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A Regret Analysis
A.1 Preliminaries

Lemma 2 (Hoeffding’s inequality (Hoeffding] 1963))). For a Bernoulli trail with success rate p, let Sy, be the
total reward of n trails, then

—2a?
P(S, >np+a) <exp -

—92a2
P(SnSnp—a)Sexp( na )

Lemma 3 (Thompson Sampling near-optimal regret (Agrawal & Goyal,[2017)). For standard bandit problem

without considering cool-down periods, under Thompson Sampling, for any k = 2,..., M and € > 0, let
L (T) = %, there exists a constant c(e) = O(%), such that

T

ZP(a(t) =k,ng(t) > Li(T)) < c(e).

t=1

Proof. The lemma is a direct consequence of (Agrawal & Goyal, 2017, Lemmas 2.10, 2.11) and the analysis
in (Agrawal & Goyal, 2017, Lemma 2.12) by setting x;, € (p(*), p(!)) in the statement such that K (zj,p(")) =

K" ph) K(@® pt)

e and y; € (x1,p™")) in the statement such that K(z,yx) = =

A.2 Notations

For any k € {1,...,M}, let 7,2(t) = {r <t: k € A(t)} be the collection of time instances such that arm
k is active, let Tp2(t) = {7 < t: k = argmax;c 4(,) p@} be the collection of time instance 7 < ¢ such that

arm k is the actual optimal active arm at time ¢. Let Cik) (t) be the sequence of the time instances when the
agent does distribution exploration on arm £ till time ¢, Cék) (t) be the sequence of the starting time of each

CD exploration on arm £ till time ¢ and éék)(t) be the sequence of the time instances when the agent enters
the confirmation step of arm k. Let m(*) (t) be the number of samplings in CD exploration of arm k till time

t, we have |C§k)(t)\ < m®)(t). Moreover, from Lemma 4} it holds that

67 (0] 2 m® () - . (1)
Forany j=2,...,Mandi=1,...,5 — 1, let 7; ;(T) be the collection of time instances over total time T
such that both arm ¢ and j are active, and 71.; ;(T) be the collection of time instances over total time T
such that at least one of arms in {1,...,¢} is active, and arm j is active. Let N, ;(T), M, ;(T') be the size
of the collection of time ¢ over total time T such that a(t) = j, a*(t) € {1,...,i} and the agent enters the
“urgent” cool-down exploration (line 12 in Algorithm |2)) for arm j respectively, and Ni}j (1), Mm‘ (T') be the
size of the collection of time t over total time T such that a(t) = j, a*(¢t) = 7 and the agent selects arm
j following the Thompson sampling rule (line 14 i Algorithm [2|) for distribution exploration and cool-down
exploration respectively. Specifically, when the cool-down durations are known to the agent, N; ;(T) (resp.
]\me- (T)) simply refers to the accumulated number of times over T' that the agent selects arm j when the
optimal arm is in {1,...,4} (resp. is {i}).

A.3 Known Cool-Down Duration
We start with the proof of Lemmal[l] which provides a property of the important arm set defined in Section|[3.1
Proof of Lemma[1: Let S(t) be the stack of Si(t), which stands for the remaining cool-down time for each

arm k = 1,..., M to become active. When k € A(t), Si(t) = 0. Then S(¢) = 0 represents for the state that
all the arms are active at time ¢. From the definition of Z, if S(¢) = 0, then for any i € Z, with probability at

least py 2 [licp p*) i = a*(7) for some 7 =t,...,t+|P| -1, where P is defined in Section Besides, for
any state S(¢), if all the trial fail starting from ¢, then there exists a 7 € [t, ¢ + D], such that S(7) = 0. This
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implies that for any S(t), with probability at least po 2 [Licz P9 (pD)P=171 the state becomes 0 within D
steps. Combining the above results yields that for any ¢t <T — D — |P| 4+ 1 and ¢ € Z, with probability at
least p1pa, there exists a 7 € [t,t + D + |P| — 1], such that a*(¢) = 4. This implies that for any i € Z and
integer ¢, it holds that

P(|T(1)] < ¢) < F(e), (2)

where F' stands for the cumulative distribution function of B( L%IWJ ,D1P2), here B(n, p) represents for the
binomial distribution of the number of successful trials over n trials with success rate p. For any n,p in the
domain, it holds for all w € (0,1) that

g}( pH(L—p)"*

<n®p™ (1—p)" ",

Then log F(n™) < (w + n")logn + (n — n")log(l — p) = O(—n), and therefore F(n™) < O(e™™). Setting
n= L#IPIJ’ p = p1p2 and ¢ = t* and substituting the above result to equation [2| yield that for any i € 7
and w € (0, 1), there holds

P(I7()] <t*) < O(e™™),
which completes the first part of the proof.

From the definition of Z, for any j ¢ Z, the only chance that j = a*(¢) is when the agent selects a sub-
optimal arm at some time ¢’ <t and S(7) # 0 for all 7 =¢' 4+ 1,...,t. Let ny(t) denote the total number of
sub-optimal selects over time ¢. Using the Pigeonhole principle, for any j ¢ Z and w € (0,1), if [T7(¢)| > t*,
there exists a t; < T such that the agent selects a sub-optimal arm at time ¢1, and S(7) # 0 for all
T=t1+1,.. t1+|— -|then

P(ITP(t)] > ) < (1 — po) w0,

Set a = 5 in the lemma statement, then there exists a c,,, such that ng(t) < cwt?. Then
w t%
0 w f 12 ] L _ —t5
PO > ) < (-5 < (1-m)F ) =06,
which completes the proof. []

Then we are able to prove Theorem [T] and Theorem

Proof of Theoremlz: For any arm j = 2,..., M and ¢t > 0, similar to the analysis in (Lai et al., {1985, Theorem
2), for any € > 0, it holds that

' (1—¢€)logt B
tlig)loP<Nj1,j(t) Z Ko, pemy ) =

For any i € Z, let T; = argmax, < a*(t) = i, then for any j =2,..., M and i = 1,...,min(j — 1, |Z]), there
holds

1—¢)logT;
lim PNy, (1) > E=918T _
T— 00 ’ K(p(]),p(l))

Combining the above inequality with Lemma forany e > 0,w € (0,1),j=2,...,Mandi=1,...,min(j—
1,]Z]), it holds that

lim P (le’j (T) Z

T—00

w(l —e€)logT _1
K(p@,p@) ) 7
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which implies that for any j =2,..., M and ¢ = 1,...,min(j — 1, |Z|), it holds that

lim inf B(N;1,(T)) > ,1 — .
T— o0 log T K(p(]),p(z))

From Lemma (I} for any ¢ ¢ Z, it holds that

BN (T)
Hminf =7 = o

where we also make use of the property that |7,°| > Nm» (T'). Then for any j =2,..., M, it holds that

E(Nyini— (T
lim inf ( min(s 1"Il)’j( ) > 1 — .
T—00 log T K(p(]) s p(z))

Since K (p, q) is increasing in terms of ¢ for ¢ > p, for any j = 2,..., M, it holds that

.. E(Nmin(j—l,lﬂ)vj(T)) 1
lim inf log T = K0, pminG LY ®)

The regret R(T') satisfies that

M
Z Z mln(] 1 \I|)77(T))(p(min(jil,‘zh) _p(]))
Jj=2

Substituting equation [3|to the above inequality, we obtain that

M (min(5—1,|Z1)) _ ()
P p
s g7 > 3 g T

which completes the proof. []
Proof of Theorem[2: For any j =2,...,M and i =1,...,5 — 1, let

(1+ €)log(|7;*(T) N T(T)])
K(p9),p®)

L;(T) =
Similar to the analysis of Lemma [3] for any € >0, j =2,...,M and i =1,...,j — 1, it holds that
P( > 1(a(t) = j,n;(t) > Li,j(T))> < c(e).
teTA(T)NT(T)
From Lemmal[l] for i € Z and j =i+ 1,..., M, it holds that

N (14+¢€)logT
Fo = R a0y

and fori ¢ Z,and j =i+ 1,..., M, it holds that

(1 +¢)log(|7:°(T)])
Liy(T) < K(p@,p®)

= o(logT)).

Then for any j =2,...,M,i=1,...,5—1, and € > 0, there exists a constant ¢;(¢) = O(1), such that when
T >ci(e), forany j=2,...,M and i = 1,...,5 — 1, it holds that

Lii(T) < (14+¢€)logT A
1,7 -

= K(pl), pmin(i,|Z1)) Li;(T).
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Note that

B(Nij (1) < B(Nyy (1), ny(T) < masx Ly (7)) + B(Niy(T).n,(T) > max Ly (7).

Foranyj=2,...,Mandi=1,...,5—1, N; ;(T) < n;(T) from definition, the former term is upper bounded
by max;<; L; j(T) < max(L; ;(T),c1(¢)), and the latter term satisfies

E(Nm- (T),n;(T) > max L ; (T)) < E<Nz‘,j (T),n;(T) > L, (T))

P( > t(at) = jny(1) > LM(T)))

te(Up_, THNTS

= (Z Z 1<a(t) = j,n;(T) > Li,j(T))>

k=11eT(T)NT(T)
<ic(e)

Let ~(’)( ) = c1(€) +ic(e) for any arm k = 1,..., M, we obtain that
E(Ni,j(T)) < Lij(T) + e1(e) +ic(e) = Ly (T) + &7 (¢) (4)

Since regret R(T) satisfies

M -1
R(T) = Z Z E(N ;(T)(p® — pV)
i
=Y ) EMW ()W - pttY),
j=2 i=1

Substituting equation [4] to the above inequality, we obtain that

M j—1 p(z z-‘rl) IOgT M j—1 (i41)
R(T) < (1+¢) ZZ ])pmln(z\ﬂ)) ZZ )= plt).
j=2i=1 =21=1
Let C(e) Ej , > & () (p® — pli+D), we have C(e) = O(%), which completes the proof. ]

A.4 Unknown Cool-Down Duration

A.4.1 Basic Properties
The exploration of cool-down durations for each arm k£ comprises two phases: the quick jump stage, where the
agent employs a bisection algorithm to promptly update the cool-down parameters, and the confirmation

stage, where the agent conducts Bernoulli trials to verify the accuracy of Lq(f)(t). For ¢ € {I® ... D},
we define a time sequence as a c-run of arm k if it represents the collection of time instances t satisfying

L&k) (t) = ¢. Note that a c-run might not be a consecutive sequence. Additionally, throughout the entire

process, ¢ might not traverse all values in {®), ..., D for each arm k = 1,..., M. We start with examining
the characteristics of the quick jump stage.
Lemma 4. For each arm k =1,..., M, the accumulated number of selects on arm k in the quick jump stage

0] )
is at most c(k) 2 (D )(2 —L4),
Proof. For each arm k = 1,..., M, suppose the agent is at the quick jump step in c-run of arm k, where
cE {l(k), ..., D}. If the agent obtains a 1-reward, then the agent updates the estimated CD upper bound and
breaks c-run, and thus never enters the confirmation step of c-run. And if the agent obtains a O-reward, then

it continues the quick jump step until it has sampled for Lgf)( t)— Lg’;s)t( t) times. With this in mind, whenever

the agent enters a c-run for cool-down exploration on arm k, it at most samples ¢ — Lglsgt(t) times, within
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which, the quick jump stages contains at most ¢ time steps as it is a bisection process. Since ¢ € {l(k), ..., D},
then the total number of samplings in the quick jump steps in all runs is lower bounded by

XD: o DHIO)D 1P 1)
— 2 )

c=1(k)

which completes the proof. B

The following lemma provides an evaluation of the accuracy of the estimated success rate ﬁ(k)(t) for each
k=1,..., M.
Lemma 5. For any k=1,...,M and € > 0, there exists a constant cz(,}k)(e) = O(E%), such that

T

ZP(1 — 50 (1) = (1 —p) T, alt) = k) < (o).

t=1

Proof. Let

1

ge=(1—p)™ — (1 —p),

it holds that

962(1—p)11+6<1—(1—p)1i5>

> (1=p)p— = 0(¢) (5)

From Lemma 2] for any arm k = 1,..., M, it holds that

P<1 — W) > (1 - p) T, a(t) = k) < exp(—2¢2|C{” (1))

Since for any ¢t > 0,

then

P(1-90 > (1= p)H a0 = k)
< Y ep(=2g2cV 0D+ DD exp(=26210{ (1) (6)

tect™ (1) tec{™ (1)

For each 7 € Cék) (T'), let =, be the number of successive steps of the cool-down exploration starting from 7.
Specially, we let z, = 0 for 7 ¢ Cék) (T'). Note that for any 7 € Cék) (T),

max{t < 7: a(t) = k} € V(7). (7)
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Then for any 7 € Cék)(T)7 f 7 — argmax{t < 7 : a(t) = k} is an injection. Applying this property to
equation [6] we obtain that

P(l — M) > (1= p)T, alt) = k)
lc{® (1)
< >0 exp(-2¢2h)+ Y. exp(—20%C" (f(7))])-
h=1 Tec(k)( T)
lc™ (1))

< > exp(—292h)(1+ i),
h=1

where Zj denotes the number of time instances the agent spends on cool-down exploration between the hth
and (h 4 1)th distribution explorations. Note that Zp > 1 only when the agent enters the quick jump stage
for arm k between the hth and (h 4 1)th distribution explorations. From Lemma [4 the quick jump stage

(k)

for arm k takes at most ¢y ° instances, then

T
ZP(l — () > (1-p) T, a(t) = k)
ei” ()]
< exp(—2¢%)(1 + c(k)) +2 Z exp(—2g2h).
h=1

Then combining the fact that > o, e~ = O(%) for any positive constant ¢ and equation |5 to the above
inequality, we obtain that

P10 > (1= p)H.a) = ) = 0.

This implies that there exists a constant c( )( ) = O(%), such that

€

T

ZP( (k) Z(lp)lis,a(t)k) Scék)(6)7

which completes the proof. W

A.4.2 Insufficient Cool-Down Exploration

As discussed in Section sub-linear regret can arise if the optimal active arm is erroneously classified as
inactive (not included in the belief arm set B(t)) at each time ¢. In this section, we analyze the likelihood of
this occurrence. We investigate this scenario under two distinct conditions: firstly, when waitlist(k)(t) =0,
i.e., when the agent dos not pause the cool-down exploration of k£ at time ¢, and secondly, when waitlist™ (t) =
1, i,e., when the agent has paused the cool-down exploration of k at time ¢.

Lemma 6. For any arm k= 1,..., M, it holds that

M +1)(D —1®)
S P(uaitlist® (1) = 0,k ¢ B(t)) < DL )Em ).
teT2(T) p
Proof. For any arm k = 1,..., M and time ¢, if the agent enters the cool-down exploration for arm & at

time ¢ and ¢ = LE(t) > L™ > |(®) then arm k must be active at time 7, i.e., t € T,2(T). Thus with
probability p(¥), the agent breaks c-run for arm k, and consequently L*(t + 1) < L(t). Since there are at
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most D —I*) runs before Lgk)(t) reaches L(®)| then the expected number of rounds of cool-down exploration

is upper bounded by D};i()m. Note that after the agent executes a distribution exploration at time ¢, there

exists a time ¢’ € (t,t+ D), such that CD_ Explore® (t) = ngt(t) — P (t) 4+ 1 whenever waitlist® (t) = 0.
Then from the decision-making process, there must be one cool-down exploration for arm & after at most M

distribution explorations for arm k. Let a(t) = 0 if the agent does not enter the decision-making process at
time ¢. Then

(M 4 1)(D — 1))

E(|{t: waitlist™ (t) = 0, L (t) > L®}]) < G
p

From the definition of L*) it holds for any k = 1,..., M that
{t: ke At)nBt)} C {t: L) > L*}, (8)
Consequently,

> P(waitlist™ (t) = 0,k ¢ B(t)) < E(|{t : waitlist™ (t) = 0, LY (t) > L¥)})
teT2(T)
_ M+ 1D —1W)

which completes the proof. B

Lemma 7. For any arm k =1,..., M, there exist constants cflk)(e) = O(%), égk)(e) = O(1), such that

Z P(waitlist™ =1,k ¢ B(t),t > cé(lk)(e)) <loglogT + cék)(e).
teTo(T)

Proof. Note that waitlist™ (t) = 1 is equivalent to that the agent has sampled check™ () times in the
confirmation step of the Lgk)(t)—run without receiving a 1-reward. Note that if L (t) > 1% then Lgﬁzt(t) =

Lk (t) — 1 > 1™ implying that arm k is active for any time ¢ on the confirmation stage of an any c-run
satisfying ¢ > 1), Consequently

P(LF) () > I waitlist™® = 1) = (1 — pk))cheek™ ), )

where check™ (t) satisfies that

1
1— ~(k) t check ) (¢) < ]
(1-p"™ () < Togt

We consider the following two cases.

(1) If p > p*)(t), then it holds that

1
1— p check™ (t) 1— 50 check™ (t) _
(1-p") < (1=p" (1) < gt

(2) If p < pF)(¢), then

log t+loglog t

(1- p(k))check<k>(t) < (1 — p™)) Zresa=p® 1))

log t+loglog t

_logt+loglogt ) (t) — pF)\ Tresa—s® (1))
= (1 =55 () Zreea—sPF ey [ 1 p )P’ .
(1 —=p(t)) ~tosi-2 T — (%)

set a in Lemma [2|as v/t logt, we have
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implying that for any t, with probability 1 — t%,

log t+loglog t
e R log t+log log t

T los(1—p( (¢ _logttloglogt
(1 _ p)check(k)(t) < (1 + lngt/(l _ ﬁ(k)(t))> log( k) (1)) (1 —ﬁ(k) (t)) Thoe(—sM (1))

] log t+log log t
n T loe(1—p (P (¢
< (1B =) T frtog

log t log t+loglog t
Tt —log(1—p(k))
< (14 /tlogt.

logt
L—p) — /5

Note that /logt/t converges to 0 when ¢ goes to infinity and that (1 4+ )¢ — 1+ cz for any 0 < z < 1 and
¢ — 0o. Then for any ¢, there exists a constant cik)(e) =0(= le‘gg€), such that when t > cflk)(e), there holds

\ ET—G 1 flogt log ¢ + log log ¢
<1+ t >—1og(1—p ) o +e ogtlogt + loglog

1 .
1—p(k)— /lngt - +1—p(k) t —log(l_p(k))

Combining the above results together, when p < p¥)(t), for any € > 0, given ¢ > cflk)(e), with probability
1 — %, it holds that

- &,
(1,p)check(’“’(t) < 1 n 14+€ [logtlogt+loglogt 1
tlogt  1—p®*)V t —log(l—pk))tlogt

1 n 1+e logt + loglogt
~tlogt  —(1—p®)log(l —p®))  ty/tlogt

Along with equation we obtain that for any € > 0, given t > cflk)(e)7 with probability at least 1 — t%, it
holds that

(1- p)check(k)(t) < 1 I 1+e€ logt + loglogt
~ tlogt  —(1—p®)log(l —p®))  ty/tlogt

Then from equation 9] there holds

S PEPE) > 1), waitlist® = 1,¢ > [ (€)
teT2(T)

<ZT: i—i— 1 n 1+4+e€ logt + loglogt
T \t2 tlogt —(1—p®W)log(l —p®))  ty/tlogt )

Since letfloslost _ ;=3 /logt), it holds that Zle M = O(1). Then, there exists a constant

ty/tlogt \/tlogt
cék)(e) = O(1), such that

Z P(LF (1) > 1P waitlist® = 1,¢ > cgk)(e)) <loglogT + cék) (€).
teT2(T)

Then from equation [§], it holds that

Z P(waitlist™ = 1,k ¢ B(t),t > cik)(e)) <loglogT + cgk)(e)7
teT(T)

which completes the proof. B
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A.4.3 Sampling Times in Cool-Down Exploration

In this section, we study the expected number of samplings in the cool-down exploration for each arm k.

The following lemma provides the upper bound of the number of time instances in the cool-down exploration
of arm k for 1(¥)-run.
Lemma 8. Forany arm k=1,..., M and € > 0, it holds that

1+ ¢€)(logT + loglogT)
—log(1 —pt¥))

PLE() = 1®, ¢ € ¢ (1)) < | + e (e) +1™,

where cgk)(e) is defined in Lemma E
Proof. From the analysis in Lemma [4] the number of time instances in the quick jump step of arm k for
L&k) (t) = 1) is I(F), Then for any k = 1,..., M, it holds that

P(LE () =18t e (1)) < PLP (1) =18t e V(1)) +1V. (11)

Let & (t) denotes the event such that 1—p®*) (¢) > (1—p)%+6 ,a(t) = k. Expanding the first term of equation
we obtain that

P(LM(t) =18 ¢ € CSP(T))

=P <L$ﬁ><t> =1®,&(t),t € C <T>) +P (Li’”(t) =10, & ().t € éé’“(T))

<P(E() + PLP () =10t € (T [ -&1(8)). (12)

From the algorithm,

logt + loglogt
“log(T— (D))’

1+ €)(logt + loglogt) 5(k)
<P (k) ( T
< (check (t) < log(1 = p) ey (T)

*) (1+€)(logT +loglogT) 5(k)
< P(check (t) < “log(1 — p) el (T) ).

Note that for any adjacent 7,7 € (fgk)(T) with 71 < 7o, it holds that check™ (71)+1 = check™ (73), which
implies that

P(LE(t) =18t e CF(T) | &1 (1))
(

= P(check™(t) < le éék) (T) [ =&1(1))

T
SPLP() =10t € CF(T) | -&u(t)))

t=1
1+ €)(log T + loglogT') 5(k)
<SP cheek®(t) < ¢ tely (T
< 2op (o) < LR e
(I1+¢€)(logT + loglogT)
—log(1 —p*))
Applying the above inequality along with Lemma [5| to equation we obtain that
(14 ¢€)(logT +loglogT) (1)
+c3
—log(1 —p™®)

IN

P(LP ) =1® t e (1)) <

(€);

substituting which to equation we have
1+ €)(logT + loglogT)
—log(1 —p™)

PLO (@) = 101 e (1)) < ¢

u

+ cék)(e) +1%0)

which completes the proof. B
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A.4.4 Extension For Results in Section [A.3]

Since p(k)( ) is updated only when the agent makes distribution exploration, and the analysis of Theorem I
is influenced by the accuracy of p(*)(t). we extend the findings outlined in Section @ by employing the
same analytical approach utilized in the proof of Theorem

Corollary 1. Forany j=2,....M andi=1,...,5 — 1, for any € > 0, it holds that

N (1+¢€)logT (k)
E(N;;(T)) < K(p), pammGzmy 4 (e),

where c( )(e) is defined in Theorem E
Proof. Forany j=2,..., M andi=1,...,5 — 1,
E(N; ;(T)) = Z P(tecP (1) Z S Piec? @) (13)
te(Ul_ T )mT“ k=1 tGT“(T)ﬁT"(T)
Since {t < T :a(t) =3} D ij)(T) for any j =1,..., M, there holds
E(Ni;(T)) < Z Pat)=5)=> >  Plat)=))
te(Uy_, TONTS k=1teTA(T)NT(T)

Then using the exact same technique in the proof of Theorem |2, we obtain that

(1+e€)logT )
K(p(j)7p(min(i,|l'|))) ¢’ (),

E(N;;(T)) <

which completes the proof. B

Corollary 2. For anyi € Z, j € {i+1,...,M} and j > i, and € > 0, for the same constant defined in
Corollary[1, it holds that

E(M;;(T)) < B(Ni;(T)) + .
Proof. For any j =2,...,M and i =1,...,j — 1, it holds that

E(M;(T)= Y. P(tecd (1)

te(u;’c JTONTS

—Z >, Precy @)

k=1teTH(T)NT2(T)

<Z > Precy(n) +Zx(ﬂ)1 27 > 1), (14)
t=1

k=1teT(T)NT(T)

where x(j ) is be the number of steps of the successive cool-down exploration starting from ¢ for any ¢ > 0.
Specially, z (J) =0fort¢ Céj)(T).

Note that ;vgj ) > 1 only when ¢ is the starting time of a cool-down exploration on the quick jump stage.
Then from Lemma 4] it holds that

T
inj)l(xy) >1) < cé]).

10
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Substituting the above inequality to equation we obtain that

T))<i: S Precd 1)+

k=1teTa(T)NT2(T)

Recall the property introduced in Lemma |5} for any 7 € Cék) (T), f: 17— max{t < 7: a(t) = k} is an
injection, in this sense, since p/) () only changes when t € C%J) (t) for any j = 1,..., M, the above inequality
can be further modified as

) < Z S Prec? (1) +c).
k=1teTH(T)NT2(T)
Then substituting equation [13| to the above inequality, we obtain that
E(M;(T)) < B(N;,;(T)) + ¢,

which completes the proof. B

With all the above results in hand, we are able to prove Theorem

Proof of Theorem |Z For any k = 1,..., M and time ¢ such that a*(t) = k, a loss in reward is likely to incur
when the agent fails to select k because

1. k € B(t), but there exists an arm j > k such that 6\ (t) > (%) (¢)
2. k¢ B(t)
3. there exists an arm i < k, such that ¢ € B(¢) and the agent selects 4

4. k € B(t), k = argmax;c gy 6 (t), but the agent enters the urgent cool-down exploration phase for
some arm j > k

We use Ry(T), R2(T), R3(T'), Ra(T) to denote the total regret incurred in the above four cases respectively
and divide the following analysis into three parts.

Part 1. For each arm j = 2,...,M and i = 1,...,j — 1 in case 1 such that a*(t) = 7 and a(t) = j, it is
easy to see that agent ¢ is active. Then if the agent selects arm j for distribution exploration, the one-time
instant regret is p¥ — p), and if the agent selects arm j for cool-down exploration, the one-time instant
regret is at most p(¥). Then it holds that

M j—1 M j—1
Ro(T) < D D BN (1) (p' = pD) + > " B(M; 4(T))p"
j=2i=1 Jj=2 =1
M j—1 M j—1
=> S EWi ()" = p") + Y N B ;(T))p®.
j=21i=1 j=21i=1

Then substituting Corollary [I] to the above inequality, we obtain that

M j—1 (1+€)(p()_p(z+1 IOgT M j— 1~() M j—1 _ @
Ry(T) <) > ¢ o0 D +) > @@+ )Y B0 (1)
j=21i=1 j=21i=1 j=21i=1

Part 2. In case 2, for each arm k, and a*(t) = k, the one-time regret is at most p(¥), then

M
R(T) <Y p™ 3 Pk ¢B(1)
k=1 teT2(T)

M
- Z ( > P(waitlist™ (t) =0,k ¢ Bt))+ Y P(waitlist™ =1,k ¢ B(t))).

teT2(T) teT2(T)

11
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From Lemmas [6] and [7} we obtain that

M
< Zp(k) (cé(lk)(e) + Z P(waitlist™ = 1,k ¢ B(t),t > cfﬁ(e)))
k=1 teT2(T)

M _ (k)
(M +1)(D = I'7)
+2.p pe)

k=1
M

< Mloglog T+ > (M + 1)((D — 1) +p® (' (e) + & (e))).
k=1

Part 3. Forany j =2,..., M andi=1,...,j — 1, let n3(7,) be the number of selects on arm 7 when j is
the actual optimal active arm, as described in case 3, and n3(i) = Z;;ll n3(7, 7). In such a situation, since j

is active, the one time instant regret is at most p{¥). In this sense, it holds that

M j—1

T) <> E(ng(i,f))pV

j=2i=1
M j—1

<D Enai,j)p"

j—2 i=1

_ZE (ns(4))p™.

Part 4. Forany j =2,...,M and i =1,...,j — 1, let ny(i,j) denote the number of selects on arm j when
arm 7 is the optimal arm in case 4. Then

M j—1

Ry(T) <) E(nali,))p®.

j=2i=1

Note that according to the urgent decision-making requirement, case 4 only happens when the latest cool-
down exploration on arm j before time ¢ is earlier than the that on arm ¢. Then it holds for any j = 2,..., M
and ¢ =1,...,7 — 1 that

na(i, j) < m@ (). (15)

Adding all the “partial” regret together, we obtain that

M
R(T) < Mloglog T+ > (M +1)((D — 1) + p®™(c{" () + ¢ (e)))
k=1
M j—1 M M j—1
(1+€)(p® — plit)log T (0) - @
T2 2 TR (0, pmGi) +2201 )+ D B (T)p
j=21i=1 Jj=21i=1 j=21i=1
M ‘ M j—1 ‘
+> Ens()pY + > B(nali,j)p™. (16)
= j=2i=1
Note that for any j = 2,..., M, it holds that
j—1
mU(T) =" M; j(T) + ns(j +Zn4 i, J)- (17)

=1

12
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Then

=Y (M 5(T) +na(i, 5)) (0 = p

i=1

(j)) + m(j)(T)p(j).

Substituting equation [15] to the above inequality, we obtain that

IN

]
5

IN

S
Il
— =

TN
Il
— _ =

~.

Ju

M@j(T) () + Tl3

1.5 (T)(p

§l

J(T)

Furthermore, equation [17] also indicates that

Then together it holds for all j = 2,...,

Summing the above inequality up for j =2,...,

M j—1

DD BT

j=2 i=1

—pD) + Z ml
(pW — pl)y + Zm(i)(T) (4)
i=1

+Zn41]

@ — py 4 ) (T)pl)

Jj—1 j—1
> M (T)p? +na(§)pD + > nali, 5)p?
= i=1

j—1
<> M ;(T)p
=1

<m (T)p(i).

@ 4 n3(7)

M that

M, we obtain that

j—1
i=1

7)p?

M j—1
()+ZEn3 p(])+ZZEn413
j=21i=1
M j—1 M g
w%ZZEWMﬂmWw%+Zzﬁmanﬁ
j=2 i=1 Jj=21=1
M j—1 M j
p® ZZE )_p(i+1))+ZZE(m(i)(T))p(i)
j=21i=1 j=21i=1
M j—1 M J
() ZZE )_p(i+1))+
j=21i=1 Jj=2i=

13

|

M j—1

Em®(T)p™ + Y3 )

j=2i=1
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where the last step is from Corollary From Lemma [§] and the analysis of Lemma [6] it holds for all
j=1,..., M that

(14 €)(logT +loglogT)

E(m(j)(T)) + (3)( ) +1 (4) + —19
log(l —p(j)) p(]) ’
Then
Moj-1 M M j—1
SO B (T)pY + Y Ens()pY) + )Y E(na(i, 5)p"
7j=21i=1 j=2 j=21i=1
M j-1 o) ; 1o p( 9
. N +1
< min { Z Z E(N,;(T))(p" Y 4 Z Z og(1— p) (logT +loglog T),
j=21i=1 j=21i=1
M : M ] .
(1 +e)p®? o D19
;W(logT+loglogT +jz:; c3 )¢ o) +c3
M g1 i+1) M j
. (1 +¢€)(pt?) — plith) logT (I+¢p
< min { jz:; 2 R (p)_plmm (T + Jz: Zz: “log(1 ) (log T + loglogT),
M : M
(14 ¢)p® o D—19
gw(bgTﬂoglogT +§; cs )+ o)

Substituting the above inequality to equation we obtain that

M j—1 M ] .
. 2(p"") — p ) log T (14 ¢)p®
R(T) < mm{(l—i—e)z K (), plmmGa ) +ZZ—_ — log T,

j=2i=1 2i=1
1 j—=1 . @ i+1) M @
(p) — plitD)log T (I+¢ep
(1+e€) +y —————logT
2 2 K (pW), plmn ) ]Z “log(1 — p)
+ Cy(e)loglog T + Csy(e),

where

o - M . M J 1+6p( M (I+e)p _ o
1(6)— + min ZZ logl—p(’) ’Z 1_p(])) ()7

Jj=21i=1 j=2

and C(e) is the sum of all the constant terms. It can be obtained from Lemmas [4ff8] that Cy(e) = O(= 1;;“).

Note that —5 gy < 1 forany x € [0,1], then R(T) can be further bounded as
M -1 . 4
. Q(p(l) _ p(1+1))
R(T)§(1+e)m1n{ ( ( T R SN
jz:; ] K(p(])7p(m1n(z,|1\)))
M i1 (i) _ pli+D)) Mo
Z K ((ZZﬂ (min(G, m)) + Z +16_ ) } e T
=2 i=1 PP = P
+ Ci(e) loglog T + Cafe),
which completes the proof. .

B Supplementary Pseudocode
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Algorithm 3: Distribution Exploration

Input: time ¢, a(®), ), CDfEacplore(k), L,(‘l:gt forall k=1,..., M, selected arm a()

1 CDfExplore(k) = CDfExplore(k) —1lfork=1,....M

w N

N o s

© 0 g O A W N -

e
= o

[y
(M)

=
w

14

15

16
17

18

19
20
21
22
23
24
25

26

27

28
29

if Xa(t) =1 then
ala(®) — gla®) 4 1

CDfExplore(“(t)) = LEZS)) // reset cool-down state after obtaining a 1-reward
else
‘ gla®) = gla®) 4 1
end

Algorithm 4: Cool-Down Exploration

Input: time ¢, arm a(t), CD_ Ezplore™, L, Lilzgt, ﬂigt, check™ for all k=1,..., M
t=t—-1

upper = L;a(t)) - LEZS(?) + CD_EIplO’r‘e (a(®)) // largest remaining time before the arm is removed from B
rl=0 // defaulted as "receive no l-reward in the cool-down exploration"
for i =1 : upper do
t=t+1
if t > T then
‘ break
end
CD_E:Eplore(k) = C’D_Explore(k) —1forallk=1,....M
if Xa(t) =1 then
rl=1 // already receive l-reward in the cool-down exploration
LSF“)) = LL‘”(”) —upper +¢ — 1 // update of the estimate
check(a(t)) =0 // reset count
if Li") = L") then )
L3S = max(0, min(L{ — 1, L))
7 (a(t
L) =0
else
a(t . Lga(tt))+f4§a(it)) a(t
LEO) g <[ SOTLED e 1)
end
CDfExplore(“(t)) = LEZ‘S)) // reset cool-down state
break
end
end
if r1 =0 // fail to receive 1 reward in the current cool-down exploration
then
7 (a(t a(t
7 = 1)
(a(t)) (a(t)),u er4-i— . a a
ngs)) = max (L‘“" thy 5 ppert 1],mln(Lg ®) _ 1,L£e‘£?) + 1))
check @) = check(@®) +1 // update count
end

15



Published in Transactions on Machine Learning Research (10/2025)

Algorithm 5: Random Sample

Input: time ¢, «®), 3*) CD_ Explore™, LLk), ngt, ii’jﬁw waitlist™® for all k=1,..., M
/* If belief arm set is empty, the agent picks a random arm */

1if {k e {1,..., M} waitlist™ =0} # () then

2 ‘ the agent randomly picks an arm a(t) from {k € {1,..., M}| waitlist™ = 0}

3 else

4 ‘ the agent randomly picks an arm a(t) from {1,..., M}

5 end

6 CDfExplore(k) = CDfEmplore(k) —lforallk=1,...,.M

7 if Xa(t) =1 then

8 Lq(f(t)) = ngg)) — CD_ Ezplore®®)

o | LD = max( 55 min( L), L0~ 1))

10 CD_Explore@®) = ()

11 end
Algorithm 6: Post-Update
Input: time ¢, o) g4 CD_E:rplore(k), Lq(f), ngt, f)gfs)t, waitlist® for all k = 1,....M
/* Update of waitlist */

1 fork=1,...,M do

- NO)

2 ) = PN

s | if LY =0

4 then

5 Lﬁfgt = CD_Ezplore™ =0

6 check™ = oo

7 waitlist™ =1

8 end

9 if waitlist™ =1 and check™ +# 0o and (1 fﬁ(k))CheCkm >

insufficient

10 then

11 waitlist™ = 0

12 L =¥ -1

13 CDfEa:plore(k) = CDfExplore(k) -1

14 end

. e o (k (1) check ()

15 if waitlist™ = 0 and (1 — pik))check™ < tl;gt
16 then

17 waitlist™ =1

18 CD_Explore™ = CD_ Explore™® + L - L,Egt
19 Ly, = LY
20 end
21 end

/* Update of CD_Ezplore
22 for k=1,...,M do

if CDfEmplore(k) + L&k) — L(k) <0

23 test —
24 then

25 C’DfEa:plore(k) =00

26 end

27 end

1
tlogt

// when cool-down duration is O

// terminate cool-down exploration

// when cool-down exploration turns

// restart cool-down exploration

// when cool-down exploration is sufficient

// pause cool-down exploration

*/

// when k is bound to be active

// reset cool-down state

16
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