
Appendix: Monte Carlo Neural PDE Solver

Anonymous Author(s)
Affiliation
Address
email

Appendix A: Algorithm Framework1

Algorithm 1: Monte Carlo Neural PDE Solver

Input: Distribution of initial states D0, K neural PDE solvers {Gθk}
K−1
k=0 , time step ∆t and the

coordinates of the fixed grids {xp}Pp=1. The time interval [0, T] is divided into K
sub-intervals with length ∆T in the multi-scale framework.

1 for E epochs do
2 - Sample B initial states {ub

0}Bb=1 uniformly from D0;
3 - LMCNP ← 0;
4 for k in {0, 1, · · · ,K − 1} do
5 % Calculate the initialization loss;
6 - ũb

0 ← Gθk(ub
0, 0);

7 - LMCNP ← LMCNP +
∑B

b=1

∑P
p=1

∥∥ũb
0(xp)− ub

0(xp)
∥∥2
2
;

8 % Calculate the MC loss between t and t+∆t;
9 - Sample t uniformly in [0,∆T] 1;

10 - ũb
t ← Gθk(ub

0, t);
11 - Utilize Fourier transform to interpolate the grid of ũb

t to the high resolution one ûb
t ;

12 - Sample M trajectories starting from xp:

xb
p,m ← xp + β[u](x, t+∆t)∆t+

√
2κ∆Bm;

13 - Approximate ub
t+∆t via the average of M trajectories :

ub
t+∆t(xp)←

1

M

M∑
m=1

ûb
t(x

b
p,m) + f(xp, t+∆t)∆t;

14 - Calculate the prediction given by Gθk : ũb
t+∆t = Gθk(ub

0, t+∆t);

15 - LMCNP ← LMCNP + λ
∑B

b=1

∑P
p=1

∥∥ũb
t+∆t(xp)− ub

t+∆t(xp)
∥∥2
2
;

16 - Update ub
0: ub

0 ← sg
[
Gθk(ub

0,∆T)
]
;

17 Update Gθk ’s parameters: θk = optim.Adam(θk,∇θkLMCNP) for all k ∈ {0, · · ·K − 1};

1In practice, we sample multiple t in each batch, and the calculation can be conducted simultaneously on
GPU.

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

Appendix B: Proof of The Main Theorem2

In this section, we study the theoretical properties of MCNP Solver when simulating the convection-3

diffusion equation. In detail, we consider the periodical convection-diffusion equation defined as4

follows:5

∂u

∂t
= κ∆u+ βt, x ∈ [0, 2π], t ∈ [0, T], β ∈ R. (1)

In the following main theorem, we consider the error of one-step rollout targets provided in PSM and6

MCM when training neural PDE solvers, respectively.7

Theorem 0.1 Let ut(x) be solution of the convection-diffusion equation in the form of Eq. 1,8

and assume the exact solution at time t can be expressed by the Fourier basis, i.e., ut(x) =9 ∑N
n=1 an sin(nx). Let Gθ be the neural PDE solver, and its prediction on ut(x) can be written10

as Gθ(u0, t)(x) =
∑N

n=1(an + δn) sin(nx), where δn denotes the residual of coefficient on each11

Fourier basis. Let H and M denote the gird size after Fourier Interpolation and sampling num-12

bers in neural Monte Carlo loss. Let uPSM
t+∆t(x) and uMCM

t+∆t (x) be the one-step labels starting from13

Gθ(u0, t)(x), given by PSM and MCM, respectively. Assume ∆tu and ut(x) are Lipschitz functions14

with respect to t and x, respectively, i.e.:15

|∆t1u(x)−∆t2u(x)| ≤ Lt
∆u|t1 − t2|, |ut(x1)− ut(x2)| ≤ Lx

u|x1 − x2|. (2)

Then, we have16

1)
∣∣uPSM

t+∆t(x)− ut+∆t(x)
∣∣ ≤ κLt

∆u∆t2

2︸ ︷︷ ︸
EPSM

1

+

N∑
n=1

|δn(κn2∆t− 1)|︸ ︷︷ ︸
EPSM

2

;17

2) With probability at least 1− (2Lx
u)

2κ∆t
Mϵ2 , we have18

∣∣uMCM
t+∆t (x)− ut+∆t(x)

∣∣ ≤ 1

2H

N∑
n=1

|nan|︸ ︷︷ ︸
EMCM

1

+

N∑
n=1

|δn|︸ ︷︷ ︸
EMCM

2

+ ϵ︸︷︷︸
EMCM

3

(3)

Proof 0.1 Firstly, we give the upper bound of
∣∣uPSM

t+∆t(x)− ut+∆t(x)
∣∣ as follows:19 ∣∣uPSM

t+∆t(x)− ut+∆t(x)
∣∣

=

∣∣∣∣∣Gθ(u0, t)(x) + κ∆t
∂2Gθ(u0, t)(x)

∂x2
+ b∆t−

[
ut(x) + ∆ut(x)∆t+ b∆t+ κ

∫ t+∆t

t

(∆us(x)−∆ut(x)) ds

]∣∣∣∣∣
=

∣∣∣∣∣
N∑

n=1

(an + δn) sin(nx)(1− κ∆tn2)−
N∑

n=1

an sin(nx)(1− κ∆tn2)− κ

∫ t+∆t

t

(∆us(x)−∆ut(x)) ds

∣∣∣∣∣
=

∣∣∣∣∣
N∑

n=1

δn sin(nx)(1− κ∆tn2)− κ

∫ t+∆t

t

(∆us(x)−∆ut(x)) ds

∣∣∣∣∣
≤

N∑
n=1

|δn(κn2∆t− 1)|+ κLt
∆u

∫ t+∆t

t

(s− t)ds

=

N∑
n=1

|δn(κn2∆t− 1)|+ κLt
∆u∆t2

2
.

(4)

Please note that PSM estimates the spatial derivative in the Fourier space, and we assume the solution20

u can be represented by finite basics. Therefore, we ignore the error of the spatial derivative of the21

PSM in the proof.22

2

The one-step label constructed in neural Monte Carlo loss can be written as follows:23

uMCM
t+∆t (x) =

1

M

M∑
m=1

ût(x+ b∆t+
√
2κ∆tzm), zm ∼ N (0, 1), (5)

where M denotes the number of particles when simulating the stochastic process, ût denotes the24

solution of Gθ(u0, t) after Fourier Interpolation operation. For any x ∈ [0, 2π], the gap between25

ût(x) and ut(x) can be bounded as:26

|ut(x)− ût(x)|

=

∣∣∣∣∣
N∑

n=1

an sin(nx)−
N∑

n=1

(an + δn) sin(nx
′)

∣∣∣∣∣
≤

N∑
n=1

|an sin(nx)− sin(nx′)|+
N∑

n=1

|δn sin(nx′)|

≤
N∑

n=1

|nan||x− x′|+
N∑

n=1

|δn sin(nx′)|

≤ 1

2H

N∑
n=1

|nan|+
N∑

n=1

|δn|,

(6)

where x′ denotes the nearest grid point to x in the high-resolution coordinate system after Fourier27

Interpolation operation. Moreover, the variance of 1
M

∑M
m=1 ut

(
x+ b∆t+

√
2κ∆tzm

)
can be28

bounded as follows:29

Var

[
1

M

M∑
m=1

ut

(
x+ b∆t+

√
2κ∆tzm

)]

=
1

M
Var

[
ut

(
x+ b∆t+

√
2κ∆tz

)]
≤ 1

M
2(Lx

u)
2 Var[

√
2κ∆tz]

=
(2Lx

u)
2κ∆t

M
.

(7)

Thus, according to the Chebyshev’s inequality, we have30 ∣∣∣∣∣
[

M∑
m=1

1

M
ut(x+ b∆t+

√
2κ∆tzm)− E[ut(x+ b∆t+

√
2κ∆tz)]

]∣∣∣∣∣ ≤ ϵ (8)

with probability at least 1 − (2Lx
u)

2κ∆t
Mϵ2 for any ϵ > 0. Then we can obtain upper bound of31 ∣∣uMCM

t+∆t (x)− ut+∆t(x)
∣∣ with probability at least 1− (2Lx

u)
2κ∆t

Mϵ2 as follows:32 ∣∣uMCM
t+∆t (x)− ut+∆t(x)

∣∣
≤

∣∣∣∣∣ 1M
M∑

m=1

[
ût(x+ b∆t+

√
2κ∆tzm)− ut(x+ b∆t+

√
2κ∆tzm)

]∣∣∣∣∣
+

∣∣∣∣∣
[

M∑
m=1

1

M
ut(x+ b∆t+

√
2κ∆tzm)− E[ut(x+ b∆t+

√
2κ∆tz)]

]∣∣∣∣∣
≤ 1

2H

N∑
n=1

|nan|+
N∑

n=1

|δn|+ ϵ.

(9)

3

Initial Ground-truth Predict Absolute Error

B

A

Figure 1: Simulation of heat diffusion on a circular ring. The ground-truth solution versus the prediction of
a learned NLP Solver for an example in the test set at t = 1.0s with Dirichlet (A) and Neumann (B) boundary
conditions, respectively.

Table 1: Heat diffusion on a circular ring with different boundary conditions. Relative errors (%) and
computational costs for MCM and MCNP Solver.

Error (%) Train Time (H) Infer Time (S) # Params (M)

Dirichlet MCM 1.294± 0.0004 – 0.103 –
MCNP 1.222± 0.034 0.235 0.00165 0.0429

Neumann MCM 0.694± 0.0007 – 0.112 –
MCNP 1.211± 0.096 0.241 0.00165 0.0429

Appendix C: Additional Numerical Results33

In this section, we conduct additional experiments to evaluate the MCNP Solver’s ability to handle34

different boundary conditions, fractional Laplacian, and irregular grids. Finally, we study the effects35

of backbone models.36

C. 1: Heat Diffusion on a Circular Ring37

In this experiment, we utilize MCNP Solver to simulate the heat equation on a circular ring, which38

aims to reveal how MCNP Solver handles different boundary conditions. The center of the ring39

located at the origin and the radiuses of the two circles are equal to 1 and 2, respectively (Fig. 1). In40

detail, the PDE is defined as follows:41

∂u(x, t)

∂t
= 0.001∆u(x, t),

where 1 < ∥x∥22 < 2, t ∈ [0, 1].

(10)

We consider two different boundary conditions, including Dirichlet and Neumann. For Dirichlet42

(Neumann) boundary conditions, the random walks of particles need to stop (reflect) when reaching43

the boundary. As introduced in the main body, the boundary conditions are automatically encoded44

into the stochastic process of particles [1, 10], eliminating the need to introduce extra loss terms to45

satisfy such constraints. The initial conditions are set to the spherically symmetric regime; thus, we46

only need to consider the value of PDEs at {(x1, 0) : x1 ∈ [1, 2]}. Please note that the random walks47

of particles are simulated in the 2D space. Fig. 1 shows snapshots of one of the learned heat fields48

and the corresponding absolute error at t = 1.0. Table 1 reveals the performances and computation49

costs of MCNP Solver and MCM over 200 test instances.50

4

Table 2: 1D fractional diffusion equations with varying α. Relative errors (%) and computational costs for
MCM and MCNP Solver.

Error (%) Train Time (H) Infer Time (S) # Params (M)

α = 0.5
MCM 0.540± 0.014 – 1.330 –
MCNP 0.410± 0.045 0.161 0.00157 0.152

α = 1.0
MCM 1.821± 0.028 – 0.752 –
MCNP 0.617± 0.021 0.145 0.00157 0.152

Table 3: 1D fractional diffusion equations with irregular grids. Relative errors (%) and computational costs
for MCM and MCNP Solver.

Error (%) Train Time (H) Infer Time (S) # Params (M)

α = 0.5
MCM 0.540± 0.014 – 1.545 –
MCNP 0.644± 0.013 0.169 0.00157 0.152

α = 1.0
MCM 1.942± 0.018 – 0.813 –
MCNP 1.095± 0.039 0.153 0.00157 0.152

C.2: 1D Fractional Diffusion Equations51

In this section, we conduct experiments on periodical 1D fractional diffusion equation defined as:52

∂u(x, t)

∂t
= −0.01(−∆)

α
2 u(x, t), x ∈ [0, 1], t ∈ [0, 5]. (11)

Notice that α = 2 represents the original Laplacian operator, while α ∈ (0, 2) denotes the fractional53

operator, which is defined by directional derivatives [12, 9]. We generate the initial states u(x, 0)54

from the functional space FN with N = 12 in line with Sec. 5.1. We choose two different α = 0.555

and 1, respectively. Table 2 reveals the performances and computation costs of MCNP Solver and56

MCM over 200 test instances. Note that the case α = 0.5 takes more inference time for MCM57

compared with α = 1.0 due to the random walk governed by the Lèvy process of α = 0.5 needs58

more computational costs.59

C.3: Irregular Grids: 1D Fractional Diffusion Equations60

MCNP Solver naturally inherits the ability of MCM on handling irregular grids. In this section,61

we conduct the experiment in Appendix C.2 on irregular grids. We conduct a mapping f(x) =62

1 − 2
π arccos (x) to transform the uniform grid on [0, 1] to the irregular one. Table 3 reveals the63

performances and computation costs of MCNP Solver and MCM over 200 test instances.64

C.4: The Effects of Backbone Models65

In this section, we discuss the choice of the backbone network of the MCNP Solver. We test66

three network structures on the 1D diffusion equation (κ = 0.01 in Sec. 5.1), including FNO [6],67

Multiwavelet-based Operator (MWT) [4] and UNet [18, 19]. Apart from the above three methods,68

we also try to utilize the network structure in [2] as a backbone model while failing to obtain69

meaningful results. The reason might be that the multi-level network structure in [2] is based on70

MLP, which cannot efficiently handle spatial-temporal variants. To the best of our knowledge, there71

is no MLP-based model applied in the operator learning tasks. Table 4 reveals the performances and72

computation costs of each backbone model. According to Table 4, FNO obtains the best performance73

and efficiency when solving diffusion equations. Therefore, we utilize FNO as the backbone network74

in this paper. Furthermore, when MCNP Solver uses the FNO as a backbone network, it naturally75

inherits the corresponding discretization-invariance property [7], i.e., zero-shot super-resolution, as76

shown in Table 5.77

5

Table 4: Effects of backbone model. Relative errors (%) and computational costs for each backbone model.

N = 6 N = 12 Train Time (H) Infer Time (S) # Params (M)

MCNP-FNO 1.056± 0.194 1.511± 0.090 0.116 0.00145 0.152
MCNP-MWT 2.103± 0.103 4.810± 0.988 0.492 0.0112 0.211
MCNP-UNet 5.148± 1.753 13.248± 4.403 0.813 0.00283 13.677

Table 5: The discretization-invariance property of MCNP Solver. Relative error (%) of MCNP Solver
trained with grid size 64 via evaluated with {64, 128, 256, 512, 1024}, respectively.

size 64 128 256 512 1024

N = 6 1.056± 0.194 1.096± 0.216 1.109± 0.215 1.115± 0.214 1.118± 0.213
N = 12 1.511± 0.090 1.543± 0.116 1.559± 0.119 1.567± 0.119 1.571± 0.118

Appendix D: Other Feynman-Kac (FK)-Based Methods78

Some works utilize the probabilistic representation to train neural networks, which mainly focus on79

the PINN settings with high-dimensional PDEs [5, 17, 16, 11]. The task settings and methodologies80

of MCNP Solver have remarkable differences from the aforementioned PINN methods, and we list81

them as follows:82

Generalization requirements In most FK-based PINN methods, they mainly focus on training83

a network for one PDE instance and have to retrain the neural network when encountering a PDE84

with new initial conditions. Moreover, the studies [2, 15] consider PDE families with varying initial85

conditions while requiring corresponding conditions can be represented by low-dimensional vectors.86

For MCNP Solver, we aim to learn mappings between functional spaces, and thus the input and87

output fields are represented by a high-dimensional vector. As a result, FK-based PINN methods88

mainly utilize MLP-based networks as their backbone model, and we utilize the FNO or other neural89

operators in the experiments.90

Spatial discretization When solving the high-dimensional PDEs, the initial fields are usually given91

by an analytic function. Therefore, the random particles can query the value at any location of u092

without the loss of precision. However, we only can access the value of initial fields at grid points in93

most settings of low-dimensional PDEs. To reduce the error arising from spatial discretization, we94

propose a Fourier Interpolation trick to enhance the accuracy of querying.95

Temporal discretization In other FK-based PINN methods [5, 11], they conduct a multi-step96

rollout technique when simulating the stochastic process. In MCNP Solver, we utilize the one-step97

rollout technique to simulate SDEs, i.e., at each t + ∆t, MCNP Solver generates new particles98

from x and moves them back to t. This trick can enforce all ξt+∆t starting at x share the same99

β[u](x, t+∆t) during the simulation of SDEs and thus, reduce the computational cost, especially100

for the scenario when the calculation cost of β is expensive (e.g. NSE).101

Long-time simulation Most FK-based methods are interested in the tasks with short-time simu-102

lations [5, 17, 16, 11]. The final time T in their experiments is less than 1 in general. However, in103

low-dimensional tasks, it is important to simulate the fluids or heat flows for a long-time in realistic104

scenarios. As the results of ablation studies shown in Sec. 5.3, plain network structures can lead to105

unstable simulation for long-time tasks. It is worth mentioning that some studies [5] also divide the106

time interval [0, T] into several sub-intervals [t.t+∆t] with small ∆t, where ∆t is the step size of107

MCM when simulating the corresponding SDEs. Then, they utilize neural networks with different108

parameters to solve the PDE in each [t, t+∆t]. However, when transferring this technique directly109

to the long-time simulation can arise severe computational and memory issues. In this work, we110

utilize the multi-scale framework, which divides the time interval [0, T] into K coarse time interval,111

whose length ∆T is much longer than the ∆t. We construct the initialization loss and the neural112

Monte Carlo loss on the coarse and fine intervals, respectively. According to our numerical results,113

the multi-scale framework can enhance the robustness and efficiency of the MCNP Solver.114

6

Appendix E: Implementation Details115

E.1: Baselines116

In this paper, we adopt Pytorch [13] to implement MCNP Solver, FNO, and PINO, and JAX [3] for117

PI-DeepONet, respectively. Here, we introduce two different unsupervised methods as follows.118

PI-DeepONet [21] PI-DeepONet utilized the PDE residuals to train DeepONets in an unsupervised119

way. The loss function in PI-DeepONet can be formulated as follows:120

LPI-DeepONet = Loperator + λLphysics,

where Loperator = MSE[Gθ(ub
0, t = 0)(xp)− G(ub

0, t = 0)(xp)],

Lphysics = MSE[R(Gθ(ub
0, t)(xp),xp, t)],

(12)

where MSE represents the mean square error, Gθ represents a neural operator, G andR denote the121

ground-truth and the residual of the PDE operator, respectively. As shown in Eq. 12, Loperator and122

Lphysics enforce Gθ to satisfy the initial conditions (or boundary conditions) and the PDE constraints,123

respectively. Like PINNs [14], the PDE residuals in Eq. 12 are calculated via the auto-differentiation.124

PINO [8] PINO utilized the PSM to construct the loss function between Gθ(ub
t) and Gθ(ub

t+∆t), and125

PINO utilized the FNO [6] as the backbone network. The loss function in PINO can be formulated as126

follows:127

LPINO = Loperator + λLphysics,

where Loperator = MSE[Gθ(ub
0, t = 0)(xp)− G(ub

0, t = 0)(xp)],

Lphysics =

T−∆t∑
t=0

MSE[Gθ(ub
0, t+∆t)(xp)− Gθ(ub

0, t)(xp)− P(Gθ,xp, t)],

(13)

where P denotes the update regime of PSM.128

E.2: 1D Diffusion Equation129

Data We conduct experiments on periodical 1D diffusion equation defined as follows:130

∂u(x, t)

∂t
= κ∆u(x, t), x ∈ [0, 1], t ∈ [0, 5]. (14)

The initial states u(x, 0) are generated from the functional space FN ≜ {
∑N

n=1 an sin(2πnx) :131

an ∼ U(0, 1)}, where U(0, 1) denotes the uniform distribution over (0, 1), and N represents the132

maximum frequency of the functional space. The data is generated via the following exact solution133

of Eq. 14:134

u(x, t) =

N∑
n=1

an sin(2πnx)e
−κ(2πn)2t. (15)

We generate 1000 training data with seed 1, and 200 test data with seed 0.135

Hyperparameters We first conduct experiments on the supervised tasks to search for the best136

network structure of 1D FNO. We fix the number of layers as 4 and choose the best width in137

{10, 20, 30} and mode in {12, 16, 20, 24} for FNO, respectively. As a result, the 4-layer 1D FNO138

with width = 30, mode = 20 obtains the best performance, and we utilize it as a backbone model139

in all FNO-based experiments. For FNO, we utilize Adam to optimize the neural network for 2000140

epochs with the initial learning rate of 0.02 and decay the learning rate by a factor of 0.5 every 500141

epochs. The batch size is fixed as 200. The learning rate is chosen from the set {0.02, 0.01, 0.005}.142

For PINO, we utilize Adam to optimize the neural network for 10000 epochs with an initial learning143

rate of 0.01 and decay the learning rate by a factor of 0.5 every 500 epochs. The batch size and λ144

are fixed as 200 and 0.01. The learning rate and λ are chosen from the set {0.02, 0.01, 0.005} and145

{0.1, 0.05, 0.01}. For MCNP Solver, we utilize Adam to optimize the neural network for 10000146

epochs with the initial learning rate of 0.01 and decay the learning rate by a factor of 0.5 every 500147

7

epochs. The batch size and λ are fixed as 200 and 0.1. The learning rate and λ are chosen from the set148

{0.02, 0.01, 0.005} and {0.1, 0.05, 0.01}. For PI-DeepONet, we choose the network structure in line149

with the 1D case in [21], and extend the training iterations to 200000 to make sure the convergence150

of the model. Moreover, we search the λ in {0.001, 0.01, 0.1, 0.2, 0.5, 1} and fix it as 0.2.151

E.3: 2D Navier-Stokes Equation152

Data We utilize the PSM to generate the ground truth test data with the time-step of 10−4 for the153

Crank–Nicolson scheme. Furthermore, all PDE instances are generated on the grid 256× 256, then154

downsampled to 64× 64, which is in line with the setting in [6]. We generate 1000 training data with155

seed 1, and 200 test data with seed 0.156

Hyperparameters We first conduct experiments on the supervised tasks to search for the best157

network structure of 2D FNO. We fix the number of layers as 4 and choose the best mode in158

{12, 16, 20, 24} for FNO. As a result, the 4-layer 2D FNO with mode = 16 obtains the best159

performance. We set width as 36 and 42 for the tasks with T = 10 and 15, respectively. And160

the width for MCNP Solver is fixed as 24. Due to the multi-scale framework in MCNP Solver,161

all methods have comparable model sizes. For FNO, we find that a cosine annealing schedule can162

obtain the best result when training with the supervised regime. Therefore, we utilize Adam to163

optimize the neural network for 200 epochs with the initial learning rate of 0.01, and decay with164

cosine annealing schedule (Tmax = 20). The batch size is fixed as 20. The learning rate is chosen165

from the set {0.02, 0.01, 0.005}. For PINO, we utilize Adam to optimize the neural network for166

10000 epochs with the initial learning rate of 0.005 and decay the learning rate by a factor of 0.5 every167

2000 epochs. The batch size and λ are fixed as 16 and 0.1. The learning rate and λ are chosen from168

the set {0.02, 0.01, 0.005} and {0.1, 0.05, 0.01}. For MCNP Solver, we utilize Adam to optimize169

the neural network for 10000 epochs with the initial learning rate of 0.01 and decay the learning rate170

by a factor of 0.5 every 500 epochs. The batch size and λ are fixed as 200 and 0.05. The learning rate171

and λ are chosen from the set {0.02, 0.01, 0.005} and {0.1, 0.05, 0.01}.172

E.4: Heat Diffusion on a Circular Ring173

Data The ground-truth data is generated via the Python package ‘py-pde’ [22], and the step size is174

fixed as 10−4. The initial heat distribution is generated from u0 ∼ N
(
0, 33/2(−∆+ 9I)−1

)
, and175

the width of the ring is divided into 256 lattices.176

Hyperparameters In this experiment, we utilize the 4-layer 1D FNO as the backbone network,177

with width = 20, mode = 12 and GeLU activation. We utilize Adam to optimize the neural operator178

for 10000 epochs with an initial learning rate of 0.01 and decay the learning rate by a factor of 0.5179

every 500 epochs. For each epoch, we sample 200 initial conditions from D0 and 16 particles to180

simulate the random processes. We set the time step ∆t and λ as 0.05 and 0.1. For MCM, we set the181

time step ∆t and the sampling numbers as 0.05 and 104.182

E.5: 1D Fractional Diffusion Equations183

Data The data is generated via the following exact solution of Eq. 11:184

u(x, t) =

N∑
n=1

an sin(2πnx)e
−κ(2πn)αt. (16)

The spatial field is divided into 128 lattices. We generate 1000 training data with seed 1, and 200 test185

data with seed 0.186

Hyperparameters In this experiment, we utilize the 4-layer 1D FNO as the backbone network,187

with width = 30, mode = 20 and GeLU activation. We utilize Adam to optimize the neural operator188

for 10000 epochs with an initial learning rate of 0.01 and decay the learning rate by a factor of189

0.5 every 500 epochs. For each epoch, we sample 200 initial conditions from D0 and 64 particles190

to simulate the random processes. We set the time step ∆t and λ as 0.2 and 0.01. For MCM, we191

set the time step ∆t and the sampling numbers as 0.05 and 104. Furthermore, we need to mention192

that there is no GPU package for the Lévy sampling as far as we know. Thus, we utilize the code193

scipy. stats. levy_stable [20] to generate the corresponding random processes.194

8

References195

[1] W. F. Bauer. The monte carlo method. Journal of the Society for Industrial and Applied Mathematics,196

6(4):438–451, 1958.197

[2] Julius Berner, Markus Dablander, and Philipp Grohs. Numerically solving parametric families of high-198

dimensional kolmogorov partial differential equations via deep learning. Advances in Neural Information199

Processing Systems, 33:16615–16627, 2020.200

[3] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-201

rin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX:202

composable transformations of Python+NumPy programs, 2018.203

[4] Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differential204

equations. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural205

Information Processing Systems, 2021.206

[5] Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations using207

deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510, 2018.208

[6] Hong Li, Qilong Zhai, and Jeff ZY Chen. Neural-network-based multistate solver for a static schrödinger209

equation. Physical Review A, 103(3):032405, 2021.210

[7] Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,211

Andrew M. Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential212

equations. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,213

May 3-7, 2021. OpenReview.net, 2021.214

[8] Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar Aziz-215

zadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial differential216

equations. arXiv preprint arXiv:2111.03794, 2021.217

[9] Anna Lischke, Guofei Pang, Mamikon Gulian, Fangying Song, Christian Glusa, Xiaoning Zheng, Zhiping218

Mao, Wei Cai, Mark M Meerschaert, Mark Ainsworth, et al. What is the fractional laplacian? a comparative219

review with new results. Journal of Computational Physics, 404:109009, 2020.220

[10] Sylvain Maire and Etienne Tanré. Monte carlo approximations of the neumann problem. In Monte Carlo221

Methods Appl., 2012.222

[11] Nikolas Nüsken and Lorenz Richter. Interpolating between bsdes and pinns–deep learning for elliptic and223

parabolic boundary value problems. arXiv preprint arXiv:2112.03749, 2021.224

[12] Guofei Pang, Lu Lu, and George Em Karniadakis. fpinns: Fractional physics-informed neural networks.225

SIAM Journal on Scientific Computing, 41(4):A2603–A2626, 2019.226

[13] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,227

Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep228

learning library. Advances in neural information processing systems, 32, 2019.229

[14] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep230

learning framework for solving forward and inverse problems involving nonlinear partial differential231

equations. Journal of Computational physics, 378:686–707, 2019.232

[15] Carl Remlinger, Joseph Mikael, and Romuald Elie. Robust Operator Learning to Solve PDE. working233

paper or preprint, April 2022.234

[16] Lorenz Richter and Julius Berner. Robust sde-based variational formulations for solving linear pdes via235

deep learning. In International Conference on Machine Learning, pages 18649–18666. PMLR, 2022.236

[17] Lorenz Richter, Leon Sallandt, and Nikolas Nüsken. Solving high-dimensional parabolic pdes using the237

tensor train format. In International Conference on Machine Learning, pages 8998–9009. PMLR, 2021.238

[18] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical239

image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015:240

18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pages241

234–241. Springer, 2015.242

[19] Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani, Dirk243

Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine learning. Advances244

in Neural Information Processing Systems, 35:1596–1611, 2022.245

[20] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,246

Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0: fundamental247

algorithms for scientific computing in python. Nature methods, 17(3):261–272, 2020.248

[21] Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric partial249

differential equations with physics-informed deeponets. Science advances, 7(40):eabi8605, 2021.250

9

[22] David Zwicker. py-pde: A python package for solving partial differential equations. Journal of Open251

Source Software, 5(48):2158, 2020.252

10

