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I. PROOF OF LEMMA II.1

First, let us recall the “filling latent set assumption”.

Assumption I.1 (Filling latent set). We say an atomic au-
toencoder φ ◦ ζ of Σ yields a filling latent set Θ = φ−1(Σ)
if there is a bijection h ∈ C1([0, 1]kd0 ,Θ) with C1 inverse
between [0, 1]kd0 and Θ.

Lemma I.1. Suppose Σ,Θ, φ ◦ ζ, h verify Assumption I.1 and
int(h−1(Θ)) 6= ∅ (where int denotes the interior). Let θ ∈ Θ
such that h−1(θ) ∈ int(h−1(Θ)). Then there exists an open
set O of Rkd0 such that θ +O ⊂ Θ.

Proof. Let u ∈ int(h−1(Θ)) such that h(u) ∈ Θ. With
Assumption I.1, as h ∈ C1 and is a bijection, by continuity,
there is an open set Õ ∈ Rkd0 such that h(u + Õ) ∈ Θ. The
image of u+ Õ is an open set Q ⊂ Θ, hence O = Q− h(u)
is an open set and θ +O = h(u)− h(u) +Q = Q ⊂ Θ.

II. ELEMENTARY PROPERTIES OF IDEAL AUTOENCODERS

Note that injectivity of φ (discussion on injectivity "up to a
permutation" is out of the scope of this paper and left for
future work) is not necessarily required to provide atomic
disentanglement. Having equivalent representations does not
affect the ability to navigate the latent space in our definition.
We now consider fE the trained encoder, fD the trained
decoder (we drop the star exponent to keep notations light),
and call the latent code z = fE(x) for x ∈ Σ. Note that z
is generally not the same as the ideal latent code θ. We place
ourselves in the case where an ideal atomic autoencoder ζ ◦φ
that achieves atomic disentanglement is induced by Σψ,k. We
also suppose that we are able to train an autoencoder fD ◦ fE
up to an arbitrary precision: in the case of a perfectly trained
autoencoder, we have fE : Rn → Rkd0 and for any z ∈ Rkd0 ,
fD(z) =

∑k
j=1 g(zj) for some g : Rd0 → Rn and for any

x ∈ Σ, fD ◦ fE(x) = x.
If φ, ζ, fD, fE are smooth, fD ◦ fE achieves atomic disen-

tanglement.

Proposition II.1. Suppose φ, ζ, fD, fE ∈ C1 and φ◦ζ verifies
Assumption I.1 on Σ. Then fE ◦fD verifies Assumption I.1 on
Σ.

Proof. Define T = f−1
D (Σ). Also, since φ◦ζ verifies Assump-

tion I.1, we have that there exists a bijection h ∈ C1 between
[0, 1]kd0 and Θ.

Let h̃ = fE ◦ φ ◦ h, the function h̃ is C1 by composition of
C1 functions and any element of T is the image of an element
of [0, 1]kd0 . Reciprocally, by defining h̃−1 = h−1 ◦ ζ ◦ fD
that is also C1, as fD(T ) = Σ, any element of [0, 1]kd0 is the
image of an element of T . This proves Assumption I.1.

What this simple proposition tells us is that most of the
desirable disentanglement properties are guaranteed by the
structure of the autoencoder itself, and having a latent set
that “fills” the latent space is a byproduct of smoothness of
the autoencoder given the dimensions are well chosen (i.e.
small enough). We now show that fD ◦ fE can possibly mix
coordinates of the ideal latent blocks if ψ can be broken into
simpler functions. We prove this for the case of two blocks of
size 2 and Θ = [0, 1]2×2.

Proposition II.2. Let φ ◦ ζ be an atomic autoencoder such
that there exists ψ̃ such that ψ(θi) = ψ̃(θi,1) + ψ̃(θi,2) (with
Θ = [0, 1]2×2). Then there exists an atomic autoencoder
fD ◦ fE such that fD(z) = g(z1) + g(z2) and for any θ =
(θ1,1, θ1,2, θ2,1, θ2,2) ∈ Θ, fE(φ(θ)) = (θ1,1, θ2,1, θ1,2, θ2,2),
i.e. the encoder fE mixes the ideal latent coordinates into two
different blocks.

Proof. For the decoder, just consider fD = φ and g =
ψ. Now define the permutation p of {1, 2, 3, 4}, such that
p(1, 1) = (1, 1), p(1, 2) = (2, 1), p(2, 1) = (1, 2), p(2, 2) =
(2, 2)) and the function ρ : [0, 1]2×2 → [0, 1]2×2 such that
[ρ(θ)]p(i,j) = θi,j . Now define fE = ρ ◦ ζ. We have

fD ◦ fE(x) = φ(ρ(ζ(x))) = φ(ρ(θ)) = φ(θ11, θ2,1, θ1,2, θ2,2)

= ψ̃(θ1,1) + ψ̃(θ2,1) + ψ̃(θ1,2) + ψ̃(θ2,2)

= φ(θ) = x.
(1)

In other words, if the function defining the dictionary is the
sum of two elementary functions then single atoms could be
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Conv. part of encoder - number of filters per layer

Filters

32 16 8 8

MLP part of encoder and size of latent space

Neurons Neurons Neurons
(kd0)

d0 k

512 512 96 6 16

MLP. part of block decoder

Neurons

6 (d0) 32 32

Conv part of block decoder - number of channels per layer

Filters

8 8 8 16 32 1
(output)

TABLE I
ARCHITECTURE OF THE ATOMIC AUTOENCODER USED FOR THE

EXPERIMENTS IN THIS PAPER, FOR THE CASE OF MNIST. IN THE CASE
OF MNIST, THE ENCODER PROJECTS IMAGES TO A LATENT SPACE OF SIZE
kd0 = 6× 16. EACH BLOCK DECODER IS DEEPER THAN THE ENCODER:

THIS IS NORMAL, SINCE THE BLOCK DECODER MUST GO FROM A LATENT
CODE OF SIZE d0 = 6 TO AN IMAGE OF SIZE 128× 128.

coded on several blocks. This is often not desirable because
each block should modify an individual “simple” feature. In
terms of design of the autoencoder, this tells us that if ψ can be
broken down into simpler functions, then latent blocks should
be chosen to be smaller. In our two practical examples, we
observe that ψ is no such function.

III. IMPLEMENTATION DETAILS

The DNN architecture is designed to be as simple as
possible. The encoder performs iterated 3 × 3 convolutions,
with a stride of 2×2 (subsampling by 2 at each layer), followed
by a leaky ReLU non-linearity (α = 0.2). There are four such
layers.The number of convolutional channels at the output of
the first layer is fixed to 32, and this is then divided by 2 until
reaching 8. This reduction of channels is designed to gradually
reach a compact representation of the image.

Finally, two fully connected layers, with leaky ReLU (α =
0.2) are used to project the tensors to the latent space Rkd0 ,
with k, d0 chosen according to application.

The block decoder g takes a latent block (in Rd0 ) and
outputs an image. The first layers of g are two fully connected
layers with leaky ReLUs to reach a size of 2× 2× 8. This is
followed by a convolutional section, with 3× 3 convolutions.
The convolutional section is not symmetric with respect to the
encoder, since we go from a small 2× 2× 8 tensor to a full
image. Each convolutional layer contains a 3× 3 convolution,

Fig. 1. Autoencoding 128× 128 mnist images on R30.

followed by an upsampling by 2×2 and finally a leaky ReLU.
The number of channels (filters) is chosen in a manner similar
to the encoder: we keep 8 channels until we can increase
them by multiplying by 2 until the final layer, which is 32.
However, we stress that the encoder and the block decoder
are not symmetric, as the block decoder goes from each latent
block zi rather than the total latent code.

In Table II, we show the specific architecture chosen for
the mnist images. In this case, the encoder projects images
to a latent space of size kd0 = 6 × 16. We considered that
each small segment/penstroke present in mnist images can be
parametrised by 6 parameters, and we let there be a maximum
of 16 individual strokes in the image. This number of strokes
was obtained by fixing the size of an image patch in which
we considered a stroke would be carried out. We fixed this
to 32 (recall that our high-resolution mnist images are of size
128 × 128), which gives 4 × 4 = 16 image patches. Note
that this is a slight over-parametrisation of mnist data, since
we considered that strokes could be present anywhere in the
image (even though mnist images are quite well centred),
however the total number of latent coordinates is still very low:
196). If we compare this with other autoencoder architectures
(eg. variational autoencoders), the number of parameters is
higher. This is quite normal, since each of our parameters is
disentangled with respect to an image penstroke. In variational
autoencoders, the latent codes may be disentangled with
respect to the number of classes, which gives smaller latent
spaces, but this is completely different from decomposing
an image into visually distinct atomic components. Thus,
comparisons with such approaches are not meaningful here.

We also note the asymmetry between the encoder and block
decoder: each block decoder is deeper than the encoder. This
is normal, since the block decoder must go from a latent code
of size d0 = 6 to an image of size 128 × 128, whereas the
encoder goes from 128×128 to 96 (the full latent space size).

IV. VERIFICATION THAT THE ATOMIC AUTOENCODER
SUCCEEDS IN AUTOENCODING

In Figure 1, we verify that the atomic autoencoder indeed
succeeds in the autoencoding task. In other words, the output
of the atomic autoencoder is indeed close to the input.

V. INTERPOLATION IN THE LATENT SPACE OF THE ATOMIC
AUTOENCODER

In Figure 2, we show the result of interpolating between two
latent points in the latent space of the atomic autoencoder. It



can be seen, that the interpolation modifies the line segments
sequentially, to go from a number 6 to a number 2.

VI. NAVIGATION IN THE LATENT SPACE FOR
OFF-THE-GRID SPIKES



Fig. 2. Interpolation with mnist images. We have interpolated linearly between two latent codes of images from the mnist dataset. We observe that the
strokes are shortened or lengthened to go from a 6 to a 2.
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Fig. 3. Navigation in the latent space for images of spikes. Left to right: linearly modification of a latent coordinate in a block, keeping the others constant.
Top to bottom: modification of the three different coordinates of the latent block. We observe that the first coordinate changes the amplitude, while the second
and third modify the position (red mark). No supervision in the training was involved here.
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