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ABSTRACT

Analyzing the cardiovascular system condition via Electrocardiography (ECG) is
a common and highly effective approach, and it has been practiced and perfected
over many decades. ECG sensing is non-invasive and relatively easy to acquire,
and yet it is still cumbersome for holter monitoring tests that may span over hours
and even days. A possible alternative in this context is Photoplethysmography
(PPG): An optically-based signal that measures blood volume fluctuations, as typ-
ically sensed by conventional “wearable devices”. While PPG presents clear ad-
vantages in acquisition, convenience, and cost-effectiveness, ECG provides more
comprehensive information, allowing for a more precise detection of heart condi-
tions. This implies that a conversion from PPG to ECG, as recently discussed in
the literature, inherently involves an unavoidable level of uncertainty. In this pa-
per we introduce a novel methodology for addressing the PPG-2-ECG conversion,
and offer an enhanced classification of cardiovascular conditions using the given
PPG, all while taking into account the uncertainties arising from the conversion
process. We provide a mathematical justification for our proposed computational
approach, and present empirical studies demonstrating its superior performance
compared to state-of-the-art baseline methods.

1 INTRODUCTION

Cardiovascular diseases are a significant public health problem, affecting millions of people world-
wide and remaining a leading cause of mortality (Tsao et al., 2022). The analysis of cardiovascular
conditions using Electrocardiography (ECG) signals has emerged as one of the most widely utilized
diagnostic tool (Kligfield et al., 2007), and its practice and efficiency have been continuously refined
over many decades.

While ECG sensing is non-invasive and relatively easy to acquire, it is time-consuming and requires
the expertise of trained professionals with specialized skills in order to ensure accurate diagnosis.
Consequently, there has been a surge in the development of numerous contemporary wearable ECG
systems in recent decades for digital diagnosis. However, the materials used to deliver a high-quality
signal via electrodes can often lead to skin irritation and discomfort during extended usage, thereby
limiting the long-term viability of these devices (Zhu et al., 2019).

A possible alternative to ECG sensing and diagnosis is the use of Photoplethysmography (PPG),
which is an optically-based non-invasive signal associated with rhythmic changes in blood volume
within tissues (Reisner et al., 2008). Unlike ECG, PPG signals are easier to obtain, convenient, and
cost-effective, as they are widely available in clinics and hospitals and can be sensed through fin-
ger/toe clips. Moreover, the popularity of PPG is increasing with the emergence of wearable devices
like smart watches, enabling continuous long-term monitoring without causing skin irritations.

Naturally, the PPG and ECG signals are inter-related, as the timing, amplitude, and shape charac-
teristics of the PPG waveform contain information about the interaction between the heart and the
blood vessels. These features of the PPG have been leveraged to measure heart rate, heart rate vari-
ability, respiration rate (Karlen et al., 2013), blood oxygen saturation (Aoyagi & Miyasaka, 2002),
blood pressure (Payne et al., 2006), and to assess vascular function (Marston, 2002; Allen & Mur-
ray, 1993). Despite these capabilities, using PPG-based monitoring during daily activities and light
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Figure 1: Illustration of our proposed UA-P2E for PPG-2-ECG conversion-classification framework.

physical exercises poses unavoidable uncertainty challenges due to signal inaccuracies and inher-
ent noise, stemming from their indirect nature, compared to ECG signals sourced directly from the
heart.

As the use of wearable devices capturing PPG signals is becoming widespread, there is an emerging
interest in accurately converting PPG sources into ECG signals (Chiu et al., 2020; Li et al., 2020; Zhu
et al., 2021; Sarkar & Etemad, 2021; Vo et al., 2021; Tang et al., 2022; Ho et al., 2022; Tian et al.,
2022; Vo et al., 2023; Lan, 2023; Abdelgaber et al., 2023; Hinatsu et al., 2023; Shome et al., 2023).
However, such a mapping can be regarded as an ill-posed inverse problem. This implies that multiple
ECG solutions may correspond to the same input PPG signal. Nevertheless, previous work in this
domain has tended to focus on providing a single ECG solution to the conversion task, ignoring the
inherent uncertainty in the conversion and thus failing to capture the complete information contained
in the PPG signal. Such studies suggest optimizing neural models either via regularized regression
with an L1/L2 loss (Li et al., 2020; Chiu et al., 2020; Zhu et al., 2021; Tang et al., 2022; Ho et al.,
2022; Tian et al., 2022; Lan, 2023; Abdelgaber et al., 2023; Hinatsu et al., 2023) or relying on a
generative approach that produces a single solution that approximates a sample from the posterior
distribution of ECG given the PPG signal (Sarkar & Etemad, 2021; Vo et al., 2021; 2023; Shome
et al., 2023). Here, we argue that both these strategies are lacking, and the conversion in question
calls for a different approach.

In this paper, we introduce Uncertainty-Aware PPG-2-ECG (UA-P2E), a novel PPG-2-ECG con-
version methodology, aimed at enhancing the classification of cardiovascular conditions using ECG
signals derived from PPG data. Unlike prior work, our approach aims to address both the uncer-
tainty arising from the conversion task, regarding the spread and variability of the possible ECG
solutions given the PPG (Angelopoulos et al., 2022; Belhasin et al., 2023), and also the uncertainty
in the classification task, enabling the selection of PPG samples with low classification risk and high
confidence (Geifman & El-Yaniv, 2017).

To achieve the above, we leverage a conditional diffusion-based methodology (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2020). These generative models have recently emerged as the lead-
ing synthesis approach in various tasks (Dhariwal & Nichol, 2021; Yang et al., 2023), and have been
shown to enable high-fidelity posterior modeling for inverse problems (Yang et al., 2023; Kawar
et al., 2021; 2022; Song et al., 2022; Chung et al., 2022). We utilize this capability to produce a
multitude of posterior sampled ECG results that correspond to the input PPG, and provide classi-
fication decisions based on this cluster of outcomes. Additionally, we introduce several methods
for displaying the resulting ECG candidates for better human interpretability. Figure 1 provides an
illustration of our approach to the conversion-classification process.

Our computational methodology is grounded on a mathematical proof showcasing the optimality of
the expected classification score derived from our proposed approach for classifying cardiovascular
conditions from source PPG signals. This optimality relies on the assumption that we have access
to a perfect posterior sampler and ECG classification models. This stands in contrast to the single-
solution approach used by prior work, as described above, which necessarily performs worse.

Our work presents a thorough empirical study demonstrating superior performance in classifica-
tion and uncertainty estimation compared to baseline methods. Our main results are demonstrated
on the “Computing in Cardiology” (CinC) dataset (Reyna et al., 2021), which provides the most
challenging classification data in cardiology.
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In summary, our contributions are the following: (1) We introduce a state-of-the-art diffusion-based
methodology for PPG-2-ECG conversion-classification that accounts for the uncertainty in the con-
version task, thereby enhancing performance; (2) We provide a mathematical proof that justifies
our proposed computational process for the classification task; (3) We offer effective methods for
displaying the ECG solutions obtained, enhancing interpretability while taking into account the un-
certainty perspective; and (4) We present an empirical study that supports our mathematical proof
and demonstrates the superiority of our methodology over baseline strategies.

2 RELATED WORK

Naturally, our work is not the first one to consider the conversion of PPG signals to ECG ones. Below
we outline the main trends in this line of work, and add a discussion on uncertainty quantification,
as we aim to practice in this paper.

Regression: Earlier approaches to the PPG-2-ECG conversion problem primarily focused on ap-
proximating either the Minimum Mean Absolute Error (MMAE) estimator using L1 loss (Li et al.,
2020; Chiu et al., 2020; Ho et al., 2022; Lan, 2023) or the Minimum Mean Squared Error (MMSE)
estimator with L2 loss (Zhu et al., 2021; Tang et al., 2022; Tian et al., 2022; Abdelgaber et al.,
2023; Hinatsu et al., 2023). These works commonly employed regularization techniques to enhance
perceptual outcomes. However, the work reported in Blau & Michaeli (2018) which discovered the
distortion-perception tradeoff has shown that when optimizing for distortion (of any kind), percep-
tual quality is necessarily compromised, thus pushing the solutions in the above methods to signals
that are likely to drift out of the valid ECG manifold, thus weakening their classification perfor-
mance.

Generation: The first attempt at PPG-2-ECG conversion using generative models was introduced by
the authors of CardioGAN (Sarkar & Etemad, 2021). They employed an adversarial training scheme
with an encoder-decoder architecture. Similarly, P2E-WGAN (Vo et al., 2021) utilized conditional
Wasserstein GANs for this task. Vo et al. (2023) introduced a variational inference methodology
to approximate the posterior distribution with a Gaussian prior assumption. The authors of RDDM
(Shome et al., 2023) have first adapted a diffusion-based model that accelerates a DDPM (Ho et al.,
2020) diffusion process for this conversion task. However, despite the success of the generative
approach, all the above works have chosen to use a single (possibly random) ECG solution from the
posterior distribution, thus missing the complete picture of the possibilities of the different ECGs
given the PPG signal.

Uncertainty Quantification: In the framework of the conversion-classification explored in this
paper, uncertainty quantification serves a dual purpose. Firstly, it seeks to characterize the range,
spread, and variability of potential solutions for a given input PPG signal (Angelopoulos et al., 2022;
Belhasin et al., 2023). Secondly, it also aims at assessing the confidence in the correctness of clas-
sification predictions, e.g. via a selective classification (Geifman & El-Yaniv, 2017) scheme, which
we adopt in this paper. Building upon principles from these two threads of work, we characterize
the diverse solutions that can potentially describe the input, leading to an improved methodology
within the conversion-classification framework.

3 PROBLEM FORMULATION AND GOALS

Let X ∈ X ⊆ Rd be a random vector representing an ECG signal that follows the prior distri-
bution π(X). We assume access only to its observation Y = h(X) ∈ Y ⊆ Rd, where h is an
unknown, possibly stochastic, and non-invertible function. The observation Y represents a PPG sig-
nal that follows the distribution π(Y |X). In this paper, our first and primary objective is to provide
a comprehensive and interpretable estimation of the ECG signal(s) that corresponds to the given Y ,
focusing on the approximation of the posterior distribution π(X|Y ). Prior work in this field (see
Section 2) adopted a single-solution approach for the conversion task, focusing on estimating a sin-
gle reconstructed ECG solution from π(X|Y ), typically achieved through regression or generation
models.

Here, we propose a generalization of this conversion approach using a conditional stochastic gen-
erative model, denoted as g : Y × Z → X s.t. g(Y,Z) = X̂ ∼ π̂(X|Y ), where Z ∈ Z denotes
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a stochastic component that typically follows a normal distribution π(Z) := N (0, I), and X̂ rep-
resents a potential ECG solution derived as a sample from the approximate posterior distribution
π̂(X|Y ). In this context, a single ECG solution may be derived by fixing Z = z in g(Y, Z), or by
marginalizing over the random seed, i.e., Ez∼π(Z)[g(Y,Z)]. In contrast, allowing Z to be random
may provide a more comprehensive set of solutions to the inverse problem, exposing the inherent
uncertainty within this conversion task. Our prime goal in this work is therefore to train the stochas-
tic conversion model g using a training data consisting of many (ECG, PPG) signal pairs, denoted
by {(Xi, Yi)}ni=1.

A second objective in this work is classification, enabling diagnosis of various cardiovascular con-
ditions via the incoming PPG signals. Consider a binary classification problem where the input is
an observation Y ∈ Y with a corresponding binary label C ∈ {0, 1} that follows a conditional
distribution π(C|Y ). In this classification setting, we aim to model a classifier fY : Y → R+ for
approximating the posterior distribution, denoted as π̂(C|Y ).

Addressing this classification task, one might be tempted to adopt a straightforward and naive strat-
egy, of training directly on data that consists of PPG signals and their associated labels. Nevertheless,
appropriate cardiovascular labels linked with PPG signals are relatively rare and hard to acquire. An
alternative is to use labels that were produced for ECG signals, X , and tie these to their matched
PPG, Y . However, as the mapping between PPG and ECG is not injective, this implies that other
ECG signals (possibly with a different label) could have led to the same PPG. As a consequence,
these labels are necessarily noisy, impairing the learning task.

A presumably better alternative is to operate in the reconstructed ECG domain, hoping for improved
performance. Indeed, the classification proposed in prior work operates on the single estimated ECG
X̂ , approximating this way the posterior π(C|X̂). This is achieved using a classifier fX : X → R+,
trained over data of the form {(Xi, Ci)}ni=1, where Xi represents a grounded ECG signal and Ci

denotes its associating label. As we rely now on labels that do match their corresponding signals,
this may seem like a better approach. However, the same flaw as above applies here – the single-
produced ECG, X̂ , captures a partial truth about the given PPG, thus weakening the classification.
Here is a formal definition of this classification strategy, as practiced in prior work:
Definition 3.1 (Single Score Classifier). We define a stochastic classifier fY as a Single Score Clas-
sifier (SSC) if it is given by

fY(Y ) = fX (EZ′∼π(Z′)[g(Y,Z
′)]).

When choosing π(Z ′) = π(Z), the term EZ′∼π(Z′)[g(Y, Z
′)] becomes the MMSE estimate of the

ECG, and when π(Z ′) = δ(Z −W ) for W ∼ π(Z), we get a single sample from the approximate
posterior distribution, π̂(X|Y ).

Following the data processing inequality (Beaudry & Renner, 2011), any transformation X̂ =
EZ′∼π(Z′)[g(Y,Z

′)] satisfies the inequality

I(Y ;C) ≥ I(X̂;C), (1)
where I(U ;V ) denotes the mutual information between the random variables U and V . The above
inequality implies that the classification information contained within a single reconstructed ECG
signal X̂ , as utilized by prior work, is always weakly lower than the classification information
contained within the original PPG signal Y . This suggests that despite the transformation from
PPG to ECG, there may be some loss or reduction in the discriminative power for classification
tasks due to information processing constraints.

To address this challenge, we adopt a multi-solution formulation approach that takes into account all
possible ECG solutions that can be derived from the PPG signal Y . Below is the formal definition
of our classification strategy.
Definition 3.2 (Expected Score Classifier). We define a classifier fY as an Expected Score Classifier
(ESC) if it is given by

fY(Y ) = EZ∼π(Z) [fX (g(Y,Z))] .

Intuitively, this strategy averages the classification scores of posterior samples that emerge from
the posterior distribution π(X|Y ), rather than averaging the samples themselves. As the following
Theorem claims, this classification approach is optimal.
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Theorem 3.1 (Optimality of the Expected Score Classifier). Consider the Markovian dependency
chain Y → X → C, implying that π(C|X,Y ) = π(C|X), and assume the following:

1. The conversion model g is a posterior sampler, i.e., g(Y,Z) = X̂ ∼ π(X|Y ); and

2. The classification model fX is optimal by satisfying fX (X) = π(C = 1|X),

Then the obtained classification is optimal, satisfying fY(Y ) = π(C = 1|Y ).

Supported by Equation (1), Theorem 3.1 implies that our approach utilizes the full extent of the
information within the observation Y , and is therefore optimal. In particular, this demonstrates that
our approach is superior to the single-solution classification strategy (Definition 3.1), which has been
adopted by prior work. See Appendix A for the proof of the above claim, along with an extension
showing the ESC optimality in practical settings.

4 UA-P2E: UNCERTAINTY-AWARE PPG-2-ECG

We now turn to introduce Uncertainty-Aware PPG-2-ECG (UA-P2E), our methodology for PPG-2-
ECG conversion, aiming to provide a comprehensive understanding of the various ECG solutions
derived from a given PPG signal. UA-P2E may assist medical professionals in analyzing diverse
ECG signal variations resulting from the conversion process. Additionally, our method can be lever-
aged to enhance cardiovascular diagnostic accuracy and confidence assessments, facilitating more
informed clinical decisions.

While our proposed approach is applicable using any conditional stochastic generative estimator,
denoted as g : Y × Z → X , we focus in this work on conditional diffusion-based models (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020), which have emerged as the leading syn-
thesis approach in various domains (Dhariwal & Nichol, 2021; Yang et al., 2023). Our diffusion
process is trained and evaluated on raw signal data of fixed-length Y,X ∈ Rd PPG and ECG signal
pairs, sampled at 125Hz, thus covering d/125 seconds.1 The central part of the diffusion process
involves a conditional denoiser, denoted as ϵ(Xt, Y, t). This denoiser is trained to predict the noise
in Xt, which is a combination of X0 (representing a clean instance) and white additive Gaussian
noise at a noise level denoted by t. In this conditional process, the denoiser leverages the PPG signal
Y and the noise level t as supplementary information. Training ϵ is based on pairs of (X,Y ) signals
- a clean ECG and its corresponding PPG. After training, we apply multiple diffusion operations on
a given PPG signal Y ∈ Y to draw potential ECG solutions {X̂i}Ki=1, where each X̂i ∼ π̂(X|Y ) is
a sample from the approximated posterior distribution of the ECG given the PPG signal.

In Section 4.1 we describe our enhanced classification procedure that relies on the above posterior
sampler, denoted by g. Additionally, in Section 4.2 we discuss how to improve the quantification of
uncertainty in classification, aiming to enhance confidence in predictions. Lastly, in Section 4.3, we
offer methods to visualize the cloud of ECG solutions {X̂i}Ki=1. This visualization aims at enhancing
interpretability for medical professionals, allowing for a better understanding of the various ECG
signals that emerge from a given PPG signal.

4.1 UA-P2E: ENHANCED CLASSIFICATION

The methodology for UA-P2E’s enhanced classification consists of three phases. The first involves
training the probabilistic classification model, denoted as fX : X → R+, using ECG signals and
their associated labels. fX can be optimized through the commonly used Cross-Entropy loss func-
tion, producing an output that has a probabilistic interpretation. In the second phase, each potential
posterior sample X̂i from the set {X̂i}Ki=1 (derived by applying g to a given Y ) is evaluated by
this classifier, extracting an output score fX (X̂i), being an estimated probability of belonging to
the positive class (C = 1). In the final phase, the average classification score, 1

K

∑K
i=1 fX (X̂i), is

computed, and compared to a decision threshold t ∈ R+. The complete workflow of our proposed
method to enhance classification is detailed in Algorithm 1.

1in our experiments d = 1024 and thus the signals cover ≈ 8 seconds.
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Algorithm 1 UA-P2E for Classification Framework
Require: Observation Y ∈ Y . Pretrained conditional stochastic generative model g : Y×Z → X . Pretrained

classification model fX : X → R+. Number of samples K ∈ N. Decision threshold t ∈ R+.
Ensure: Classification decision Ĉ ∈ {0, 1}, and its positive score fY(Y ) ∈ R+.
1: for i = 1 to K do ▷ Apply the conversion process
2: Draw Zi ∼ N (0, 1) and compute X̂i ← g(Y,Zi).
3: end for
4: fY(Y )← 1

K

∑K
i=1 fX (X̂i) ▷ Approximate the ESC (Definition 3.2)

5: if fY(Y ) > t then Ĉ ← 1 else Ĉ ← 0.

Algorithm 1 seeks to approximate the ESC (Definition 3.2), which has been proven optimal in
Theorem 3.1.

4.2 UA-P2E: UNCERTAINTY QUANTIFICATION

The proposed PPG-2-ECG conversion has two layers of uncertainty awareness, as described herein.
The first takes into account the inherent uncertainty that emerges from the ill-posed conversion it-
self, quantifying the spread and variability of the possible ECG candidates that derive from the
PPG inputs. In Appendix C, we present empirical evidence illustrating the uncertainty from this
perspective. The second uncertainty layer leverages the above property for providing classification
predictions with a better confidence in their correctness. This serves a selective classification (Geif-
man & El-Yaniv, 2017) scheme, in which a carefully chosen subset of the test PPG data is selected
by their calculated confidence, exhibiting improved accuracy.

Selective classification (Geifman & El-Yaniv, 2017) enables handling cases in which classifying
every PPG signal within a test set is challenging due to uncertainty or data corruption. This tech-
nique allows for abstaining from making predictions for signals with low confidence, thus reducing
classification errors on the remaining data. A confidence function, defined as κ : Y → R+, serves
as the engine for this task by predicting the correctness of predictions. One common choice of this
confidence function κ is to use the maximal softmax score of a classifier. In a similar spirit, in this
work we set κ(Y ) to take the value κ(Y ) = max{1− fY(Y ), fY(Y )}, where fY(Y ) approximates
the ESC (Definition 3.2), as summarized in Algorithm 1.

In addition to the above, we may consider applying a calibration scheme on a heldout set, denoted
as {(Yi, Ci)}mi=1, to determine a threshold λ ∈ R+ for κ(Y ) that defines the reliable test PPG
signals whose classification error is statistically guaranteed to be lower than a user-defined risk level
α ∈ (0, 1) ≪ 1. Such a guarantee has the following form:

P

Eπ(Y,C)

[
1{Ĉ ̸= C}1{κ(Y ) > λ}

]
Eπ(Y,C) [1{κ(Y ) > λ}]

< α

 > 1− δ , (2)

where δ ∈ (0, 1) ≪ 1 is a user-defined calibration error. Intuitively, by setting α = δ = 0.1, the
above implies that the classification error among selected PPG signals, whose confidence scores are
greater than λ, will be lower than α (= 10%) with probability of 1 − δ (= 90%). In Appendix B,
we describe how to calibrate λ to provide the guarantee stated in Equation (2).

4.3 VISUALIZING UA-P2E’S ECG OUTPUT(S)

A primary objective of UA-P2E is the PPG-2-ECG conversion, and a natural question to pose is
what ECG signal to present to medical professionals after such a conversion. Due to the stochastic
nature of our estimation approach, this question becomes even more intricate, as we have multitude
of candidate ECG signals, all valid from a probabilistic point of view. We emphasize, however,
that there is no “correct” answer to the question of the ECG result to present, and thus the options
discussed hereafter can be considered as possibilities to be chosen by the human observer.

Note that although a single ECG solution represents only a partial truth that refers to the given PPG
signal (see Section 3), here we aim to present such a single ECG that encapsulates the main infor-
mation conveyed by the given PPG signal. In terms of interpretability, we assume that professionals

6
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(a) Low Uncertainty (b) Medium Uncertainty (c) High Uncertainty

Figure 2: MIMIC-III Results: Diffusion-based multiple solutions in the temporal domain. Each
temporal point displays an interval containing 95% of our ECG/PPG synthetic values. The top row
depicts the ECG solution cloud (GREEN) resulting from the PPG-2-ECG conversion, while the
bottom row shows the PPG solution cloud (RED) from the reverse conversion of ECG-2-PPG.

might prefer receiving a single solution that closely aligns with the underlying medical information
within the PPG signal.

To address this challenge, while acknowledging the inherent uncertainty in converting PPG-2-
ECG from a classification perspective, we first apply our diagnostic approach as described in Sec-
tion 4.1, which involves analyzing multiple ECG solutions. Consequently, we propose present-
ing a single ECG that corresponds to the diagnostic findings, specifically tied to the histogram of
ECG solutions whose classification aligns with the classification obtained using the ESC (Defini-
tion 3.2) approximation. Formally, these ECG solutions are derived from {fX (X̂i)}ki=1, where
X̂i = g(Y, Zi) ∼ π̂(X|Y ) and 1{fX (X̂i) > t} = 1{fY(Y ) > t}, with t ∈ R+ representing the
decision threshold. We may offer to use one of the following strategies:

Most Likely Score ECG: Present an ECG sample X̂∗ that matches the most likely score. i.e.,

X̂∗ ∈ arg max
b∈{I1,I2,...,IB}

KDE{fX (X̂i)}k
i=1

(b) , (3)

where b ∈ {I1, I2, . . . , IB} denotes the bin intervals of the KDE function of {fX (X̂i)}ki=1.

Expected Score ECG: Present an ECG sample X̂∗ that best matches the average score, i.e.,

X̂∗ = arg min
X̂∈{X̂i}k

i=1

∣∣∣∣∣fX (X̂)− 1

k

k∑
i=1

fX (X̂i)

∣∣∣∣∣ . (4)

Min/Max Score ECG: Present an ECG sample X̂∗ that best represents the classification, i.e.,

X̂∗ = arg max
X̂∈{X̂i}k

i=1

fX (X̂) if fY(Y ) = 1 else arg min
X̂∈{X̂i}k

i=1

fX (X̂) . (5)

In Section 5.3, we provide empirical results regarding the quality of the three visualization ap-
proaches mentioned above. These results suggest that the most likely score ECG, as defined in
Equation (3), provides the highest quality.

5 EMPIRICAL STUDY

This section presents a comprehensive empirical study of our proposed method, UA-P2E, for con-
verting PPG signals to ECG ones (lead II), as detailed in Section 4. All experiments described
hereafter are conducted using three random seeds, and the results shown are the average of their
outcomes. We employ this conversion technique with two prime objectives in mind: (1) Providing
an interpretable estimation of the ECG signals, denoted as X̂ , that correspond to the given PPG Y ,
while targeting the approximation of samples from the posterior distribution π(X|Y ); and (2) Pro-
viding accurate classification and confidence assessment for a series of cardiovascular conditions.
In both objectives, the presented results showcase the superiority of the proposed paradigm across
all conducted experiments.
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RMSE ↓ 1-FD ↓ 100-FD ↓

Baseline Methods CardioGAN 0.54 99.0 -
RDDM (T=50) 0.22 6.71 -

Our Method:
UA-P2E

MMSE-Approx 0.2222 ± 0.0000 11.527 ± 0.0179 -
DDIM (T=25) 0.3031 ± 0.0000 2.8671 ± 0.0034 2.7873 ± 0.0007
DDIM (T=50) 0.2956 ± 0.0000 0.5194 ± 0.0015 0.4418 ± 0.0007
DDIM (T=100) 0.2939 ± 0.0001 0.3198 ± 0.0020 0.2379 ± 0.0005

Table 1: MIMIC-III Results: Quality assessment of our diffusion-based conversion model com-
pared to state-of-the-art baseline methods: CardioGAN (Sarkar & Etemad, 2021) and RDDM
(Shome et al., 2023). The results show the mean metric estimates and their standard errors across
the three seeds.

Unlike prior work, this paper aims to address the uncertainty in the conversion of PPG to ECG
signals, and this is obtained by leveraging a diffusion-based conversion methodology. More specifi-
cally, we adopt the DDIM framework (Song et al., 2020), aiming to reduce the number of iterations
(in our experiments we applied T = 100 iterations) required for the sampling procedure, and thus
increasing the efficiency of our conversion algorithm. The diffusion denoising model is trained using
the MIMIC-III matched waveform database (Johnson et al., 2016), which is one of the most exten-
sive dataset for paired PPG and ECG signals. For details on supplementary analysis of overfitting
during the training process, we refer the reader to Appendix D.

Our strategy relies on the core ability of generative models to obtain an effective sampling from the
posterior distribution π̂(X|Y ), where Y stands for the given PPG and X for its corresponding ECG.
Figure 2 (top row) illustrates typical sampling outcomes of our diffusion-based conversion model,
showcasing the diverse ECG signals generated from different PPG inputs, each exhibiting varying
levels of uncertainty, as expressed by the variability of the samples obtained.

As for the classification objective, we train and evaluate the classification model, denoted as fX ,
using the ‘Computing in Cardiology” (CinC) (Reyna et al., 2021) dataset, containing multi-labeled
ECG signals of 11 cardiovascular conditions 2 that are detectable by lead II ECG signals. Inter-
estingly, our experiments rely in part on a reversed diffusion-based conversion model, designed to
sample from the likelihood distribution π̂(Y |X), i.e. converting ECG (lead II) to PPG. This reversed
sampling is utilized in order to complete the CinC (Reyna et al., 2021) dataset used in our tests, en-
abling an analysis of challenging cardiac classification tasks. Figure 2 (bottom row) presents typical
sampling outcomes of the reversed conversion model. For further details on experimental details, in-
cluding the datasets used for training and evaluating the conversion and classification models, along
with details on data pre-processing and training schemes, we refer the reader to Appendix E.

5.1 DIFFUSION-BASED CONVERSION: QUALITY ASSESSMENT

We begin by assessing the quality of our diffusion-based PPG-2-ECG conversion model using the
MIMIC-III (Johnson et al., 2016) dataset, showcasing its superiority over state-of-the-art baseline
methods. Here, we examine the quality of {X̂i}Ki=1 with K = 100, sampled from π̂(X|Y ).

Table 1 presents the conversion performance results, evaluating the quality of the obtained ECG sig-
nals. we provide a comparison with two state-of-the-art methods, CardioGAN (Sarkar & Etemad,
2021) and RDDM (Shome et al., 2023), using their reported metrics. More specifically, we assess the
conversion quality through RMSE calculations between the generated ECG(s) and the ground truth
signals. Additionally, we employ the Fréchet Distance (FD) to evaluate the perceptual quality of the
produced signals, considering either a single ECG sample from each PPG (1-FD) or 100 samples
from each (100-FD). The results in Table 1 demonstrate the superiority of our conversion model. Ob-
serve that by averaging the K = 100 samples, we obtain an approximation of the MMSE estimator,
yielding a comparable performance to the reported result in Shome et al. (2023). When consider-
ing the individual ECG solutions for each PPG, the RMSE values increases, as expected (Blau &
Michaeli, 2018). In terms of perceptual quality, the single-solution and multi-solution approaches

2The following cardiovascular conditions are considered: (1) Ventricular premature beats, (2) Atrial flutter,
(3) Sinus rhythm, (4) Atrial fibrillation, (5) Supraventricular premature beats, (6) Bradycardia, (7) Pacing
rhythm, (8) Sinus tachycardia, (9) 1st degree AV block, (10) Sinus bradycardia, and (11) Sinus arrhythmia.
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Figure 3: CinC Results: ROC curves for the classification performance of various strategies (see
Appendix F), showcasing the superiority of our approach. Higher curves indicate better perfor-
mance.

Figure 4: CinC Results: Risk-Coverage curves (Geifman & El-Yaniv, 2017) for the uncertainty
quantification performance of various strategies, showcasing the superiority of our approach. Lower
is better performance.

show pronounced improvement in FD compared to the baselines. Note that computing the FD on
multiple solutions helps in improving further the signals’ quality.

5.2 CLASSIFYING CARDIOVASCULAR CONDITIONS

To demonstrate the benefits of our diffusion-based synthesized ECGs, we present classification re-
sults on two datasets, MIMIC-III (Johnson et al., 2016) and CinC (Reyna et al., 2021), analyzing
the classification performance across a series of 11 cardiovascular conditions mentioned earlier. For
both datasets, we compare our approach to classification strategies utilized by prior work, varied by
the choice of π(Z ′) in Definition 3.1, which refers to as the SSC. Specifically, we examine the clas-
sification performance of the MMSE estimate and a random single sample from the approximated
posterior distribution, π̂(X|Y ). For more details on the classification strategies considered, refer to
Appendix F.

Note that MIMIC-III lacks cardiovascular labels, and thus cannot be utilized as-is for classification.
As a remedy, we apply our experiments using the CinC dataset. However, while CinC contains ECG
signals (all leads) and their corresponding labels, it does not include PPG signals, and as such it
cannot serve our overall PPG classification goals. We resolve this difficulty by generating synthetic
PPG signals from the given ECG ones, using a reversed diffusion-based methodology. The idea is
to sample valid and random PPG signals that correspond to their ECG (lead II) counterparts, this
way augmenting CinC to form a complete suite. In Appendix G we provide empirical evidence for
the validity of our reversal conversion model of ECG-2-PPG in comparison with the original PPG
signal.

We now turn to describe the main classification results of cardiovascular conditions, referring to the
augmented CinC dataset, and using the synthesized PPG signals. Figure 3 presents ROC curves
for the classification strategies considered, and Figure 4 completes this description by presenting
risk-coverage curves (Geifman & El-Yaniv, 2017), which evaluate the performance of different
confidence functions, denoted as κ, for PPG signals in regard to uncertainty quantification. For
supplementary results, refer to Appendix H.

As can be seen from these two figures, our approach (GREEN) demonstrates superior performance
over all the alternatives, apart from the direct ECG (BLUE) classification, which serves as an upper-
bound for the achievable performance (see Appendix I).

9
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Signal Domain Embedding Domain
Visualization Strategy RMSE ↓ 1-FD ↓ RMSE ↓ 1-FD ↓

Min/Max Score ECG (5) 0.3130 ± 0.0004 1.3113 ± 0.0302 0.3079 ± 0.0037 16.676 ± 0.7135
Expected Score ECG (4) 0.3119 ± 0.0004 1.2820 ± 0.0144 0.3091 ± 0.0044 13.172 ± 0.2228
Most Likely Score ECG (3) 0.3105 ± 0.0004 1.2726 ± 0.0101 0.3040 ± 0.0043 10.491 ± 0.1879

Table 2: CinC Results: Quality assessment of the three proposed ECG visualization strategies,
as described in Section 4.3. The results show the mean metric estimates and their standard errors
across the three seeds and demonstrate that the Most Likely Score ECG strategy is the best among
the strategies in terms of perceptual quality.

Theorem 3.1 may be interpreted as claiming that our approach is expected to align with that of
classifying the original PPG signals directly (ORANGE), under optimal conditions. However, we
observe that our approach achieves better performance. We argue that this gap is due to the erroneous
labels used in the direct classification: Note that these labels refer to the original ECG signals, and
do not necessarily match the corresponding PPG, which may correspond to other valid ECG signals.

Still referring to the results in these two figures, it is evident that prior work which takes advantage
of either the classification strategies of the mean estimate (PURPLE) or a random ECG sample
(BROWN), exhibits a weaker performance compared to our approach. These findings strengthen our
claim that ignoring the uncertainty that emerges from the conversion task might impair performance.

5.3 WHICH ECG SOLUTION TO DELIVER TO MEDICAL PROFESSIONALS?

In this section, we examine the ECG visualization strategies, as discussed in Section 4.3, over the
CinC dataset. By comparing our proposed visualization strategies, we aim to provide empirical
insights on how to choose between them. As already mentioned in Section 4.3, there is no “cor-
rect” choice for the visualization strategy, and it should be considered by the medical user. Table 2
presents the comparative results of the three proposed strategies: Min/Max Score ECG, Expected
Score ECG, and Most Likely Score ECG. This table brings RMSE results for the signals chosen and
FD values for their distributions, all compared with their ECG origins. The three strategies are eval-
uated across two domains, first, in the signal domain, and second, in the embedding domain using
our classification model, denoted as fX . As can be seen from the table, while all three considered
approaches are good performing in these measures, the “Most Likely Score ECG” seem to be the
best, both in RMSE and FD.

6 CONCLUDING REMARKS

This paper presents Uncertainty-Aware PPG-2-ECG (UA-P2E), a novel approach that addresses the
inherent uncertainty in the PPG-2-ECG task. By incorporating the potential spread and variabil-
ity of derived ECG signals from PPG inputs through sampling from a diffusion-based model, we
achieve state-of-the-art performance in the conversion task. In addition, we show that our approach
enhances cardiovascular classification, through the approximation of our proposed Expected Score
Classifier (ESC), which averages classification scores of the ECG solution cloud for each input PPG
signal. This classification strategy is proven to be optimal, and demonstrated to perform better than
baseline methods in practice. Finally, we present ECG visualization methods, designed to enhance
interpretability for medical professionals while considering the multitude ECG solutions associated
with each PPG signal.

Our work presents rich empirical results demonstrating the superior classification performance of
our approach compared to direct classification methods operating on given PPG signals. However,
these results are partially reliant on synthetic PPG signals, for which we provide empirical validation,
though further exploration is required to study additional cardiovascular conditions and the potential
risk of hallucinations in the signal domain. Additionally, although the motivation for using PPG-
2-ECG is based on the widespread use of wearable devices, no database containing signals from
wearable settings was utilized due to the lack of publicly available data; instead, data from hospital
facilities were used. Future studies in these areas will require additional data collection.
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A OPTIMALITY OF THE EXPECTED SCORE CLASSIFIER

This section provides theoretical results proving the optimality of the Expected Score Classifier
(ESC), defined in Definition 3.2.

A.1 OPTIMAL SETTINGS

We begin by presenting a proof for Theorem 3.1 in optimal settings:

Consider the Markovian dependency chain Y → X → C, implying that π(C|X,Y ) = π(C|X),
and recalling the assumptions of Theorem 3.1:

1. The conversion model g is a posterior sampler, i.e., g(Y, Z) = X̂ ∼ π(X|Y ); and

2. The classification model fX is optimal by satisfying fX (X) = π(C = 1|X).

By definition, the ESC is written as

fY(Y ) = EZ∼π(Z) [fX (g(Y, Z))] =

∫
fX

(
g(Y,Z = z)

)
π(Z = z)dz.

Next, we make a change of variables X̂ = g(Y,Z). This gives us

fY(Y ) =

∫
fX

(
g(Y,Z = z)

)
π(Z = z)dz

=

∫
fX (X̂ = x̂)π(X̂ = x̂|Y )dx̂

= EX̂∼π(X|Y )

[
fX (X̂)

]
,

where we rely on the assumption that g is a posterior sampler, namely, g(Y, Z) ∼ π(X|Y ). There-
fore, for any y ∈ Y , it follows from the optimality of fX that

fY(Y = y) = EX̂∼π(X|Y=y)

[
fX (X̂)

]
= EX̂∼π(X|Y=y)π(C = 1|X̂)

=

∫
X
π(C = 1|X̂ = x̂)π(X̂ = x̂|Y = y)dx̂

=

∫
X
π(C = 1|X̂ = x̂, Y = y)π(X̂ = x̂|Y = y)dx̂

= π(C = 1|Y = y),

where the second-to-last transition holds due to the Markov chain assumption. Thus, we obtain
fY(Y ) = π(C = 1|Y ), completing the proof.

A.2 OPTIMALITY FOR GENERAL CLASSIFIERS

Here, we show that the ESC (Definition 3.2), denoted as fY(Y ), is an optimal estimator of fX (X),
regardless of the optimality of fX .

Theorem. Let X be the source ECG signal whose observation is the PPG signal Y . Additionally,
assume the conversion model g is a posterior sampler such that g(Y, Z) = X̂ ∼ π(X|Y ) and let
fY(Y ) denote the ESC, as defined by Definition 3.2. Then, fY(Y ) constitutes the minimum mean
square error (MMSE) estimator of fX (X). Namely,

fY(Y ) = argmin
f̂(Y )

E
[(

fX (X)− f̂(Y )
)2∣∣∣Y ]

where the expectation above is taken over X given Y .
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The proof follows a straightforward approach. We first expand the squared error term

E
[(

fX (X)− f̂(Y )
)2∣∣∣Y ]

= E[fX (X)2|Y ]− 2f̂(Y )E[fX (X)|Y ] + f̂(Y )2.

Differentiating the above expression with respect to f̂(Y ) and setting it to zero yields

f̂∗(Y ) = E[fX (X)|Y ].

Recognizing that fY(Y ) = EX̂∼π(X|Y )

[
fX (X̂)

]
= E[fX (X)|Y ], we conclude that

fY(Y ) = f̂∗(Y ).

Therefore, fY(Y ) is the MMSE estimator of fX (X).

B ASSESSING RELIABLE PPG SIGNALS VIA CALIBRATION

Recalling the desired selective guarantee specified in Equation (2),

P

Eπ(Y,C)

[
1{Ĉ ̸= C}1{κ(Y ) > λ}

]
Eπ(Y,C) [1{κ(Y ) > λ}]

< α

 > 1− δ .

To ensure the selection of valid PPG signals meeting the above guarantee, a calibration scheme
is necessary. This scheme’s goal is to identify a calibrated parameter λ̂ ∈ R+ that maximizes
coverage of selected PPG signals whose classification error is below a user-specified bound, denoted
by α ∈ (0, 1). Then, a new unseen PPG signal, Y ∼ π(Y ), will be considered reliable if its
confidence score κ(Y ) surpasses λ̂.

The calibration algorithm is based on a conformal prediction scheme (Vovk et al., 2005; Papadopou-
los et al., 2002; Lei & Wasserman, 2014), a general method for distribution-free risk control. Specifi-
cally, we employ the Learn Then Test (LTT) (Angelopoulos et al., 2021) procedure in this paper. The
conformal prediction’s objective is to bound a user-defined risk function, denoted as R(λ) ∈ (0, 1),
by adjusting a calibration parameter λ ∈ R+ based on empirical data, aiming for the tightest up-
per bound feasible (Angelopoulos & Bates, 2021). Through this calibration process, our aim is to
identify λ̂ that ensures the following guarantee:

P(R(λ̂) < α) > 1− δ , (6)

where α ∈ (0, 1) is an upper bound for the risk function, and δ ∈ (0, 1) is the calibration error.
These parameters are user-defined and should approach zero for an effective calibration.

We now turn to describe the steps for calibration to achieve the guarantee outlined in Equation (2).
To simplify Equation (2) into the form posed in Equation (6), we define the selective risk as:

R(λ) :=
Eπ(Y,C)

[
1{Ĉ ̸= C}1{κ(Y ) > λ}

]
Eπ(Y,C) [1{κ(Y ) > λ}]

. (7)

Intuitively, this measure quantifies the classification error among selected PPG signals with confi-
dence scores surpassing λ.

In practical scenarios, computing the above risk function, R(λ), is not feasible due to the unavail-
ability of the joint distribution π(Y,C). However, we do have samples from this distribution within
our calibration data, {(Yi, Ci)}mi=1. Hence, we utilize the empirical selective risk, denoted as R̂(λ),
and defined as:

R̂(λ) :=

∑m
i=1 1{Ĉi ̸= Ci}1{κ(Yi) > λ}∑m

i=1 1{κ(Yi) > λ}
. (8)

Note that Ĉi = 1{fY(Yi) > t}, where t ∈ R+ represents the decision threshold.
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For each λ ∈ Λ, where Λ represents a set of calibration parameter values defined by the user as
Λ := [0 . . . λmax], we utilize the empirical risk function mentioned earlier to establish an upper-
confidence bound, denoted as R̂+(λ), and defined as:

R̂+(λ) := R̂(λ) + rδ , (9)

where rδ ∈ (0, 1) serves as a concentration bound, such as Hoeffding’s bound, which is calculated

as rδ =
√

1
2m log 1

δ . It is shown in Hoeffding (1994) that P(R̂+(λ) < R(λ)) < δ.

Finally, to achieve the desired guarantee outlined in Equation (2), we seek calibration parameters
that satisfy Equation (2) while using the upper confidence bound defined in Equation (9). The goal is
to maximize the coverage of selected PPG signals, thus the smallest λ ∈ Λ that meets Equation (2)
is selected as follows:

λ̂ := min{λ : R̂+(λ) < α, λ ∈ Λ} . (10)

The algorithm below summarizes the steps outlined in this section for applying calibration.

Algorithm 2 Calibration of a Selective Classification UA-P2E Framework
Require: Calibration set {(Yi, Ci)}mi=1. Selective classification error level α ∈ (0, 1). Calibration error level

δ ∈ (0, 1). Pretrained conditional stochastic generative model g : Y × Z → X . Pretrained classification
model fX : X → R+. Number of samples K > 0. Decision threshold t > 0.

1: for i = 1 to m do
2: Ĉi, fY(Yi)← Apply Algorithm 1 using Yi, g, fX , K, and t.
3: κ(Yi)← max{1− fY(Yi), fY(Yi)}
4: end for
5: for λ ∈ Λ do
6: R̂+(λ)←

∑m
i=1 1{Ĉi ̸=Ci}1{κ(Yi)>λ}∑m

i=1 1{κ(Yi)>λ} +
√

1
2m

log 1
δ

7: end for
8: S := {λ : R̂+(λ) < α, λ ∈ Λ}
9: if S ̸= ϕ then λ̂← minS else Calibration failed.

Ensure: Given a new PPG signal Y ∼ π(Y ), if κ(Y ) > λ̂ then Y is reliable.

C CONVERSION-CLASSIFICATION UNCERTAINTY EVIDENCE

Conversion Uncertainty Classification Uncertainty

(a) (b)

Figure 5: CinC Results: Empirical evidence of inherent uncertainty in the PPG-2-ECG conversion-
classification framework. (a) The conversion spread and variability as proposed by Belhasin et al.
(2023). High reconstruction error with many PCs indicates high uncertainty in terms of spread and
variability. (b) Classification uncertainty shows relatively small interval sizes of ECG probability
scores for each PPG (right), which can be effectively modeled using just 100 ECG samples (left).

Here, we present empirical evidence of the inherent uncertainty in the proposed PPG-2-ECG conver-
sion, along with the classification uncertainty implied. Figure 5 summarizes the results that quantify
these uncertainty layers, referring to the CinC (Reyna et al., 2021) dataset.

In Figure 5a, we illustrate the uncertainty as proposed by Belhasin et al. (2023), showing the max-
imal reconstruction error of the projected ground truth ECG signals among 90% of the temporal
signal values using a varying number of Principal Components (PCs) of the ECG solutions’ cloud.
Intuitively, a high reconstruction error using many PCs indicates high uncertainty in terms of the
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spread and variability of possible solutions to the inverse problem tackled. For additional informa-
tion and details on this metric, we refer the reader to previous work by Belhasin et al. (2023).

Figure 5a compares the reconstruction error for our PPG-2-ECG conversion with three similar
graphs that correspond to image restoration tasks (colorization, super-resolution and inpainting).
This comparison exposes the tendency of our task to have a much wider uncertainty, as far more
than 100 PCs are required in order to reconstruct the ground truth ECG signals with a small error.
This exposes the fact that PPG-2-ECG conversion is highly ill-posed. Put bluntly, this means that
given a PPG signal, the ECG corresponding to it could be one of a wide variety of possibilities.
This fact undermines our task, as it suggests that too much information has been lost in migrat-
ing from ECG to PPG, to enable a “safe” come-back. However, we argue that this is a misleading
observation, and, in fact, the true uncertainty is much better behaved. More specifically, within the
variability that our posterior sampler exposes, many changes manifested in the obtained ECG signals
are simply meaningless and medically transparent. Indeed, if we migrate from the signal domain to
classification, this uncertainty shrinks to a meaningful and crisp decisions.

The above takes us to the results shown in Figure 5b, depicting the uncertainty in classification, as
arises from potential variability in the conversion process. Inspired by Angelopoulos et al. (2022),
in Figure 5b (right) we present histograms of interval sizes that contain 90% of the probability
scores extracted using the ECG cloud that corresponds to each PPG signal, denoted as {fX (X̂i)}Ki=1.
These histograms refer to the series of 11 cardiovascular conditions. Small intervals in this context
correspond to a high certainty in classification, and the results reveal that for most of the conditions
assessed this is indeed the case. We also see that a small fraction of PPG signals may exhibit a wide
range of possible probabilities among ECG candidates, a fact that may motivate our later selective
classification approach.

Figure 5b (left) presents the classification accuracy gaps for the 11 cardiac conditions mentioned.
These gaps correspond to the difference between the accuracy of original ECG classification, which
serves as an upper bound for our performance, and the accuracy of the average of ECG classification
scores, as summarized in Algorithm 1. As can be seen, these graphs show a rapid stabilization,
suggesting that using 100 samples is definitely sufficient for modeling the uncertainty that arises
from the conversion process in the classification domain.

D ANALYSIS OF OVERFITTING IN THE CONVERSION MODEL

In this section, we provide additional experimental evidence supporting the validity of our conver-
sion model using the MIMIC-III (Johnson et al., 2016) dataset. We analyze the effect of overfitting
and demonstrate that our model does not exhibit overfitting.

D.1 CONVERSION TRAINING METRICS: TRAINING VS. VALIDATION

(a) (b)

Figure 6: MIMIC-III Results: Metrics report of MSE loss and PSNR comparing the training set
and validation set during training, indicating no overfitting.

Our PPG-2-ECG conversion model is a conditional diffusion model trained on the MIMIC-III (John-
son et al., 2016) dataset. Following the gold standards for training conditional diffusion models, a
denoising model is required to clean noise from noisy ECG signals, conditioned on the PPG input.
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In Figure 6, we present the average MSE loss and PSNR of the denoised ECG signals compared to
the original ones for each epoch during the training process. It is evident that the performance on
the training and validation sets is similar, indicating that there is no overfitting. We attribute this to
the diversity and large scale of the MIMIC-III dataset.

D.2 ORIGINAL ECG FREQUENCY APPROXIMATION

(a) 25% Quantile Original ECG (b) Median Original ECG (c) 75% Quantile Original ECG

Figure 7: MIMIC-III Results: Pairwise synthetic ECG distances (GREEN) for three PPG signals
and the nearest synthetic ECG distance to the original ECG (BLUE). Results show the original
ECG’s approximation within the synthetic solution cloud across three distance quantiles of each
original ECG.

Here, we present an additional signal-quality assessment, demonstrating how often the original ECG
can be approximated as one of the synthetic ECG signals within each solution cloud for each PPG.

To evaluate this, we first calculated histograms of pairwise euclidean distances between synthetic
ECG signals within the solution cloud for each PPG signal in the test set. Next, we determined the
distance from the original ECG to its nearest synthetic ECG signal. Then, we assessed how often
the distance of the original ECG fell within the 99% of the histogram. We found that 93.23% of the
original ECG signals were contained within the solution clouds across the test set, indicating that
our solution cloud provides a suited approximation of the original ECG signals.

In Figure 7, we visually demonstrate the inclusion of the original ECG distance within three his-
tograms of three different PPG signals.

E EXPERIMENTAL DETAILS

This section provides a thorough description of the experimental methodology utilized in our paper.
It encompasses the datasets employed for both training and evaluating the conversion and classifi-
cation models, along with details regarding data pre-processing and training schemes.

E.1 DATASETS AND PREPROCESSING

In this work we rely on two datasets: the MIMIC-III matched waveform database (Johnson et al.,
2016), which consists of pairs of measured ECG signals, denoted as X , and corresponding PPG
signals, denoted as Y ; and the “Computing in Cardiology” dataset (CinC) (Reyna et al., 2021),
which contains pairs of measured ECG signals along with associated cardiovascular condition labels,
referred to as C.

E.1.1 MIMIC-III DATASET SUMMARY

MIMIC-III is one of the most extensive datasets for paired PPG and ECG signals. It comprises
22,317 records from 10,282 distinct patients, with each record spanning approximately 45 hours.

The MIMIC-III dataset includes a substantial portion of noisy signals, which are unsuitable for
training models due to various distortions, artifacts, synchronization issues, and other anomalies.
Consequently, a comprehensive preprocessing protocol is employed for preparing the data for sub-
sequent analysis. The preprocessing of each record in MIMIC-III is conducted through the following
steps:
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1. Resampling: Each record is resampled to a uniform sampling rate of 125 Hz.

2. Signal Smoothing: A zero-phase 3rd order Butterworth bandpass filter with a frequency
band ranging from 1 Hz to 47 Hz is applied to all signals to reduce noise.

3. Signal Alignment: Ensures that all signals are temporally aligned.

4. Artifact Removal: Signal blocks with unacceptable heart rates, as extracted from the elec-
trocardiogram (ECG), are removed.

5. Consistency Check: Removes signal blocks where the heart rates derived from the photo-
plethysmogram (PPG) differ by more than 30% from those extracted from the ECG.

6. Trend Removal: The global trend (DC-drift) in the signal is removed to prevent bias.

7. Normalization: All signals are normalized to have zero mean and unit variance.

E.1.2 CINC DATASET SUMMARY

Figure 8: CinC Results: Class distribution report, indicating a significant class imbalance.

Moving to CinC, which to the best of our knowledge, is the largest and most challenging classi-
fication dataset in cardiology, containing 88,253 of 10-second multi-labeled ECG recordings from
distinct patients. CinC integrates data from several public databases, including the CPSC Database
and CPSC-Extra Database, INCART Database, PTB and PTB-XL Database, the Georgia 12-lead
ECG Challenge (G12EC) Database, Augmented Undisclosed Database, Chapman-Shaoxing and
Ningbo Database, and the University of Michigan (UMich) Database. For further details on these
databases, we refer the reader to Reyna et al. (2021).

Each recording is labeled with the presence or absence (binary label) of various cardiovascular con-
ditions. From these, 11 conditions detectable using lead II ECG alone were selected: (1) Ventricular
premature beats, (2) Atrial flutter, (3) Sinus rhythm, (4) Atrial fibrillation, (5) Supraventricular pre-
mature beats, (6) Bradycardia, (7) Pacing rhythm, (8) Sinus tachycardia, (9) 1st degree AV block,
(10) Sinus bradycardia, and (11) Sinus arrhythmia. We note that the labels considered in CinC
exhibit significant imbalance, as presented in Figure 8.

The CinC database, noted for its cleaner and more structured data, lacks the pairings and com-
plexities found in the MIMIC-III dataset and only includes ECG samples. For this dataset, the
preprocessing steps are slightly modified and include:

1. Resampling: Each record is resampled to 125 Hz to standardize the data input.

2. Signal Smoothing: A zero-phase 3rd order Butterworth bandpass filter with a frequency
band ranging from 1 Hz to 47 Hz is employed to smooth the ECG signals.

3. Trend Removal: Global trends are removed.

4. Normalization: Signals are normalized to have zero mean and unit variance.
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E.2 TRAINING DETAILS FOR THE CONVERSION MODEL

Our study leverages a diffusion-based conversion methodology. Specifically, we adopt the DDIM
framework (Song et al., 2020). All the training details for the reversed conversion model, designed
for generating PPG signals given ECG ones, are similar to the training details for the ECG-2-PPG
conversion, as described hereafter.

The denoising model employed in our experiments is based on a U-Net (Ronneberger et al., 2015) ar-
chitecture with an attention mechanism, as proposed in Ho et al. (2020); Dhariwal & Nichol (2021).
Originally introduced in the field of image processing, this architecture comprises a series of resid-
ual layers and downsampling convolutions, followed by a subsequent series of residual layers with
upsampling convolutions. Additionally, a global attention layer with a single head is incorporated,
along with a projection of the timestep embedding into each residual block. To adapt the architecture
for our purposes, we replace the convolutions and attention layers with 1D counterparts, enabling
training and evaluation directly in the raw 1D signal domain. In our study we use d = 1024 PPG
and ECG signal length.

Regarding hyperparameters for the U-Net architecture, we set 256 dimensions for time embedding.
The downsampling and upsampling is applied by factors of [1, 1, 2, 2, 4, 4, 8], with each factor cor-
responding to a stack of 2 residual blocks. Attention is applied after the downsampling/upsampling
matching to the factor of 4. To address overfitting, we incorporate dropout with a ratio of 0.2.

Concerning training, the model architecture is trained on MIMIC-III. We split the data into training
and validation sets after preprocessing. Specifically, we randomly select 400 patients for the vali-
dation set while the remaining patients use for training. For each patient in the training set we split
the raw PPG/ECG signals into pairs of 10-seconds (length 1024) signals, resulting in 15,225,389
PPG/ECG signals. For each patient in the validation set, we sample 100 distinct 10-seconds (length
1024) PPG/ECG signals from the raw signals, resulting in 40,000 PPG/ECG signals.

The model architecture is trained for 10,000 epochs, employing a batch size of 2,048 PPG and ECG
recordings across 8×V100 GPUs. The noise schedule progresses linearly over 1,000 time steps,
starting at 1e-6 and ending at 1e-2. For optimization, we employed the standard Adam optimizer
with a fixed learning rate of 1e-4. An L2 loss is utilized to estimate the noise in the input instance.

For evaluation, we sample K = 100 ECG candidates for each PPG signal using the diffusion-
based framework, and repeat the generation process for 3 different seeds. We adopt a non-stochastic
diffusion process as proposed in Song et al. (2020), with skip jumps of 10 iterations, resulting in a
total of T = 1000/10 = 100 diffusion iterations.

E.3 TRAINING DETAILS FOR THE CLASSIFICATION MODEL

Our paper adopts a classification methodology over the CinC dataset, referred to as fX , which
classifies ECG signals, whether original or synthesized, into the 11 cardiovascular conditions in
CinC. Additionally, we report the classification performance of a direct approach, denoted as fY ,
which directly gets PPG signals instead of ECG ones. The training scheme outlined hereafter applies
to both classifiers.

As discussed earlier, the presence of each cardiovascular condition in the CinC dataset is imbal-
anced, and thus CinC poses significant challenges for developing a robust classifier. In Figure 9
(red) we report the frequency of each cardiovascular condition in the dataset. Note that the challenge
in sampling class-balanced batches arises from the fact that samples may be positive for multiple
cardiovascular conditions at once. To address this issue, we implement a novel class-balance sam-
pling technique. Given the multi-label nature of the classification, where class dependencies exist,
our strategy not only ensures a uniform class distribution for positive samples but also carefully
selects negative samples from a balanced pool reflecting common class co-occurrences. This ap-
proach significantly aids in achieving a more uniform label distribution, the effectiveness of which
is demonstrated in Figure 9 (blue).

Specifically, we consider a training set STrain, where each pair (X,C) ∈ STrain satisfies X ∈ X and
C ∈ {0, 1}Lmax . Here, C is a binary vector where Ci = 1 if and only if the label i is present in
X . At each timestep, we first sample a random label uniformly from the Lmax = 11 cardiovascular
conditions. We then ensure that both positive (Xp, Cp) and negative (Xn, Cn) samples for this
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Figure 9: An illustration of the label histograms for two different sampling methods on the CinC
training dataset: vanilla-sampling and balanced-sampling. In the histogram for vanilla sampling, the
distribution of labels is as they naturally appear in the dataset. On the other hand, in the histogram
for balanced sampling, the labels are intentionally adjusted to achieve a more uniform distribution.

condition are included in the batch. Additionally, we control the ratio of the presence of the major
label, denoted by 1 ≤ l ≤ Lmax, as one condition is often predominant, representing the ”normal”
condition. In our case, this label is sinus rhythm (see Figure 9). We set this ratio to be pl = 0.2. For
a formal summary of this method, please refer to Algorithm 3.

Algorithm 3 Class-Balanced Batch Sampling

Require: Training set S Train ⊆ X×C s.t. C = {0, 1}Lmax . Batch size 2b ∈ N. Major label index 1 ≤ l ≤ Lmax.
Major label ratio pl ∈ [0, 1].

1: S Batch ← {}
2: for i = 1 to b do
3: L ∼ U({1, 2, . . . , Lmax})
4: (Xp, Cp) ∼ U({(X,C) ∈ S Train : CL = 1})
5: if L = l then (Xn, Cn) ∼ U({(X,C) ∈ S Train : CL = 0})
6: else (Xn, Cn) ∼ U({(X,C) ∈ S Train : CL = 0, Cl ∼ B(pl)})
7: S Batch ← {(Xp, Cp), (Xn, Cn)}
8: end for

Ensure: Class-balanced batch S Batch.

The classification architecture utilized in our studies is based on a simplified VGG (Simonyan &
Zisserman, 2014) model with 8 layers, incorporating batch normalization modules to promote sta-
bility, along with dropout at ratio of 0.2 to address overfitting. Similar to the conversion model, we
modify the VGG architecture for 1D input signals by reconfiguring the convolutional layers for 1D
operation.

The training process is implemented above CinC using a cross-validation scheme with 3 seeds,
where for each seed, we create a separated 80-20 training and validation set patient split after pre-
processing. Specifically, our training sets contain 65,535 10-seconds (length 1024) ECG signals,
while the validation sets contain 16,386 10-seconds (length 1024) ECG signals.

Optimization is performed on 1×V100 GPU using the Adam optimizer and an L2 weight decay of
1e-4. The model is trained over 20 epochs with a batch size of 128, employing a learning rate of
1e-3 with a linear decay and using binary cross-entropy loss as the loss function. Since the primary
focus of our paper is on the conversion task rather than the classification tasks, which are used for
validation and to motivate the consideration of uncertainty in the conversion, the decision thresholds
were simply fixed to 0.5 as standard.

F CLASSIFICATION STRATEGIES

In our experiments we assess several classification strategies, all relying on paired ECG and PPG
signals and their corresponding labels, as obtained using MIMIC-III (Johnson et al., 2016) and
CinC (Reyna et al., 2021). We assume the availability of pretrained classifiers, fX : X → R+ and
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fY : Y → R+, for input ECG and PPG signals, respectively. These classifiers output classification
likelihoods considering cardiovascular conditions.

We emphasize that the baseline approaches, as utilized in prior work, ignore the uncertainty in the
conversion of PPG to ECG by maintaining only a single ECG solution given the PPG, whereas our
approach maintains and manipulates an aggregation of multiple ECG candidates for the classifica-
tion. With this in mind, here are the classification strategies considered in this work:

Original ECG: Classifier performance when tested on original ECG signals, i.e., the performance
of fX (X), where X ∼ π(X). Since we do not have access to the original ECG signal in our
PPG-2-ECG setting, this measure serves as an upper bound for the achievable performance.

Original PPG: Classifier performance when tested on the original PPG signals, i.e., the performance
of fY(Y ), where Y ∼ π(Y ).

Synthesized PPG: Classifier performance when tested on diffusion-based random PPG samples,
i.e., the performance of fY(Ŷ ), where Ŷ ∼ π̂(Y |X) are outcomes of the reversed diffusion-based
conversion model. See Section 5.2 for detailed explanation on the need for these signals.

Synthesized ECG: SSC Mean Classifier performance when tested on single-solution (Defini-
tion 3.1) ECG signals, as practiced by prior work, referring to the mean ECG signal from the
diffusion-based ECG samples, i.e., the performance of fX ( 1

K

∑K
i=1 X̂i), where X̂i ∼ π̂(X|Y ).

Synthesized ECG: SSC Random: Classifier performance when tested on single-solution (Defi-
nition 3.1) ECG signals, as practiced by prior work, referring to randomly chosen diffusion-based
ECG samples, i.e., the performance of fX (X̂), where X̂ ∼ π̂(X|Y ).

Synthesized ECG: ESC (Ours): Classifier performance when tested on the proposed multi-solution
(Definition 3.2 and Algorithm 1) ECG signals referring to randomly chosen diffusion-based ECG
samples, and then averaging their classification scores, i.e., the performance of 1

K

∑K
i=1 fX (X̂i),

where X̂i ∼ π̂(X|Y ).

Note that neither RDDM (Shome et al., 2023) nor CardioGAN (Sarkar & Etemad, 2021) provides
publicly available code, which are currently state-of-the-art conversion models. This limits our
ability to generate ECG signals using their methods and evaluate their classification performance.
However, our evaluation setup is more comprehensive, making CardioGAN and RDDM comparable
to the evaluated classification strategies. Both approaches combine the MMSE estimate with a
random single sample, since they both rely on a single random ECG solution that tends toward the
mean due to mode collapse, as shown in Table 1.

G EXPLORING THE VALIDITY OF SYNTHESIZED PPG SIGNALS

The main question arising from the results depicted in Section 5.2 is whether using synthesized PPG
signals for drawing the various conclusions is a fair and trust-worthy strategy. One potential medical
rationale for this approach is that PPG signals inherently encompass noise. Consequently, employ-
ing synthesized PPG signals, even if noisy themselves, can accurately model real-world scenarios.
Still, in order to address this question in a more direct form, we return to the MIMIC-III (Johnson
et al., 2016) dataset, which contains true PPG signals, and conduct three additional studies described
hereafter.

G.1 ACHIEVING SIMILAR TRENDS WITH TRUE PPG SIGNALS AND TRUE LABELS

First, we use a much smaller held-out subset of the MIMIC-III database that contains binary labels
indicating the presence of atrial fibrillation (AFib). Therefore, for this heart condition, we can
evaluate classification performance for both true PPG signals and synthesized ones.

As previously stated in Section 5.2, the MIMIC-III matched waveform database lacks cardiovascular
labels. However, textual cardiac reports are available for a subset of patients within MIMIC-III,
referred to as the MIMIC-III clinical database (Johnson et al., 2016). In order to extract AFib labels
from this subset, we filtered 400 patients, with 200 reported cases of AFib and 200 with normal
sinus rhythm. The determination of AFib or sinus rhythm presence was made by searching for the
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(a) (b) (c)

Figure 10: MIMIC-III Results: (a) ROC Curves illustrating classification performance. (b)
Risk-Coverage curves (Geifman & El-Yaniv, 2017) demonstrating uncertainty quantification per-
formance. (c) Incremental classification error as a function of the number of ECG solutions utilized
for each PPG signal.

terms ”atrial fibrillation” and ”sinus rhythm” within the cardiac reports. We note that extracting
labels using this searching approach may provide erroneous labels.

In Figure 10 we bring the classification results in an experiment that follows the ones performed
on CinC, with one distinct difference – we assess both real and synthesized PPG signals. Broadly
speaking, all the conclusions from Section 5.2 generally hold, namely (i) The best performance is
obtained by classifying ECG directly; (ii) Our approach is superior to all other alternatives, including
a direct classification of PPG (be it real or synthesized).

Focusing on the main theme of this experiment, we see that the performance of classifying the orig-
inal PPG (ORANGE) is comparable to the alternative of operating on the synthetic signals (RED).
In terms of AUROC, the performances are nearly identical. When evaluating the area under the
Risk-Coverage curve (Geifman & El-Yaniv, 2017), we observe a similar trend; the uncertainty per-
formance of both approaches is almost identical when considering around half of the test samples.
These findings offer empirical evidence supporting the validity of our reversal conversion model.

G.2 ASSESSING THE HIGH QUALITY OF SYNTHETIC PPG SIGNALS

Syn PPG 1-FD ↓ 100-FD ↓
DDIM (T=25) 3.8365 ± 0.0021 3.8248 ± 0.0013
DDIM (T=50) 0.4049 ± 0.0013 0.3927 ± 0.0007
DDIM (T=100) 0.1181 ± 0.0011 0.1036 ± 0.0002

Table 3: MIMIC-III Results: Quality assessment of our reversed diffusion-based conversion
model. The results show the mean metric estimates and their standard errors across the three seeds.

Second, we conduct an experiment that evaluates the signal quality of the reversed conversion model
over MIMIC-III. Specifically, given the ECG-2-PPG algorithm, we generate many PPG signals;
we then compute the distance between the distributions of the true PPG and the synthesized ones.
The results are presented in Table 3, which is similar to Table 1, showing (with T=100) that the
distributions are nearly indistinguishable from each other (with almost zero FD). Furthermore, the
quality of the synthesized PPG signals improves with more diffusion iterations.

G.3 ASSESSING THE HIGH QUALITY OF SYNTHETIC ECG SIGNALS FROM SYNTHETIC PPG
ONES

Finally, we conduct an experiment that testifies the signal quality after cycle transformation: ECG
to PPG to ECG. Specifically, we sample (synthetic) PPG signals from true ECG signals in MIMIC-
III, then re-sample (synthetic) ECG signals from these synthetic PPG ones. Finally, we measure
their distribution distance compared to the true ECG signals. The results are presented in Table 4,
which is also similar to Table 1. These results indicate that the synthetic ECG signals derived from
synthetic PPG are almost as high-quality as those derived from true PPG. The negligible loss in
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UA-P2E 1-FD ↓ 100-FD ↓
Syn ECGs from True PPG 0.3198 ± 0.0020 0.2379 ± 0.0005
Syn ECGs from Syn PPG 0.3940 ± 0.0023 0.3164 ± 0.0005

Table 4: MIMIC-III Results: Quality assessment of our synthetic ECG signals derived from syn-
thetic PPG vs those derived from true PPG. The results show the mean metric estimates and their
standard errors across the three seeds.

quality is expected, given that the synthetic PPG signals are not perfect. This empirical evidence
further supports the use of synthetic PPG data in our work.

H SUPPLEMENTARY EXPERIMENTAL ANALYSIS OF CINC RESULTS

This section extends the empirical classification results referring to CinC (Reyna et al., 2021), that
were outlined in Section 5.2.

H.1 REPORTED NUMERICAL RESULTS

Classification Strategy Macro-AUROC ↑ Macro-AURC ↓

Original ECG 0.9435 ± 0.0020 0.0048 ± 0.0000
Synthesized PPG 0.7857 ± 0.0021 0.0313 ± 0.0001
Synthesized ECG: SSC Mean 0.7286 ± 0.0068 0.0405 ± 0.0017
Synthesized ECG: SSC Random 0.7458 ± 0.0007 0.0392 ± 0.0002
Synthesized ECG: ESC (Ours) 0.8496 ± 0.0010 0.0211 ± 0.0001

Table 5: CinC Results: Mean and standard error values of macro-level AUROC and AURC across
three random seeds. See Appendix F for the classification strategies considered.

Here, we provide the numerical results of the mean metric values along with their corresponding
standard errors reported in Figure 3 and Figure 4.

Tables 5 and 7 display the AUROC (Area Under the ROC curve) and AURC (Area Under the Risk-
Coverage curve (Geifman & El-Yaniv, 2017)) metrics. Specifically, Table 7 outlines AUROC/AURC
mean and standard error values associated with each classification strategy per cardiovascular con-
dition, whereas Table 5 provides macro-level metrics derived by averaging over all examined car-
diovascular conditions.

H.2 EVALUATING ADDITIONAL METRICS

Classification Strategy Macro-TPR ↑ Macro-TNR ↑ Macro-F1 ↑

Original ECG 0.6684 ± 0.0009 0.9802 ± 0.0002 0.6679 ± 0.0005
Synthesized PPG 0.2850 ± 0.0007 0.9694 ± 0.0000 0.3139 ± 0.0003
Synthesized ECG: SSC Mean 0.2542 ± 0.0081 0.9560 ± 0.0012 0.2663 ± 0.0081
Synthesized ECG: SSC Random 0.3218 ± 0.0008 0.9509 ± 0.0000 0.3100 ± 0.0009
Synthesized ECG: ESC (Ours) 0.2902 ± 0.0039 0.9783 ± 0.0002 0.3154 ± 0.0017

Table 6: CinC Results: Mean and standard error values of macro-level sensitivity (TPR), specificity
(TNR), and F1 scores, across three random seeds. See Appendix F for the classification strategies
considered.

To enhance clinical relevance and facilitate comparisons with future studies, we evaluate additional
metrics related to the classification performance in mitigating class imbalance. Specifically, we

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

evaluate sensitivity (TPR), specificity (TNR), and F1 scores across different classification strategies.
In Table 6 we provide the reported results.

It is evident from Table 6 that our classification approach outperforms in specificity (TNR) compared
to sensitivity (TPR). The random ECG signal classification approach, stems from the generation
process of our diffusion model, demonstrates better sensitivity than multi-solution approach. We
attribute this phenomenon to the rarity of various cardiovascular conditions in the CinC dataset (see
Figure 8), which makes it challenging to achieve high sensitivity, even with the original ECG signals
where no PPG signals are considered.

While our approach achieves superior performance in specificity, it can be used in clinical setting as
a better detector for the absence of cardiovascular conditions on average, while a single ECG sample
of our diffusion model is evident to be better on the detection of the presence of the cardiovascular
conditions on average.

I WHY THE ORIGINAL ECG PERFORMANCE SETS AN UPPER BOUND FOR
PPG-BASED APPROACH?

The performance of the original ECG signal represents an upper bound for classification perfor-
mance, including our own method. Intuitively, this discrepancy arises because cardiovascular labels
are directly linked to heart conditions determined by ECG signals, while PPG signals only capture
blood volume fluctuations, which provide partial information about the heart. As a result, PPG
signals are a degraded version of ECG signals, leading to a natural decline in performance due
to the loss of information. Even when generating ECG candidates from PPG signals, some infor-
mation loss is unavoidable, which further reduces performance. Our approach mitigates this issue
by accounting for conversion uncertainty, yielding superior results compared to other PPG-based
strategies.

From a more theoretical perspective, we adopt a Markovian framework: Y → X → C, where
Y represents the PPG signal, X denotes the ECG signal, and C is the cardiovascular condition
label. Under this assumption, π(C|X,Y ) = π(C|X), meaning that, given the ECG signal X , the
PPG signal Y does not provide any additional information about the cardiovascular condition C.
Consequently, when we degrade the class information from X to Y , performance naturally declines
due to the inherent loss of information.
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Cardiovascular Condition Classification Strategy AUROC ↑ AURC ↓

1) Ventricular premature beat

Origin ECG 0.8953 ± 0.0081 0.0042 ± 0.0005

Syn PPG 0.6724 ± 0.0033 0.0216 ± 0.0009
Syn ECG: SSC Mean 0.6290 ± 0.0194 0.0171 ± 0.0006
Syn ECG: SSC Random 0.6344 ± 0.0087 0.0178 ± 0.0014
Syn ECG: ESC (Ours) 0.8006 ± 0.0072 0.0077 ± 0.0006

2) Atrial flutter

Origin ECG 0.9710 ± 0.0004 0.0056 ± 0.0001

Syn PPG 0.8457 ± 0.0018 0.0289 ± 0.0006
Syn ECG: SSC Mean 0.7648 ± 0.0170 0.0424 ± 0.0040
Syn ECG: SSC Random 0.8018 ± 0.0035 0.0380 ± 0.0009
Syn ECG: ESC (Ours) 0.8816 ± 0.0009 0.0220 ± 0.0003

3) Sinus rhythm

Origin ECG 0.9728 ± 0.0004 0.0175 ± 0.0003

Syn PPG 0.8111 ± 0.0010 0.1309 ± 0.0005
Syn ECG: SSC Mean 0.7638 ± 0.0018 0.1700 ± 0.0012
Syn ECG: SSC Random 0.7773 ± 0.0009 0.1618 ± 0.0010
Syn ECG: ESC (Ours) 0.8547 ± 0.0004 0.1114 ± 0.0013

4) Atrial fibrillation

Origin ECG 0.9489 ± 0.0008 0.0059 ± 0.0001

Syn PPG 0.8263 ± 0.0007 0.0283 ± 0.0005
Syn ECG: SSC Mean 0.8320 ± 0.0144 0.0262 ± 0.0004
Syn ECG: SSC Random 0.8582 ± 0.0044 0.0317 ± 0.0010
Syn ECG: ESC (Ours) 0.9196 ± 0.0016 0.0147 ± 0.0003

5) Supraventricular premature
beats

Origin ECG 0.9080 ± 0.0017 0.0068 ± 0.0002

Syn PPG 0.6673 ± 0.0033 0.0302 ± 0.0011
Syn ECG: SSC Mean 0.6176 ± 0.0223 0.0313 ± 0.0027
Syn ECG: SSC Random 0.6404 ± 0.0054 0.0351 ± 0.0006
Syn ECG: ESC (Ours) 0.7739 ± 0.0069 0.0163 ± 0.0006

6) Bradycardia

Origin ECG 0.8072 ± 0.0224 0.0010 ± 0.0002

Syn PPG 0.7734 ± 0.0154 0.0023 ± 0.0001
Syn ECG: SSC Mean 0.6405 ± 0.0284 0.0143 ± 0.0057
Syn ECG: SSC Random 0.6927 ± 0.0098 0.0028 ± 0.0005
Syn ECG: ESC (Ours) 0.7853 ± 0.0113 0.0011 ± 0.0001

7) Pacing rhythm

Origin ECG 0.9734 ± 0.0048 0.0009 ± 0.0002

Syn PPG 0.7258 ± 0.0119 0.0054 ± 0.0001
Syn ECG: SSC Mean 0.6148 ± 0.0212 0.0139 ± 0.0010
Syn ECG: SSC Random 0.6193 ± 0.0181 0.0137 ± 0.0008
Syn ECG: ESC (Ours) 0.7966 ± 0.0061 0.0055 ± 0.0002

8) Sinus tachycardia

Origin ECG 0.9932 ± 0.0005 0.0015 ± 0.0001

Syn PPG 0.9674 ± 0.0003 0.0094 ± 0.0002
Syn ECG: SSC Mean 0.9451 ± 0.0030 0.0136 ± 0.0010
Syn ECG: SSC Random 0.9263 ± 0.0030 0.0184 ± 0.0009
Syn ECG: ESC (Ours) 0.9792 ± 0.0018 0.0050 ± 0.0005

9) 1st degree AV block

Origin ECG 0.9634 ± 0.0011 0.0029 ± 0.0001

Syn PPG 0.6350 ± 0.0043 0.0365 ± 0.0006
Syn ECG: SSC Mean 0.6139 ± 0.0092 0.0332 ± 0.0009
Syn ECG: SSC Random 0.6184 ± 0.0050 0.0347 ± 0.0011
Syn ECG: ESC (Ours) 0.7193 ± 0.0095 0.0203 ± 0.0010

10) Sinus bradycardia

Origin ECG 0.9935 ± 0.0002 0.0025 ± 0.0001

Syn PPG 0.9438 ± 0.0008 0.0304 ± 0.0005
Syn ECG: SSC Mean 0.8932 ± 0.0028 0.0565 ± 0.0028
Syn ECG: SSC Random 0.9005 ± 0.0010 0.0502 ± 0.0011
Syn ECG: ESC (Ours) 0.9580 ± 0.0003 0.0199 ± 0.0011

11) Sinus arrhythmia

Origin ECG 0.9512 ± 0.0003 0.0039 ± 0.0001

Syn PPG 0.7741 ± 0.0032 0.0207 ± 0.0004
Syn ECG: SSC Mean 0.6999 ± 0.0039 0.0272 ± 0.0019
Syn ECG: SSC Random 0.7344 ± 0.0037 0.0268 ± 0.0006
Syn ECG: ESC (Ours) 0.8771 ± 0.0006 0.0086 ± 0.0001

Table 7: CinC Results: Mean and standard error values of AUROC and AURC (Geifman & El-
Yaniv, 2017) across three random seeds, shown for each cardiovascular condition examined. See
Appendix F for the classification strategies considered.
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