481 5081

Mean 10468 11261 Mean 6623 7941 Mean 6209 4886
Standard Deviation 435 460 Standard Deviation 324 407 Standard Deviation 410 501

Coefficient
of Variation

0.042 0.041
Coefficient
of Variation

0.049 0.051
Coefficient
of Variation

0.066 0.103

Table 34: Quantitative performance of the Ant-v3 tasks under standard testing condition with respect
to random seeds.

LIF (T = 5) SRM (T = 5)

Random Seed Reward↑ Reward↑
1 5726 5879
2 5678 5758
3 5306 5798
4 5553 5480
5 3980 5508
6 4657 5590
7 5692 4063
8 5595 5829
9 5688 5429
10 5696 5616

Mean 5357 4933
Standard Deviation 553 500

Coefficient
of Variation 0.103 0.101

Table 35: Quantitative performance of Ant-v3 tasks under degraded input conditions with respect to
random seeds.

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

Type Random Seed Reward↑ Reward↑ Type Random Seed Reward↑ Reward↑ Type Random Seed Reward↑ Reward↑

Random
joint

position

1 3339 3450

Random
joint

position

1 3103 2984

GN

1 1269 1559
2 3323 3423 2 2879 2869 2 1166 1524
3 2973 3059 3 2651 2930 3 1030 1432
4 3161 3049 4 2763 2731 4 1093 1357
5 2053 3234 5 2105 2870 5 796 1440
6 2424 3339 6 2547 2863 6 881 1396
7 2993 2252 7 2822 2032 7 1132 830
8 3216 3365 8 2892 2829 8 1105 1501
9 3217 3300 9 3047 2815 9 1268 1464
10 3218 3237 10 2860 2692 10 1020 1385

Mean 2992 2847 Mean 2767 2492 Mean 1076 1250
Standard Deviation 402 332 Standard Deviation 270 256 Standard Deviation 144 196

Coefficient
of Variation

0.134 0.117
Coefficient
of Variation

0.098 0.103
Coefficient
of Variation

0.134 0.157
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Table 36: Quantitative performance of Ant-v3 tasks under weight uncertainty conditions with respect
to random seeds.

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

Type Random Seed Reward↑ Reward↑ Type Random Seed Reward↑ Reward↑ Type Random Seed Reward↑ Reward↑

8-bit
Loihi

weight

1 5570 5648

GN
weight

1 2782 1658

30%

Zero
weight

1 2931 3046
2 5398 5641 2 2668 1503 2 2849 2859
3 5219 5611 3 2518 1467 3 2729 2674
4 5309 5291 4 2580 1341 4 2741 2929
5 4395 5201 5 1816 1522 5 1840 2794
6 4853 5394 6 2303 1466 6 2125 2730
7 5166 3968 7 2426 959 7 2654 1895
8 5365 5610 8 2646 1595 8 2826 2760
9 5544 5416 9 2601 1427 9 2874 2635
10 5254 5343 10 2422 1497 10 2802 2644

Mean 5207 4778 Mean 2476 1294 Mean 2637 2432
Standard Deviation 333 473 Standard Deviation 257 181 Standard Deviation 342 294

Coefficient
of Variation

0.064 0.099
Coefficient
of Variation

0.104 0.140
Coefficient
of Variation

0.130 0.121

Figure 7: Quantitative performance of the LIF- and SRM-based BDETThost SNNs with respect to
random seeds.
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Supplementary Note 9: BDETT without Statistical Parameter Settings

We study the impact of the proposed layerwise statistical parameter settings, an extension of section
4.3 of our main paper. The experimental settings and the corresponding results are reported in
Table 37. Without replacing the constants of the original biological model, the proposed method is
is only slightly better than the ones without any training. Both LIF- and SRM-based experiments
validate that the proposed statistical cues are essential to the proposed method.

Table 37: Quantitative performance of BDETT without statistical parameter settings (SPS) under the
stardard testing conditions. OA means obstacle avoidance; HC-v3 indicates HalfCheetah-v3.

LIF SRM

Approach SPS Trained OA
(SR↑)

HC-v3
(Reward↑)

Ant-v3
(Reward↑)

OA
(SR↑)

HC-v3
(Reward↑)

Ant-v3
(Reward↑)

BDETT Yes Yes 92.5% 11064 5726 90.5% 11960 5879
BDETT No Yes 0% -35 -9 0% -28 -18
BDETT Yes No 0% -124 -73 0% -59 3
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Supplementary Note 10: Interaction between DET and DTT

In the section “Interaction of DET and DTT" of our main paper, we illustrate the interaction between
DET and DTT with two examples. Here, we provide additional experimental evidence of the
interaction of DET and DTT. Without loss of generality, we conduct the experiments by using spiking
actor network (SAN) as the host SNN for a robot obstacle avoidance task.

Interaction DET/DTT with low potential fluctuations.

• Experimental setup: We randomly chose a timestamp and recorded all postsynaptic
membrane potentials and spiking thresholds of the host SNN. Then, for each layer, we
randomly selected X neurons based on the binomial distribution with a probability of
0.5. The chosen neurons were added random positive noise, generated based on a normal
distribution N (0.2, 0.05). The mean of 0.2 is around 20% of the average of the recorded
membrane potentials. To reduce the impact of the randomness, we did 5-round tests and
reported the average and standard deviation of the obtained DETs and DTTs. The average
number of selected neurons of these 5-round tests of each layer, µ(X), is also reported.

• Experimental thesis: We expect DET increases as the noise increases the membrane
potential. DTT should remain at a relatively constant threshold (i.e., a+ 1) as the preceding
rate of depolarization caused by the noise is close to 0.

• Experimental result: The layerwise mean, µ, and standard deviation, σ, of the 5-round
DETs and DTTs with and without added noise are reported in Table 38, aligning well with
the experimental thesis. ∆ is the absolute value of the difference between original and add
noise.

Table 38: Interaction DET/DTT with low potential fluctuations.

µ(X) original (µ / σ) add noise (µ / σ) ∆

layer 1 DET
130.4

1.4950 / 0.0051 1.5143 / 0.0066 0.0193 / 0.0015

layer 1 DTT 0.0570 / 0.0064 0.0571 / 0.0063 0.0001 / 0.0001

layer 2 DET
128.4

2.1548 / 0.0120 2.1745 / 0.0111 0.0197 / 0.0009

layer 2 DTT 0.2725 / 0.0154 0.2724 / 0.0152 0.0001 / 0.0002

layer 3 DET
126.6

3.3528 / 0.0788 3.3720 / 0.0777 0.0192 / 0.0011

layer 3 DTT 0.4549 / 0.0033 0.4549 / 0.0033 0.0000 / 0.0000

Interaction DET/DTT with fast membrane potential drop.

• Experimental setup: We adopted the same binomial distribution as in the first experiment
and randomly selected X neurons of the host SNN. To mimic fast membrane potential drops
from t to t+1, we added random negative membrane potentials with a larger magnitude than
the first experiment, which was generated by sampling a normal distribution N (−2.0, 0.5).

• Experimental thesis: In this scenario, even though DET decreases with the reduced
membrane potential, we expect DTT to increase faster, and BDETT to increase the overall
threshold.

• Experimental result: The layerwise mean and STD of the 5-round X DETs, DTTs, and
BDETTs with and without fast membrane potential drop are shown in Table 39. Again, the
findings align with the experimental thesis.
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Table 39: Interaction DET/DTT with fast membrane potential drop

µ(X) original (µ / σ) fast potential drop (µ / σ) ∆

layer 1 DET

128.2

1.4919 / 0.0089 1.4032 / 0.0106 0.0887 / 0.0017

layer 1 DTT 0.0579 / 0.0044 1.0115 / 0.0251 0.9536 / 0.0207

layer 1 BDETT 0.7749 / 0.0039 1.2074 / 0.0124 0.4325 / 0.0085

layer 2 DET

124.8

2.1865 / 0.0292 2.0348 / 0.0514 0.1517 / 0.0222

layer 2 DTT 0.2863 / 0.0053 1.1938 / 0.0332 0.9075 / 0.0279

layer 2 BDETT 1.2364 / 0.0148 1.6143 / 0.0293 0.3779 / 0.0145

layer 3 DET

130.4

3.6456 / 0.1114 3.3802 / 0.1298 0.2654 / 0.0184

layer 3 DTT 0.4479 / 0.0141 1.3337 / 0.0307 0.8858 / 0.0166

layer 3 BDETT 2.0468 / 0.0610 2.3570 / 0.0574 0.3102 / 0.0036
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Supplementary Note 11: Runtime Complexity analysis

The computational complexity of the proposed BDETT is bounded by the computational complexity
of calculating the mean, maximum, and minimum, i.e., Eqs. 3, 4, and 6. Therefore, the upper bound
of estimating BDETT complexity, Θl

i(t+ 1), is O(n), where n is the number of neurons on the l-th
layer. The baseline methods, DT1 and DT2, are bounded by the summation operations and offer the
same upper bound, O(n); see Eqs. 8 and 9 in Supplementary Note 2.

We report the layer-wise running time with PyTorch 1.2 on an i7-7700 CPU and NVIDIA GTX
1080Ti GPU. As we can see the running time of the proposed BDETT for the testing network is 1.36
ms.

Table 40: Layer-wise running time.

Layer 1
(256 neurons)

Layer 2
(256 neurons)

Layer 3
(256 neurons)

Layer 4
(2 neurons) Total

DET (ms) 0.18 0.19 0.19 0.18 0.74

DTT (ms) 0.11 0.11 0.11 0.10 0.43

BDETT (ms) 0.34 0.35 0.35 0.32 1.36
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