
ICCV
#20

ICCV
#20

ICCV 2025 Submission #20. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

6. Appendix792

Here we present detailed algorithms for creating the texture hint, as well as additional evaluation.793

Source Primitives Modified PrimitivesSource Image No Texture StableFlow Ours Ours (+StableFlow)

Figure 6. Projection-Based Texture Hints Preserve Object Identity After Edits. This figure compares our projection-based texture
hints against StableFlow [1], which uses vital-layer key-value injection. First two columns: input primitives and image. Third: edited
primitives. Fourth: synthesis from original depth, revealing consistent geometry but altered texture. Fifth: StableFlow’s approach often
changes texture or object identity. Sixth: our projection-based hints maintain texture fidelity despite edits. Seventh: combining both
approaches can improve fine detail recovery (e.g., the treasure chest).

Number of Parts (K) AbsRel Error#
4 0.0376
6 0.0330
8 0.0295

10 0.0282
12 0.0265
24 0.0223
36 0.0203
48 0.0202
60 0.0194
72 0.0195

Table 2. AbsRel depth error metrics for varying numbers of 3D box primitives (12-face polytopes). Lower values indicate better depth
map approximation quality. While theory would predict AbsRel ! 0 as K ! 1 (e.g. one primitive per pixel), in practice we run into
bias-variance problems fitting more than 60 primitives. Generating primitives is efficient (approx. 1-3 seconds per image on the GPU
including finetuning and rendering) so it is feasible for the user to select from a few candidates based on the desired level of abstraction.
No other primitive-conditioned image synthesis method offers variable abstraction.

12

ICCV
#20

ICCV
#20

ICCV 2025 Submission #20. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

“Red, green, and blue couches” “Zen s#ne arrangement”“Bu$er, ice cream, and mochi” “Pencil case, paper ba%, globe paperweight”Source Primitives

 Modified Primitives

Depth from Primitives Confidence Mask

Hint imageDepth from new Primitives Edited result Edited result Edited result Edited result

(a) K = 6 parts.
“A cu" dog” “Backyard $rniture” “Alien woodshed”“Happy penguin”Source Primitives

 Modified Primitives

Depth from Primitives Confidence Mask

Hint imageDepth from new Primitives Edited result Edited result Edited resultEdited result

(b) K = 8 parts.

Figure 7. Applying the same primitive edit for different text prompts at coarse scale (K 2 {6, 8} parts). The first row in each subplot
contains source primitives and depth (first two columns); the confidence mask for hint generation, followed by four source RGB images.
The second row shows the modified primitives and depth, followed by the hint image xhint, followed by the four corresponding edited
images. At coarse scales, moving a primitive can move a lot of texture at once. Observe how our hint generation procedure automatically
yields confidence masks and hints, assigning low confidence to boundaries of primitives that moved (e.g., the dog’s hair) and reveals holes
when moving objects. The image model cleans up the low-confidence regions and even handles blurry/aliased texture in the hint when
tend > 0, meaning that the hint is not used for some denoising steps.

13

ICCV
#20

ICCV
#20

ICCV 2025 Submission #20. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

“Prehis"ric creature wi# sharp $e#” “An eagle”“Stack of cakes”“Lava snake monument”Source Primitives

 Modified Primitives

Depth from Primitives Confidence Mask

Hint imageDepth from new Primitives Edited result Edited result Edited result Edited result

(a) K = 24 parts.
“Bamboo stalk and river rocks” “Trash can and mouse”“Translucent ce# and device” “Candle in ribbed glass and driftwood”Source Primitives

 Modified Primitives

Depth from Primitives Confidence Mask

Hint imageDepth from new Primitives Edited result Edited result Edited result Edited result

(b) K = 60 parts.

Figure 8. Applying the same primitive edit for different text prompts at fine scale (K 2 {24, 60} parts). Observe in the first two
rows how all synthesized images respect the enlarged green primitive, while background texture is preserved. In the bottom two rows, we
compose several edits using a large number of primitives (K = 60), enabling fine-scaled edits. We scale up the light blue primitive while
scaling down the light green primitive on the left-hand side. We then translate the dark blue primitive on the right-hand side towards the
bottom center of the image. We also slightly translate the camera upward. Observe how in the subsequent columns, the edited result respects
the geometry specified by the primitives while following the high-level texture of the source image. However, notice how composing four
edits challenges our procedure, as the texture preservation isn’t as tight. For example, in the final column, a tiled pattern appears on the
floor that wasn’t in the source.

“A brick, cactus, and rock”Source Primitives Modified Primitives Edited result “A cactus, and rock” + No StableFlow

Figure 9. Primitive edits can conflict with the text prompt. Some geometric edits require changing the text prompt, for example, when
removing an object. The fourth column mentions brick in the text prompt, but that primitive was removed, resulting in brick pieces in the
inpainted region. In the fifth column, we remove the brick from the text prompt, which removes the brick pieces but it still leaves behind
a white stone. In the final column, we use our texture hints but without StableFlow, getting a clean surface. The StableFlow key-value
sharing approach placed brick and stone textures where we didn’t want them. We conclude that our texture hints are critical, but combining
them with StableFlow [1] key-value sharing can help in some cases, hurt in others.

14

ICCV
#20

ICCV
#20

ICCV 2025 Submission #20. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Source Primitives Modified PrimitivesSource Image Edited Image

Source Image K=4 K=8 K=24

Source Primitives Modified PrimitivesSource Image Edited Image

Figure 10. Failure cases. Top: Illumination
misalignments. Our texture hints operate in
pixel space and cannot model illumination ef-
fects outside primitive boundaries (e.g., reflec-
tions or cast shadows). As a result, moving
or scaling objects may not consistently update
their associated lighting effects. For example,
the bread stack is translated correctly, but its re-
flection remains unchanged (see fourth column).
Middle: Poor decomposition. Primitive fitting
may fail in cluttered scenes or near image bound-
aries, where sparse depth points hinder the sepa-
ration of adjacent objects (e.g., the bottle and pa-
per towel are merged). This leads to inaccurate
depth maps and poor control. Bottom: Rota-
tion artifacts. Large object rotations (e.g., 50°)
disrupt texture consistency and geometry, possi-
bly due to distribution shift in the texture hints,
resulting in distortions or hallucinated content
(e.g., warped “Blocks World” text).

Figure 11. Our model is compatible with most depth-image synthesizers. While a pretrained FLUX works out of the box, LoRA weights
on top of the base FLUX model are available (FLUX.1 Depth [dev] LoRA), exposing a new loraweight parameter (scaling the
activations of the LoRA layers). This is intriguing in the context of our primitives, because they can either be used to coarsely model scene
geometry (e.g. loraweight near 0.8, second last column), leaving details to the image synthesizer, or they can tightly control the result
when loraweight is close to 1 (final column).

15

ICCV
#20

ICCV
#20

ICCV 2025 Submission #20. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 12. Given the same depth map, we extract primitives at variable resolution (from 4-72 parts). We show the depth maps in each second
row, and synthesized result in each 3rd row. Observe how no matter the resolution, the FLUX-LoRA model (we use loraweight = 0.8)
gives an image that follows the primitive conditioning. We conclude that a wide array of primitive densities is tolerable to depth-to-image
models, enabling meaningful artistic edits.

16

ICCV
#20

ICCV
#20

ICCV 2025 Submission #20. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 13. Additional move camera evaluations. Generative Blocks World can simultaneously adhere to source texture and requested
primitives.

17

ICCV
#20

ICCV
#20

ICCV 2025 Submission #20. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 14. Additional move camera evaluations. Our method can simultaneously adhere to source texture and requested primitives.

18

ICCV
#20

ICCV
#20

ICCV 2025 Submission #20. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 15. Additional move camera evaluations. Our method can simultaneously adhere to source texture and requested primitives.

19

ICCV
#20

ICCV
#20

ICCV 2025 Submission #20. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 16. We repeat the analysis of StableFlow [1], which applies U-Net based key-value caching of older-generation Diffusion models
to newer Diffusion Transformers. Specifically, their work analyzes FLUX.1 [dev]; given that our work uses depth maps to communi-
cate geometric information to our image generation model, we analyze Vital Layers in FLUX.1 Depth [dev] and FLUX.1 Depth
[dev] LoRA, finding the top 5 multimodal and single modal layers to be essentially identical. We try using the vital layers we identified
for texture transfer, finding this method to be inadequate (see Fig. 6).

20

ICCV
#20

ICCV
#20

ICCV 2025 Submission #20. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ALGORITHM 1: Point Cloud Correspondence Generation
Input: P1,P2: point clouds; M1,M2: convex maps; T : primitive transforms; C: centers; dmax = 0.005: max

distance threshold
Output: R: correspondence map; W: confidence map

Function ApplyTransform(p, c, T):
p0
 p� c ; // Center the point

if T contains translation then
p0
 p0

�Ttrans;
end
if T contains rotation angle ✓ then

c, s cos(�✓), sin(�✓);
x0, z0 x0

· c� z0 · s, x0
· s+ z0 · c ; // Y-axis rotation

end
if T contains scaling factor scale then

p0
 p0/scale;

end
return p0 + c;

R 0H⇥W⇥2 ; // Initialize correspondence map
W 0H⇥W ; // Initialize confidence map

for p 2 unique(M1) do
if p < 0 or p � |C| or p /2M1 or p /2M2 then

continue;
end
I1 {(y, x) : M1[y, x] = p} ; // Pixel indices for primitive p in map 1
I2 {(y, x) : M2[y, x] = p} ; // Pixel indices for primitive p in map 2
Q1 {P1[y, x] : (y, x) 2 I1} ; // 3D points for primitive p

for (y2, x2) 2 I2 do
q P2[y2, x2] ; // Query point from second cloud
if p 2 T then

q ApplyTransform(q, C[p], T [p]) ; // Apply transformation
end
d kQ1 � qk2 ; // Compute distances to all points
i⇤ argmini d[i] ; // Find nearest neighbor
dmin d[i⇤];
if dmin  dmax then

(y⇤1 , x
⇤
1) I1[i⇤] ; // Get corresponding pixel coordinates

R[y2, x2] [x⇤
1, y

⇤
1];

W[y2, x2] 1�min(dmin/dmax, 1) ; // Confidence score
end

end
end
return R,W;

21

ICCV
#20

ICCV
#20

ICCV 2025 Submission #20. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ALGORITHM 2: Hint Generation from Correspondence Maps
Input: Isrc 2 RC⇥Hs⇥Ws : source image; R 2 RHr⇥Wr⇥2: correspondence map; W 2 RHr⇥Wr : confidence map;

Mhit 2 {0, 1}Hr⇥Wr : hit mask
Output: H 2 RC⇥Hs⇥Ws : generated hint image

Function BilinearSample(I, y, x):
C,H,W shape(I);
x clip(x, 0,W � 1.001), y clip(y, 0, H � 1.001);

x0, y0 bxc, byc ; // Floor coordinates
x1, y1 min(x0 + 1,W � 1),min(y0 + 1, H � 1);
wx, wy x� x0, y � y0 ; // Interpolation weights

vtop I[:, y0, x0] · (1� wx) + I[:, y0, x1] · wx;
vbot I[:, y1, x0] · (1� wx) + I[:, y1, x1] · wx;
return vtop · (1� wy) + vbot · wy;

�h Hs/Hr, �w Ws/Wr ; // Scale factors
H 0C⇥Hs⇥Ws ; // Initialize hint image

for y 2 [0, Hr) do
for x 2 [0,Wr) do

if Mhit[y, x] = 1 then
continue ; // Skip hit pixels

end
(xc, yc) R[y, x] ; // Get correspondence
w W[y, x] ; // Get confidence
if w < 0.1 then

continue ; // Skip low-confidence correspondences
end
ysrc yc · �h, xsrc xc · �w ; // Scale to source resolution
ystart by · �hc, yend b(y + 1) · �hc;
xstart bx · �wc, xend b(x+ 1) · �wc;

for ys 2 [ystart, yend) do
for xs 2 [xstart, xend) do

if ys /2 [0, Hs) or xs /2 [0,Ws) then
continue ; // Boundary check

end

↵y
ys�ystart

max(yend�ystart,1)
; // Normalized offset

↵x
xs�xstart

max(xend�xstart,1)
;

ysample ysrc + ↵y · �h;
xsample xsrc + ↵x · �w;
H[:, ys, xs] BilinearSample(Isrc, ysample, xsample);

end
end

end
end
return H;

22

	Introduction
	Related Work
	Method
	Convex Decomposition for Primitive Extraction
	Depth-Conditioned Inpainting in Rectified Flow Transformers
	Texture Hint Generation for Camera and Object Edits
	Evaluation
	Hyperparameter selection

	Results
	Discussion
	Appendix

