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A Regret Analysis
A.1 Preliminaries
Lemma 2 (Hoe!ding’s inequality (Hoe!ding, 1963)). For a Bernoulli trail with success rate p, let Sn be the
total reward of n trails, then

P(Sn → np + a) ↑ exp
(

↓2a
2

n

)

P(Sn ↑ np ↓ a) ↑ exp
(

↓2a
2

n

)

Lemma 3 (Thompson Sampling near-optimal regret (Agrawal & Goyal, 2017)). For standard bandit problem
without considering cool-down periods, under Thompson Sampling, for any k = 2, . . . , M and ω > 0, let
Lk(T ) = (1+ω) log T

K(p(k),p(1)) , there exists a constant c(ω) = O( 1
ω2 ), such that

T∑

t=1
P(a(t) = k, nk(t) > Lk(T )) ↑ c(ω).

Proof. The lemma is a direct consequence of (Agrawal & Goyal, 2017, Lemmas 2.10, 2.11) and the analysis
in (Agrawal & Goyal, 2017, Lemma 2.12) by setting xk ↔ (p(k)

, p
(1)) in the statement such that K(xk, p

(1)) =
K(p(k),p(1))

1+ω and yk ↔ (xk, p
(1)) in the statement such that K(xk, yk) = K(p(k),p(1))

(1+ω)2 .

A.2 Notations
For any k ↔ {1, . . . , M}, let T a

k (t) = {ε ↑ t : k ↔ A(t)} be the collection of time instances such that arm
k is active, let T o

k (t) = {ε ↑ t : k = arg maxi→A(ε) p
(i)} be the collection of time instance ε ↑ t such that

arm k is the actual optimal active arm at time t. Let C(k)
1 (t) be the sequence of the time instances when the

agent does distribution exploration on arm k till time t, C(k)
2 (t) be the sequence of the starting time of each

CD exploration on arm k till time t and C̃(k)
2 (t) be the sequence of the time instances when the agent enters

the confirmation step of arm k. Let m
(k)(t) be the number of samplings in CD exploration of arm k till time

t, we have |C(k)
2 (t)| ↑ m

(k)(t). Moreover, from Lemma 4, it holds that

|C̃(k)
2 (t)| → m

(k)(t) ↓ c
(k)
2 . (1)

For any j = 2, . . . , M and i = 1, . . . , j ↓ 1, let Ti,j(T ) be the collection of time instances over total time T

such that both arm i and j are active, and T1:i,j(T ) be the collection of time instances over total time T

such that at least one of arms in {1, . . . , i} is active, and arm j is active. Let Ni,j(T ), Mi,j(T ) be the size
of the collection of time t over total time T such that a(t) = j, a

↑(t) ↔ {1, . . . , i} and the agent enters the
“urgent” cool-down exploration (line 12 in Algorithm 2) for arm j respectively, and Ñi,j(T ), M̃i,j(T ) be the
size of the collection of time t over total time T such that a(t) = j, a

↑(t) = i and the agent selects arm
j following the Thompson sampling rule (line 14 i Algorithm 2) for distribution exploration and cool-down
exploration respectively. Specifically, when the cool-down durations are known to the agent, Ni,j(T ) (resp.
Ñi,j(T )) simply refers to the accumulated number of times over T that the agent selects arm j when the
optimal arm is in {1, . . . , i} (resp. is {i}).

A.3 Known Cool-Down Duration
We start with the proof of Lemma 1, which provides a property of the important arm set defined in Section 3.1.

Proof of Lemma 1: Let S(t) be the stack of Sk(t), which stands for the remaining cool-down time for each
arm k = 1, . . . , M to become active. When k ↔ A(t), Sk(t) = 0. Then S(t) = 0 represents for the state that
all the arms are active at time t. From the definition of I, if S(t) = 0, then for any i ↔ I, with probability at
least p1

!=
∏

k→P p
(k)

, i = a
↑(ε) for some ε = t, . . . , t+ |P|↓1, where P is defined in Section 3.1. Besides, for

any state S(t), if all the trial fail starting from t, then there exists a ε ↔ [t, t + D], such that S(ε) = 0. This
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implies that for any S(t), with probability at least p2
!=

∏
i→I p

(i)(p(M))D↓|I|
, the state becomes 0 within D

steps. Combining the above results yields that for any t ↑ T ↓ D ↓ |P| + 1 and i ↔ I, with probability at
least p1p2, there exists a ε ↔ [t, t + D + |P| ↓ 1], such that a

↑(t) = i. This implies that for any i ↔ I and
integer c, it holds that

P(|T o
i (t)| < c) ↑ F (c), (2)

where F stands for the cumulative distribution function of B(↗ T
D+|P| ↘, p1p2), here B(n, p) represents for the

binomial distribution of the number of successful trials over n trials with success rate p. For any n, p in the
domain, it holds for all w ↔ (0, 1) that

F (nw) =
nw∑

k=0

(
n

k

)
p

k(1 ↓ p)n↓k

↑ n
w

n
nw

(1 ↓ p)n↓nw

.

Then log F (nw) ↑ (w + n
w) log n + (n ↓ n

w) log(1 ↓ p) = O(↓n), and therefore F (nw) ↑ O(e↓n). Setting
n = ↗ T

D+|P| ↘, p = p1p2 and c = t
w and substituting the above result to equation 2 yield that for any i ↔ I

and w ↔ (0, 1), there holds

P(|T o
i (t)| < t

w) ↑ O(e↓w),

which completes the first part of the proof.

From the definition of I, for any j /↔ I, the only chance that j = a
↑(t) is when the agent selects a sub-

optimal arm at some time t
↔
< t and S(ε) ≃= 0 for all ε = t

↔ + 1, . . . , t. Let ns(t) denote the total number of
sub-optimal selects over time t. Using the Pigeonhole principle, for any j /↔ I and w ↔ (0, 1), if |T o

j (t)| > t
w,

there exists a t1 < T, such that the agent selects a sub-optimal arm at time t1, and S(ε) ≃= 0 for all
ε = t1 + 1, . . . , t1 + ⇐ tw

ns
⇒, then

P(|T o
j (t)| > t

w) ↑ (1 ↓ p2)↗ tw

ns(t) ↘
.

Set a = w
2 in the lemma statement, then there exists a cw, such that ns(t) ↑ cwt

w
2 . Then

P(|T o
j (t)| > t

w) ↑ (1 ↓ p2)↗ t
w
2

cw
↘ ↑

(
(1 ↓ p2)

1
cw

)t
w
2

= O(e↓t
w
2 ),

which completes the proof.

Then we are able to prove Theorem 1 and Theorem 2.

Proof of Theorem 1: For any arm j = 2, . . . , M and t > 0, similar to the analysis in (Lai et al., 1985, Theorem
2), for any ω > 0, it holds that

lim
t≃⇐

P

(
Nj↓1,j(t) → (1 ↓ ω) log t

K(p(j), p(a→(t)))

)
= 1.

For any i ↔ I, let Ti = arg maxt⇒T a
↑(t) = i, then for any j = 2, . . . , M and i = 1, . . . , min(j ↓ 1, |I|), there

holds

lim
T ≃⇐

P

(
Nj↓1,j(T ) → (1 ↓ ω) log Ti

K(p(j), p(i))

)
= 1.

Combining the above inequality with Lemma 1, for any ω > 0, w ↔ (0, 1), j = 2, . . . , M and i = 1, . . . , min(j↓
1, |I|), it holds that

lim
T ≃⇐

P

(
Nj↓1,j(T ) → w(1 ↓ ω) log T

K(p(j), p(i))

)
= 1,
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which implies that for any j = 2, . . . , M and i = 1, . . . , min(j ↓ 1, |I|), it holds that

lim inf
T ≃⇐

E(Nj↓1,j(T ))
log T

→ 1
K(p(j), p(i))

.

From Lemma 1, for any i /↔ I, it holds that

lim inf
T ≃⇐

E(Ñi,j(T ))
log T

= o(1),

where we also make use of the property that |T o
i | → Ñi,j(T ). Then for any j = 2, . . . , M , it holds that

lim inf
T ≃⇐

E(Nmin(j↓1,|I|),j(T ))
log T

→ 1
K(p(j), p(i))

.

Since K(p, q) is increasing in terms of q for q > p, for any j = 2, . . . , M , it holds that

lim inf
T ≃⇐

E(Nmin(j↓1,|I|),j(T ))
log T

→ 1
K(p(j), p(min(j↓1,|I|)))

. (3)

The regret R(T ) satisfies that

R(T ) →
M∑

j=2
E(Nmin(j↓1,|I|),j(T ))(p(min(j↓1,|I|)) ↓ p

(j)).

Substituting equation 3 to the above inequality, we obtain that

lim inf
T ≃⇐

R(T )
log T

→
M∑

j=2

p
(min(j↓1,|I|)) ↓ p

(j)

K(p(j), p(min(j↓1,|I|)))
,

which completes the proof.

Proof of Theorem 2: For any j = 2, . . . , M and i = 1, . . . , j ↓ 1, let

Li,j(T ) =
(1 + ω) log(|T a

j (T ) ⇑ T o
i (T )|)

K(p(j), p(i))
.

Similar to the analysis of Lemma 3, for any ω > 0, j = 2, . . . , M and i = 1, . . . , j ↓ 1, it holds that

P

( ∑

t→T a
j (T )⇑T o

i (T )
1(a(t) = j, nj(t) > Li,j(T ))

)
↑ c(ω).

From Lemma 1, for i ↔ I and j = i + 1, . . . , M , it holds that

Li,j(T ) ↑ (1 + ω) log T

K(p(j), p(i))
,

and for i /↔ I, and j = i + 1, . . . , M , it holds that

Li,j(T ) ↑ (1 + ω) log(|T o
i (T )|)

K(p(j), p(i))
= o(log T ).

Then for any j = 2, . . . , M , i = 1, . . . , j ↓ 1, and ω > 0, there exists a constant c1(ω) = O(1), such that when
T → c1(ω), for any j = 2, . . . , M and i = 1, . . . , j ↓ 1, it holds that

Li,j(T ) ↑ (1 + ω) log T

K(p(j), p(min(i,|I|)))
!= L̃i,j(T ).
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Note that

E(Ni,j(T )) ↑ E

(
Ni,j(T ), nj(T ) ↑ max

i<j
Li,j(T )

)
+ E

(
Ni,j(T ), nj(T ) > max

i<j
Li,j(T )

)
.

For any j = 2, . . . , M and i = 1, . . . , j↓1, Ni,j(T ) ↑ nj(T ) from definition, the former term is upper bounded
by maxi<j Li,j(T ) ↑ max(L̃i,j(T ), c1(ω)), and the latter term satisfies

E

(
Ni,j(T ), nj(T ) > max

i<j
Li,j(T )

)
↑ E

(
Ni,j(T ), nj(T ) > Li,j(T )

)

= P

( ∑

t→(⇓i
k=1T o

k
)⇑T a

j

1

(
a(t) = j, nj(T ) > Li,j(T )

))

= P

( i∑

k=1

∑

t→T a
j (T )⇑T o

i (T )
1

(
a(t) = j, nj(T ) > Li,j(T )

))

↑ ic(ω)

Let c̃
(i)
1 (ω) = c1(ω) + ic(ω) for any arm k = 1, . . . , M, we obtain that

E(Ni,j(T )) ↑ L̃i,j(T ) + c1(ω) + ic(ω) = L̃i,j(T ) + c̃
(i)
1 (ω) (4)

Since regret R(T ) satisfies

R(T ) =
M∑

j=2

j↓1∑

i=1
E(Ñi,j(T ))(p(i) ↓ p

(j))

=
M∑

j=2

j↓1∑

i=1
E(Ni,j(T ))(p(i) ↓ p

(i+1)),

Substituting equation 4 to the above inequality, we obtain that

R(T ) ↑ (1 + ω)
M∑

j=2

j↓1∑

i=1

(p(i) ↓ p
(i+1)) log T

K(p(j), p(min(i,|I|)))
+

M∑

j=2

j↓1∑

i=1
c̃

(i)
1 (ω)(p(i) ↓ p

(i+1)).

Let C(ω) =
∑M

j=2
∑j↓1

i=1 c̃
(i)
1 (ω)(p(i) ↓ p

(i+1)), we have C(ω) = O( 1
ω2 ), which completes the proof.

A.4 Unknown Cool-Down Duration
A.4.1 Basic Properties
The exploration of cool-down durations for each arm k comprises two phases: the quick jump stage, where the
agent employs a bisection algorithm to promptly update the cool-down parameters, and the confirmation
stage, where the agent conducts Bernoulli trials to verify the accuracy of L

(k)
u (t). For c ↔ {l

(k)
, . . . , D},

we define a time sequence as a c-run of arm k if it represents the collection of time instances t satisfying
L

(k)
u (t) = c. Note that a c-run might not be a consecutive sequence. Additionally, throughout the entire

process, c might not traverse all values in l
(k)

, . . . , D for each arm k = 1, . . . , M. We start with examining
the characteristics of the quick jump stage.
Lemma 4. For each arm k = 1, . . . , M, the accumulated number of selects on arm k in the quick jump stage
is at most c

(k)
2

!= (D+l(k))(D↓l(k)+1)
2 .

Proof. For each arm k = 1, . . . , M, suppose the agent is at the quick jump step in c-run of arm k, where
c ↔ {l

(k)
, . . . , D}. If the agent obtains a 1-reward, then the agent updates the estimated CD upper bound and

breaks c-run, and thus never enters the confirmation step of c-run. And if the agent obtains a 0-reward, then
it continues the quick jump step until it has sampled for L

(k)
u (t)↓L

(k)
test(t) times. With this in mind, whenever

the agent enters a c-run for cool-down exploration on arm k, it at most samples c ↓ L
(k)
test(t) times, within

4
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which, the quick jump stages contains at most c time steps as it is a bisection process. Since c ↔ {l
(k)

, . . . , D},

then the total number of samplings in the quick jump steps in all runs is lower bounded by

D∑

c=l(k)

c ↑ (D + l
(k))(D ↓ l

(k) + 1)
2 ,

which completes the proof.

The following lemma provides an evaluation of the accuracy of the estimated success rate p̃
(k)(t) for each

k = 1, . . . , M.

Lemma 5. For any k = 1, . . . , M and ω > 0, there exists a constant c
(k)
3 (ω) = O( 1

ω2 ), such that

T∑

t=1
P

(
1 ↓ p̃

(k)(t) → (1 ↓ p)
1

1+ω , a(t) = k

)
↑ c

(k)
3 (ω).

Proof. Let

gω = (1 ↓ p)
1

1+ω ↓ (1 ↓ p),

it holds that

gω = (1 ↓ p)
1

1+ω

(
1 ↓ (1 ↓ p)

ω
1+ω

)

→ (1 ↓ p)
1

1+ω p
ω

1 + ω
= O(ω) (5)

From Lemma 2, for any arm k = 1, . . . , M , it holds that

P

(
1 ↓ p̃

(k)(t) → (1 ↓ p)
1

1+ω , a(t) = k

)
↑ exp(↓2g

2
ω |C(k)

1 (t)|).

Since for any t > 0,

P

(
1 ↓ p̃

(k)(t) → (1 ↓ p)
1

1+ω , a(t) = k

)

= P

(
1 ↓ p̃

(k)(t) → (1 ↓ p)
1

1+ω , t ↔ C(k)
1 (T )

)
+ P

(
1 ↓ p̃

(k)(t) → (1 ↓ p)
1

1+ω , t ↔ C(k)
2 (T )

)
,

then

P

(
1 ↓ p̃

(k)(t) → (1 ↓ p)
1

1+ω , a(t) = k

)

↑
∑

t→C(k)
1 (T )

exp(↓2g
2
ω |C(k)

1 (t)|) +
∑

t→C(k)
2 (T )

exp(↓2g
2
ω |C(k)

1 (t)|). (6)

For each ε ↔ C(k)
2 (T ), let xε be the number of successive steps of the cool-down exploration starting from ε .

Specially, we let xε = 0 for ε /↔ C(k)
2 (T ). Note that for any ε ↔ C(k)

2 (T ),

max{t < ε : a(t) = k} ↔ C(k)
1 (T ). (7)

5
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Then for any ε ↔ C(k)
2 (T ), f : ε ⇓ arg max{t < ε : a(t) = k} is an injection. Applying this property to

equation 6, we obtain that

P

(
1 ↓ p̃

(k)(t) → (1 ↓ p)
1

1+ω , a(t) = k

)

↑
|C(k)

1 (T )|∑

h=1
exp(↓2g

2
ω h) +

∑

ε→C(k)
2 (T )

exp(↓2g
2
ω |C(k)

1 (f(ε))|)xε

↑
|C(k)

1 (T )|∑

h=1
exp(↓2g

2
ω h)(1 + x̃h),

where x̃h denotes the number of time instances the agent spends on cool-down exploration between the hth
and (h + 1)th distribution explorations. Note that x̃h > 1 only when the agent enters the quick jump stage
for arm k between the hth and (h + 1)th distribution explorations. From Lemma 4, the quick jump stage
for arm k takes at most c

(k)
2 instances, then

T∑

t=1
P

(
1 ↓ p̃

(k)(t) → (1 ↓ p)
1

1+ω , a(t) = k

)

↑ exp(↓2g
2
ω )(1 + c

(k)
2 ) + 2

|C(k)
1 (T )|∑

h=1
exp(↓2g

2
ω h).

Then combining the fact that
∑⇐

t=1 e
↓ct = O( 1

c ) for any positive constant c and equation 5 to the above
inequality, we obtain that

T∑

t=1
P

(
1 ↓ p̃

(k)(t) → (1 ↓ p)
1

1+ω , a(t) = k

)
= O( 1

ω2 ).

This implies that there exists a constant c
(k)
3 (ω) = O( 1

ω2 ), such that

T∑

t=1
P

(
1 ↓ p̃

(k)(t) → (1 ↓ p)
1

1+ω , a(t) = k

)
↑ c

(k)
3 (ω),

which completes the proof.

A.4.2 Insu!cient Cool-Down Exploration

As discussed in Section 1.3, sub-linear regret can arise if the optimal active arm is erroneously classified as
inactive (not included in the belief arm set B(t)) at each time t. In this section, we analyze the likelihood of
this occurrence. We investigate this scenario under two distinct conditions: firstly, when waitlist(k)(t) = 0,

i.e., when the agent dos not pause the cool-down exploration of k at time t, and secondly, when waitlist(k)(t) =
1, i,e., when the agent has paused the cool-down exploration of k at time t.

Lemma 6. For any arm k = 1, . . . , M, it holds that

∑

t→T o
k

(T )
P(waitlist (k)(t) = 0, k /↔ B(t)) ↑ (M + 1)(D ↓ l

(k))
p(k) .

Proof. For any arm k = 1, . . . , M and time t, if the agent enters the cool-down exploration for arm k at
time t and c = L

k
u(t) > L

(k) → l
(k), then arm k must be active at time ε , i.e., t ↔ T a

k (T ). Thus with
probability p

(k)
, the agent breaks c-run for arm k, and consequently L

k
u(t + 1) < L

k
u(t). Since there are at

6
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most D ↓ l
(k) runs before L

(k)
u (t) reaches L

(k), then the expected number of rounds of cool-down exploration
is upper bounded by D↓l(k)

p(k) . Note that after the agent executes a distribution exploration at time t, there
exists a time t

↔ ↔ (t, t + D), such that CD_Explore (k)(t) = L
(k)
test(t) ↓ L

(k)
u (t) + 1 whenever waitlist (k)(t) = 0.

Then from the decision-making process, there must be one cool-down exploration for arm k after at most M

distribution explorations for arm k. Let a(t) = 0 if the agent does not enter the decision-making process at
time t. Then

E(|{t : waitlist (k)(t) = 0, L
(k)
u (t) > L

(k)}|) ↑ (M + 1)(D ↓ l
(k))

p(k) .

From the definition of L
(k)

, it holds for any k = 1, . . . , M that

{t : k ↔ A(t) ⇑ B(t)c} ⇔ {t : L
(k)
u (t) > L

(k)}. (8)

Consequently,
∑

t→T o
k

(T )
P(waitlist (k)(t) = 0, k /↔ B(t)) ↑ E(|{t : waitlist (k)(t) = 0, L

(k)
u (t) > L

(k)}|)

↑ (M + 1)(D ↓ l
(k))

p(k) ,

which completes the proof.

Lemma 7. For any arm k = 1, . . . , M, there exist constants c
(k)
4 (ω) = O( ↓ log ω

ω2 ), c̃
(k)
5 (ω) = O(1), such that

∑

t→T o
k

(T )
P(waitlist (k) = 1, k /↔ B(t), t → c

(k)
4 (ω)) ↑ log log T + c

(k)
5 (ω).

Proof. Note that waitlist (k)(t) = 1 is equivalent to that the agent has sampled check (k)(t) times in the
confirmation step of the L

(k)
u (t)-run without receiving a 1-reward. Note that if L

(k)
u (t) > l

(k)
, then L

(k)
test(t) =

L
(k)
u (t) ↓ 1 → l

(k)
, implying that arm k is active for any time t on the confirmation stage of an any c-run

satisfying c > l
(k)

. Consequently

P(L(k)
u (t) > l

(k)
, waitlist (k) = 1) = (1 ↓ p

(k))check (k)(t)
, (9)

where check (k)(t) satisfies that
(1 ↓ p̃

(k)(t))check (k)(t) ↑ 1
t log t

.

We consider the following two cases.

(1) If p → p̃
(k)(t), then it holds that

(1 ↓ p
(k))check (k)(t) ↑ (1 ↓ p̃

(k)(t))check (k)(t) ↑ 1
t log t

. (10)

(2) If p < p̃
(k)(t), then

(1 ↓ p
(k))check (k)(t) ↑ (1 ↓ p

(k))
log t+log log t

↑ log(1↑p̃(k)(t))

= (1 ↓ p̃
(k)(t))

log t+log log t

↑ log(1↑p̃(k)(t))

(
1 + p̃

(k)(t) ↓ p
(k)

1 ↓ p̃(k)(t)

) log t+log log t

↑ log(1↑p̃(k)(t))
.

set a in Lemma 2 as
↖

t log t, we have

P

(
p̃

(k)(t) → p
(k) +

√
log t

t

)
↑ 1

t2 ,

7
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implying that for any t, with probability 1 ↓ 1
t2 ,

(1 ↓ p)check (k)(t) ↑
(

1 +
√

log t

t
/(1 ↓ p̃

(k)(t))
) log t+log log t

↑ log(1↑p̃(k)(t))
(1 ↓ p̃

(k)(t))
log t+log log t

↑ log(1↑p̃(k)(t))

↑
(

1 +
√

log t

t
/(1 ↓ p̃

(k)(t))
) log t+log log t

↑ log(1↑p̃(k)(t))
/t log t

↑
(

1 +

√
log t

t

1 ↓ p(k) ↓
√

log t
t

) log t+log log t

↑ log(1↑p(k))
/t log t.

Note that
√

log t/t converges to 0 when t goes to infinity and that (1 + x)c ⇓ 1 + cx for any 0 < x < 1 and
c ⇓ ↙. Then for any ω, there exists a constant c

(k)
4 (ω) = O( ↓ log ω

ω2 ), such that when t → c
(k)
4 (ω), there holds

(
1 +

√
log t

t

1 ↓ p(k) ↓
√

log t
t

) log t+log log t

↑ log(1↑p(k))
↑ 1 + 1 + ω

1 ↓ p(k)

√
log t

t

log t + log log t

↓ log(1 ↓ p(k))
.

Combining the above results together, when p < p̃
(k)(t), for any ω > 0, given t → c

(k)
4 (ω), with probability

1 ↓ 1
t2 , it holds that

(1 ↓ p)check (k)(t) ↑ 1
t log t

+ 1 + ω

1 ↓ p(k)

√
log t

t

log t + log log t

↓ log(1 ↓ p(k))
1

t log t

= 1
t log t

+ 1 + ω

↓(1 ↓ p(k)) log(1 ↓ p(k))
log t + log log t

t
↖

t log t
.

Along with equation 10, we obtain that for any ω > 0, given t → c
(k)
4 (ω), with probability at least 1 ↓ 1

t2 , it
holds that

(1 ↓ p)check (k)(t) ↑ 1
t log t

+ 1 + ω

↓(1 ↓ p(k)) log(1 ↓ p(k))
log t + log log t

t
↖

t log t
.

Then from equation 9, there holds
∑

t→T o
k

(T )
P(L(k)

u (t) > l
(k)

, waitlist (k) = 1, t → c
(k)
4 (ω))

↑
T∑

t=1

(
1
t2 + 1

t log t
+ 1 + ω

↓(1 ↓ p(k)) log(1 ↓ p(k))
log t + log log t

t
↖

t log t

)
.

Since log t+log log t

t
↖

t log t
= O(t↓ 3

2
↖

log t), it holds that
∑T

t=1
log t+log log t

t
↖

t log t
= O(1). Then, there exists a constant

c
(k)
5 (ω) = O(1), such that

∑

t→T o
k

(T )
P(L(k)

u (t) > l
(k)

, waitlist (k) = 1, t → c
(k)
4 (ω)) ↑ log log T + c

(k)
5 (ω).

Then from equation 8, it holds that
∑

t→T o
k

(T )
P(waitlist (k) = 1, k /↔ B(t), t → c

(k)
4 (ω)) ↑ log log T + c

(k)
5 (ω),

which completes the proof.
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A.4.3 Sampling Times in Cool-Down Exploration

In this section, we study the expected number of samplings in the cool-down exploration for each arm k.

The following lemma provides the upper bound of the number of time instances in the cool-down exploration
of arm k for l

(k)-run.
Lemma 8. For any arm k = 1, . . . , M and ω > 0, it holds that

P(L(k)
u (t) = l

(k)
, t ↔ C(k)

2 (T )) ↑ (1 + ω)(log T + log log T )
↓ log(1 ↓ p(k))

+ c
(k)
3 (ω) + l

(k)
,

where c
(k)
3 (ω) is defined in Lemma 5.

Proof. From the analysis in Lemma 4, the number of time instances in the quick jump step of arm k for
L

(k)
u (t) = l

(k) is l
(k)

. Then for any k = 1, . . . , M , it holds that

P(L(k)
u (t) = l

(k)
, t ↔ C(k)

2 (T )) ↑ P(L(k)
u (t) = l

(k)
, t ↔ C̃(k)

2 (T )) + l
(k)

. (11)

Let E1(t) denotes the event such that 1↓p̃
(k)(t) → (1↓p)

1
1+ω , a(t) = k. Expanding the first term of equation 11,

we obtain that

P(L(k)
u (t) = l

(k)
, t ↔ C̃(k)

2 (T ))

↑ P

(
L

(k)
u (t) = l

(k)
, E1(t), t ↔ C̃(k)

2 (T )
)

+ P

(
L

(k)
u (t) = l

(k)
, ¬E1(t), t ↔ C̃(k)

2 (T )
)

↑ P(E1(t)) + P(L(k)
u (t) = l

(k)
, t ↔ C̃(k)

2 (T ) | ¬E1(t)). (12)

From the algorithm,

P(L(k)
u (t) = l

(k)
, t ↔ C̃(k)

2 (T ) | ¬E1(t))

= P(check (k)(t) <
log t + log log t

↓ log(1 ↓ p̃(k)(t))
, t ↔ C̃(k)

2 (T ) | ¬E1(t))

↑ P

(
check (k)(t) <

(1 + ω)(log t + log log t)
↓ log(1 ↓ p(k))

, t ↔ C̃(k)
2 (T )

)

↑ P

(
check (k)(t) <

(1 + ω)(log T + log log T )
↓ log(1 ↓ p(k))

, t ↔ C̃(k)
2 (T )

)
.

Note that for any adjacent ε1, ε2 ↔ C̃(k)
2 (T ) with ε1 < ε2, it holds that check (k)(ε1) + 1 = check (k)(ε2), which

implies that
T∑

t=1
P(L(k)

u (t) = l
(k)

, t ↔ C̃(k)
2 (T ) | ¬E1(t)))

↑
T∑

t=1
P

(
check (k)(t) <

(1 + ω)(log T + log log T )
↓ log(1 ↓ p(k))

, t ↔ C̃(k)
2 (T )

)

↑ (1 + ω)(log T + log log T )
↓ log(1 ↓ p(k))

.

Applying the above inequality along with Lemma 5 to equation 12, we obtain that

P(L(k)
u (t) = l

(k)
, t ↔ C̃(k)

2 (T )) ↑ (1 + ω)(log T + log log T )
↓ log(1 ↓ p(k))

+ c
(k)
3 (ω),

substituting which to equation 11, we have

P(L(k)
u (t) = l

(k)
, t ↔ C(k)

2 (T )) ↑ (1 + ω)(log T + log log T )
↓ log(1 ↓ p(k))

+ c
(k)
3 (ω) + l

(k)
,

which completes the proof.
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A.4.4 Extension For Results in Section A.3

Since p̃
(k)(t) is updated only when the agent makes distribution exploration, and the analysis of Theorem 2

is influenced by the accuracy of p̃
(k)(t). we extend the findings outlined in Section A.3 by employing the

same analytical approach utilized in the proof of Theorem 2.
Corollary 1. For any j = 2, . . . , M and i = 1, . . . , j ↓ 1, for any ω > 0, it holds that

E(Ni,j(T )) ↑ (1 + ω) log T

K(p(j), p(min(i,|I|)))
+ c̃

(k)
1 (ω),

where c̃
(k)
1 (ω) is defined in Theorem 2.

Proof. For any j = 2, . . . , M and i = 1, . . . , j ↓ 1,

E(Ni,j(T )) =
∑

t→(⇓i
k=1T o

k
)⇑T a

j

P(t ↔ C(j)
1 (t)) =

i∑

k=1

∑

t→T a
j (T )⇑T o

i (T )
P(t ↔ C(j)

1 (t)). (13)

Since {t ↑ T : a(t) = j} ∝ C(j)
1 (T ) for any j = 1, . . . , M, there holds

E(Ni,j(T )) ↑
∑

t→(⇓i
k=1T o

k
)⇑T a

j

P(a(t) = j) =
i∑

k=1

∑

t→T a
j (T )⇑T o

i (T )
P(a(t) = j).

Then using the exact same technique in the proof of Theorem 2, we obtain that

E(Ni,j(T )) ↑ (1 + ω) log T

K(p(j), p(min(i,|I|)))
+ c̃

(i)
1 (ω),

which completes the proof.

Corollary 2. For any i ↔ I, j ↔ {i + 1, . . . , M} and j > i, and ω > 0, for the same constant defined in
Corollary 1, it holds that

E(Mi,j(T )) < E(Ni,j(T )) + c
(j)
2 .

Proof. For any j = 2, . . . , M and i = 1, . . . , j ↓ 1, it holds that

E(Mi,j(T )) =
∑

t→(⇓i
k=1T o

k
)⇑T a

j

P(t ↔ C(j)
2 (T ))x(j)

t

=
i∑

k=1

∑

t→T a
j (T )⇑T o

i (T )
P(t ↔ C(j)

2 (T ))x(j)
t

<

i∑

k=1

∑

t→T a
j (T )⇑T o

i (T )
P(t ↔ C(j)

2 (T )) +
T∑

t=1
x

(j)
t 1(x(j)

t > 1), (14)

where x
(j)
t is be the number of steps of the successive cool-down exploration starting from t for any t > 0.

Specially, x
(j)
t = 0 for t /↔ C(j)

2 (T ).

Note that x
(j)
t > 1 only when t is the starting time of a cool-down exploration on the quick jump stage.

Then from Lemma 4, it holds that

T∑

t=1
x

(j)
t 1(x(j)

t > 1) ↑ c
(j)
2 .

10
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Substituting the above inequality to equation 14, we obtain that

E(Mi,j(T )) <

i∑

k=1

∑

t→T a
j (T )⇑T o

i (T )
P(t ↔ C(j)

2 (T )) + c
(j)
2 .

Recall the property introduced in Lemma 5: for any ε ↔ C(k)
2 (T ), f : ε ⇓ max{t < ε : a(t) = k} is an

injection, in this sense, since p̃
(j)(t) only changes when t ↔ C(j)

1 (t) for any j = 1, . . . , M , the above inequality
can be further modified as

E(Mi,j(T )) <

i∑

k=1

∑

t→T a
j (T )⇑T o

i (T )
P(t ↔ C(j)

1 (T )) + c
(j)
2 .

Then substituting equation 13 to the above inequality, we obtain that

E(Mi,j(T )) < E(Ni,j(T )) + c
(j)
2 ,

which completes the proof.

With all the above results in hand, we are able to prove Theorem 4.

Proof of Theorem 4: For any k = 1, . . . , M and time t such that a
↑(t) = k, a loss in reward is likely to incur

when the agent fails to select k because

1. k ↔ B(t), but there exists an arm j > k such that ϑ
(j)(t) > ϑ

(k)(t)

2. k /↔ B(t)

3. there exists an arm i < k, such that i ↔ B(t) and the agent selects i

4. k ↔ B(t), k = arg maxi→B(t) ϑ
(i)(t), but the agent enters the urgent cool-down exploration phase for

some arm j > k

We use R1(T ), R2(T ), R3(T ), R4(T ) to denote the total regret incurred in the above four cases respectively
and divide the following analysis into three parts.

Part 1. For each arm j = 2, . . . , M and i = 1, . . . , j ↓ 1 in case 1 such that a
↑(t) = i and a(t) = j, it is

easy to see that agent i is active. Then if the agent selects arm j for distribution exploration, the one-time
instant regret is p

(i) ↓ p
(j), and if the agent selects arm j for cool-down exploration, the one-time instant

regret is at most p
(i)

. Then it holds that

R2(T ) ↑
M∑

j=2

j↓1∑

i=1
E(Ñi,j(T ))(p(i) ↓ p

(j)) +
M∑

j=2

j↓1∑

i=1
E(M̃i,j(T ))p(i)

=
M∑

j=2

j↓1∑

i=1
E(Ni,j(T ))(p(i) ↓ p

(i+1)) +
M∑

j=2

j↓1∑

i=1
E(M̃i,j(T ))p(i)

.

Then substituting Corollary 1 to the above inequality, we obtain that

R2(T ) ↑
M∑

j=2

j↓1∑

i=1

(1 + ω)(p(i) ↓ p
(i+1)) log T

K(p(j), p(min(i,|I|)))
+

M∑

j=2

j↓1∑

i=1
c̃

(i)
1 (ω) +

M∑

j=2

j↓1∑

i=1
E(M̃i,j(T ))p(i)

.

Part 2. In case 2, for each arm k, and a
↑(t) = k, the one-time regret is at most p

(k)
, then

R1(T ) ↑
M∑

k=1
p

(k)
∑

t→T o
k

(T )
P(k /↔ B(t))

=
M∑

k=1
p

(k)
( ∑

t→T o
k

(T )
P(waitlist (k)(t) = 0, k /↔ B(t)) +

∑

t→T o
k

(T )
P(waitlist (k) = 1, k /↔ B(t))

)
.

11
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From Lemmas 6 and 7, we obtain that

R1(T ) ↑
M∑

k=1
p

(k)
(

c
(k)
4 (ω) +

∑

t→T o
k

(T )
P(waitlist (k) = 1, k /↔ B(t), t → c

(k)
4 (ω))

)

+
M∑

k=1
p

(k) (M + 1)(D ↓ l
(k))

p(k)

↑ M log log T +
M∑

k=1
(M + 1)

(
(D ↓ l

(k)) + p
(k)(c(k)

4 (ω) + c
(k)
5 (ω))

)
.

Part 3. For any j = 2, . . . , M and i = 1, . . . , j ↓ 1, let n3(i, j) be the number of selects on arm i when j is
the actual optimal active arm, as described in case 3, and n3(i) =

∑i↓1
j=1 n3(i, j). In such a situation, since j

is active, the one time instant regret is at most p
(j). In this sense, it holds that

R3(T ) ↑
M∑

j=2

j↓1∑

i=1
E(n3(i, j))p(j)

↑
M∑

j=2

j↓1∑

i=1
E(n3(i, j))p(i)

=
M∑

j=2
E(n3(j))p(j)

.

Part 4. For any j = 2, . . . , M and i = 1, . . . , j ↓ 1, let n4(i, j) denote the number of selects on arm j when
arm i is the optimal arm in case 4. Then

R4(T ) ↑
M∑

j=2

j↓1∑

i=1
E(n4(i, j))p(i)

.

Note that according to the urgent decision-making requirement, case 4 only happens when the latest cool-
down exploration on arm j before time t is earlier than the that on arm i. Then it holds for any j = 2, . . . , M

and i = 1, . . . , j ↓ 1 that

n4(i, j) ↑ m
(i)(t). (15)

Adding all the “partial” regret together, we obtain that

R(T ) ↑ M log log T +
M∑

k=1
(M + 1)

(
(D ↓ l

(k)) + p
(k)(c(k)

4 (ω) + c
(k)
5 (ω))

)

+
M∑

j=2

j↓1∑

i=1

(1 + ω)(p(i) ↓ p
(i+1)) log T

K(p(j), p(min(i,|I|)))
+

M∑

j=2

j↓1∑

i=1
c̃

(i)
1 (ω) +

M∑

j=2

j↓1∑

i=1
E(M̃i,j(T ))p(i)

+
M∑

j=2
E(n3(j))p(j) +

M∑

j=2

j↓1∑

i=1
E(n4(i, j))p(i)

. (16)

Note that for any j = 2, . . . , M , it holds that

m
(j)(T ) →

j↓1∑

i=1
M̃i,j(T ) + n3(j) +

j↓1∑

i=1
n4(i, j). (17)
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Then

j↓1∑

i=1
M̃i,j(T )p(i) + n3(j)p(j) +

j↓1∑

i=1
n4(i, j)p(i)

↑
j↓1∑

i=1
M̃i,j(T )p(i) +

j↓1∑

i=1
n4(i, j)p(i) +

(
m

(j)(T ) ↓
j↓1∑

i=1
(M̃i,j(T ) + n4(i, j))

)
p

(j)

=
j↓1∑

i=1
(M̃i,j(T ) + n4(i, j))(p(i) ↓ p

(j)) + m
(j)(T )p(j)

.

Substituting equation 15 to the above inequality, we obtain that

j↓1∑

i=1
M̃i,j(T )p(i) + n3(j)p(j) +

j↓1∑

i=1
n4(i, j)p(i)

↑
j↓1∑

i=1
M̃i,j(T )(p(i) ↓ p

(j)) +
j↓1∑

i=1
m

(i)(T )(p(i) ↓ p
(j)) + m

(j)(T )p(j)

↑
j↓1∑

i=1
M̃i,j(T )(p(i) ↓ p

(j)) +
j∑

i=1
m

(i)(T )p(i)
.

Furthermore, equation 17 also indicates that

j↓1∑

i=1
M̃i,j(T )p(i) + n3(j)p(j) +

j↓1∑

i=1
n4(i, j)p(i)

↑
j↓1∑

i=1
M̃i,j(T )p(i) + n3(j)p(i) +

j↓1∑

i=1
n4(i, j)p(i)

↑ m
(j)(T )p(i)

.

Then together it holds for all j = 2, . . . , M that

j↓1∑

i=1
M̃i,j(T )p(i) + n3(j)p(j) +

j↓1∑

i=1
n4(i, j)p(i)

↑ min
{

m
(j)(T )p(i)

,

j↓1∑

i=1
M̃i,j(T )(p(i) ↓ p

(j)) +
j∑

i=1
m

(i)(T )p(i)
}

.

Summing the above inequality up for j = 2, . . . , M , we obtain that

M∑

j=2

j↓1∑

i=1
E(M̃i,j(T ))p(i) +

M∑

j=2
E(n3(j))p(j) +

M∑

j=2

j↓1∑

i=1
E(n4(i, j))p(i)

↑ min
{ M∑

j=2
E(m(j)(T ))p(i)

,

M∑

j=2

j↓1∑

i=1
E(M̃i,j(T ))(p(i) ↓ p

(j)) +
M∑

j=2

j∑

i=1
E(m(i)(T ))p(i)

}

= min
{ M∑

j=2
E(m(j)(T ))p(i)

,

M∑

j=2

j↓1∑

i=1
E(Mi,j(T ))(p(i) ↓ p

(i+1)) +
M∑

j=2

j∑

i=1
E(m(i)(T ))p(i)

}

↑ min
{ M∑

j=2
E(m(j)(T ))p(i)

,

M∑

j=2

j↓1∑

i=1
E(Ni,j(T ))(p(i) ↓ p

(i+1)) +
M∑

j=2

j∑

i=1
E(m(i)(T ))p(i) +

M∑

j=2

j↓1∑

i=1
c

(j)
2

}
,
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where the last step is from Corollary 2. From Lemma 8 and the analysis of Lemma 6, it holds for all
j = 1, . . . , M that

E(m(j)(T )) ↑ (1 + ω)(log T + log log T )
↓ log(1 ↓ p(j))

+ c
(j)
3 (ω) + l

(j) + D ↓ l
(j)

p(j) .

Then
M∑

j=2

j↓1∑

i=1
E(M̃i,j(T ))p(i) +

M∑

j=2
E(n3(j))p(j) +

M∑

j=2

j↓1∑

i=1
E(n4(i, j))p(i)

↑ min
{ M∑

j=2

j↓1∑

i=1
E(Ni,j(T ))(p(i) ↓ p

(i+1)) +
M∑

j=2

j∑

i=1

(1 + ω)p(i)

↓ log(1 ↓ p(i))
(log T + log log T ),

M∑

j=2

(1 + ω)p(i)

↓ log(1 ↓ p(j))
(log T + log log T )

}
+

M∑

j=2

j∑

i=1

(
c

(j)
3 (ω) + l

(j) + D ↓ l
(j)

p(j) + c
(j)
2

)

↑ min
{ M∑

j=2

j↓1∑

i=1

(1 + ω)(p(i) ↓ p
(i+1)) log T

K(p(j), p(min(i,|I|)))
+

M∑

j=2

j∑

i=1

(1 + ω)p(i)

↓ log(1 ↓ p(i))
(log T + log log T ),

M∑

j=2

(1 + ω)p(i)

↓ log(1 ↓ p(j))
(log T + log log T )

}
+

M∑

j=2

j∑

i=1

(
c

(j)
3 (ω) + l

(j) + D ↓ l
(j)

p(j) + c
(j)
2

)
.

Substituting the above inequality to equation 16, we obtain that

R(T ) ↑ min
{

(1 + ω)
M∑

j=2

j↓1∑

i=1

2(p(i) ↓ p
(i+1)) log T

K(p(j), p(min(i,|I|)))
+

M∑

j=2

j∑

i=1

(1 + ω)p(i)

↓ log(1 ↓ p(i))
log T,

(1 + ω)
M∑

j=2

j↓1∑

i=1

(p(i) ↓ p
(i+1)) log T

K(p(j), p(min(i,|I|)))
+

M∑

j=2

(1 + ω)p(i)

↓ log(1 ↓ p(j))
log T

}

+ Ĉ1(ω) log log T + Ĉ2(ω),

where

Ĉ1(ω) = M + min
{ M∑

j=2

j∑

i=1

(1 + ω)p(i)

↓ log(1 ↓ p(i))
,

M∑

j=2

(1 + ω)p(i)

↓ log(1 ↓ p(j))

}
= O(1),

and Ĉ2(ω) is the sum of all the constant terms. It can be obtained from Lemmas 4-8 that Ĉ2(ω) = O( ↓ log ω
ω2 ).

Note that x
↓ log(1↓x) ↑ 1 for any x ↔ [0, 1], then R(T ) can be further bounded as

R(T ) ↑ (1 + ω) min
{ M∑

j=2

( j↓1∑

i=1

(
2(p(i) ↓ p

(i+1))
K(p(j), p(min(i,|I|)))

+ 1
)

+ 1
)

,

M∑

j=2

j↓1∑

i=1

(p(i) ↓ p
(i+1))

K(p(j), p(min(i,|I|)))
+

M∑

j=2

(1 + ω)p(i)

↓ log(1 ↓ p(j))

}
log T

+ Ĉ1(ω) log log T + Ĉ2(ω),

which completes the proof.

B Supplementary Pseudocode
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Algorithm 3: Distribution Exploration
Input: time t, ϖ

(k)
, ϱ

(k)
, CD_Explore (k)

, L
(k)
test for all k = 1, . . . , M , selected arm a(t)

1 CD_Explore (k) = CD_Explore (k) ↓ 1 for k = 1, . . . , M

2 if Xa(t) = 1 then

3 ϖ
(a(t)) = ϖ

(a(t)) + 1
4 CD_Explore (a(t)) = L

(a(t))
test // reset cool-down state after obtaining a 1-reward

5 else

6 ϱ
(a(t)) = ϱ

(a(t)) + 1
7 end

Algorithm 4: Cool-Down Exploration
Input: time t, arm a(t), CD_Explore (k)

, L
(k)
u , L

(k)
test, L̃

(k)
test, check (k) for all k = 1, . . . , M

1 t = t ↓ 1
2 upper = L

(a(t))
u ↓ L

(a(t))
test + CD_Explore (a(t)) // largest remaining time before the arm is removed from B

3 r1 = 0 // defaulted as “receive no 1-reward in the cool-down exploration”
4 for i = 1 : upper do

5 t = t + 1
6 if t > T then

7 break

8 end

9 CD_Explore (k) = CD_Explore (k) ↓ 1 for all k = 1, . . . , M

10 if Xa(t) = 1 then

11 r1 = 1 // already receive 1-reward in the cool-down exploration

12 L
(a(t))
u = L

(a(t))
u ↓ upper + i ↓ 1 // update of the estimate

13 check (a(t)) = 0 // reset count

14 if L
(a(t))
u = L

(a(t))
test then

15 L
(a(t))
test = max(0, min(L(a(t))

u ↓ 1, L̃
(a(t))
test ))

16 L̃
(a(t))
test = 0

17 else

18 L
(a(t))
test = min

(
⇐ L(a(t))

test +L̃(a(t))
test

2 ⇒, L
(a(t))
u ↓ 1

)

19 end

20 CD_Explore (a(t)) = L
(a(t))
test // reset cool-down state

21 break

22 end

23 end

24 if r1 = 0 // fail to receive 1 reward in the current cool-down exploration
25 then

26 L̃
(a(t))
test = L

(a(t))
test

27 L
(a(t))
test = max

(
⇐ L(a(t))

test +L(a(t))
u ↓upper+i↓1

2 ⇒, min(L(a(t))
u ↓ 1, L

(a(t))
test + 1)

)

28 check (a(t)) = check (a(t)) + 1 // update count
29 end

15



Published in Transactions on Machine Learning Research (10/2025)

Algorithm 5: Random Sample
Input: time t, ϖ

(k)
, ϱ

(k)
, CD_Explore (k)

, L
(k)
u , L

(k)
test, L̃

(k)
test, waitlist (k) for all k = 1, . . . , M

/* If belief arm set is empty, the agent picks a random arm */
1 if {k ↔ {1, . . . , M}| waitlist (k) = 0} ≃= ′ then

2 the agent randomly picks an arm a(t) from {k ↔ {1, . . . , M}| waitlist (k) = 0}
3 else

4 the agent randomly picks an arm a(t) from {1, . . . , M}
5 end

6 CD_Explore (k) = CD_Explore (k) ↓ 1 for all k = 1, . . . , M

7 if Xa(t) = 1 then

8 L
(a(t))
u = L

(a(t))
test ↓ CD_Explore (a(t))

9 L
(a(t))
test = max(⇐ L(a(t))

u
2 ⇒, min(L̃(a(t))

test , L
(a(t))
u ↓ 1))

10 CD_Explore (a(t)) = L
(a(t))
test

11 end

Algorithm 6: Post-Update
Input: time t, ϖ

(k)
, ϱ

(k)
, CD_Explore (k)

, L
(k)
u , L

(k)
test, L̃

(k)
test, waitlist (k) for all k = 1, . . . , M

/* Update of waitlist */
1 for k = 1, . . . , M do

2 p̃
(k) = ϑ(k)

ϑ(k)+ϖ(k)

3 if L
(k)
u = 0 // when cool-down duration is 0

4 then

5 L
(k)
test = CD_Explore (k) = 0

6 check (k) = ↙
7 waitlist (k) = 1 // terminate cool-down exploration
8 end

9 if waitlist (k) = 1 and check (k) ≃= ↙ and (1 ↓ p̃
(k))check (k)

>
1

t log t // when cool-down exploration turns
insufficient

10 then

11 waitlist (k) = 0 // restart cool-down exploration

12 L
(k)
test = L

(k)
u ↓ 1

13 CD_Explore (k) = CD_Explore (k) ↓ 1
14 end

15 if waitlist (k) = 0 and (1 ↓ p̃
(k))check (k) ↑ 1

t log t // when cool-down exploration is sufficient

16 then

17 waitlist (k) = 1 // pause cool-down exploration

18 CD_Explore (k) = CD_Explore (k) + L
(k)
u ↓ L

(k)
test

19 L
(k)
test = L

(k)
u

20 end

21 end

/* Update of CD_Explore */
22 for k = 1, . . . , M do

23 if CD_Explore (k) + L
(k)
u ↓ L

(k)
test ↑ 0 // when k is bound to be active

24 then

25 CD_Explore (k) = ↙ // reset cool-down state
26 end

27 end
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