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A EXPERIMENTAL SETTINGS
A.1 Datasets
Benchmark datasets. To demonstrate the comprehensive adapt-
ability of our framework to visual recognition domains in a black-
box setting, we conducted experiments on 14 benchmark datasets
following the protocol of [13, 19, 20]. Benchmark datasets cov-
ered a spectrum of tasks, including generic objects recognition on
ImageNet [5] and Caltech101 [6], fine-grained categories classifica-
tion on OxfordPets [14], StanfordCars [10], Flowers102 [12], and
Food101[2], scene recognition on SUN397 [18], satellite imagery
recognition on EuroSAT [7] and RESISC45 [3], object counting on
CLEVR [9], and specific classification tasks such as texture, digit,
and action using DTD [4], SVHN [11], and UCF101[16].

Synthetic datasets. To evaluate the robustness of our frame-
work against distribution shift and adversarial noise, we measured
the performance on Biased MNIST and Loc-MNIST, which are also
introduced in Oh et al. [13]. Biased MNIST, derived from handwrit-
ten digit images in MNIST by altering background and font colors,
is designed to assess model stability under distribution shift. The
authors changed the background color of digit images, aiming for
a high correlation 𝜌 between label and background in the training
dataset, while deliberately reducing the correlation (1 − 𝜌) in the
validation dataset.

Loc-MNIST is a dataset comprising images where two digits are
drawn on the edge and center of a completely black background
for the task of classifying the edge digit while ignoring the center
digit. Testing on this dataset is associated with the capability to
withstand adversarial noise and ability to recognize digits regardless
of location.

A.2 Baseline Methods
Zero-shot classification (ZS). CLIP [15] is the most renowned
pre-trained vision recognition model, demonstrating remarkable
performance across a range of tasks, from image classification to
visual reasoning, through its versatile design. By unifying image
and text feature space, CLIP breaks the limitations of closed-set
problem definition in conventional supervised learning, enabling
classification for undefined visual concept, known as zero-shot
classification (ZS).

Black-box adversarial reprogramming (BAR). BAR [17] in-
troduces adversarial program to repurpose publicly undisclosed pre-
trained models for various vision tasks, including medical imaging.
Assessed across three clinical imaging tasks, BAR demonstrated
performance comparable to the white-box adversarial program-
ming, surpassing both the state-of-the-art methods of each dataset
and the commonly employed fine-tuning approach.

Visual prompting (VP). VP [1] serves as a transfer learning
approach by adding a learnable visual prompt in the form of padding

to images, introducing the concept of text prompts into vision tasks
to enhance adaptation performance. Through diverse experiments
on pre-trained models and datasets, the authors demonstrated that
visual prompts can yield results competitive with linear probes.

BlackVIP. BlackVIP [13] proposes a novel input-dependent vi-
sual prompt design within black-box settings. Specifically, they
leverage a frozen image encoder to extract image features, then em-
ploy a decoder to generate a visual prompt matching the image size;
later, this is added to images at the pixel level. In addition, SPSA-GC
is also proposed as an enhanced zeroth-order optimization method
to mitigate unstable optimization.

A.3 Implementation Details
Decoder architecture. As illustrated in Fig. 1(a) in the main pa-
per, our approach generates visual prompts without the inclusion
of an additional pre-trained proficient encoder. The decoder com-
prises a total of 5 convolutional blocks, first taking the learnable
trigger vector 𝜙𝑣1 as input, then taking another learnable trigger
vector 𝜙𝑣2 as additional input in the middle of the decoder op-
eration, and finally outputs both the spatial-domain VP V𝑠 and
the frequency-domain VP V𝑓 . In detail, spatial V𝑠 is generated as
𝜙𝑣1 passes through four convolutional blocks within the decoder,
while V𝑓 is generated by concatenating the features from the third
convolutional block with 𝜙𝑣2 and passing through one remaining
convolutional block. V𝑠 has the same size as the resized image and
V𝑓 has the same size as the original image. In Algorithm 1, we
describe the pseudo-code detailing the application process of the
spatial-domain VP V𝑠 and frequency-domain VP V𝑓 .

Algorithm 1 PyTorch-style Pseudo Code for Prompting Image
# image: an input image with shape of 224 x 224 x 3
# Decoder: spatial-frequency hybrid prompter
# t_1, t_2: trigger vectors to generate spatial and frequency VP
# dct, idct: DCT and inverse-DCT operation respectively
# scale_factor: learnable scale parameter in frquency domain
# ZeroPad: function that appends zero padding with a specific margin
# Mask: function that applies a center-oriented square mask with a specific length

# Generate VPs with decoder then apply additional operations
# to prepare to combine with the input image.
spatial_vp, frequency_vp = Decoder(t_1, t_2)
frequency_vp = ZeroPad(dct(frequency_vp), margin=(0, p, 0, p))
spatial_vp = Mask(spatial_vp, length=h)

# Resize and apply DCT to image
freq_domain_image = dct(resize(image))

# Add frequency VP to trasformed image
freq_combined = freq_domain_image + sigmoid(scale_factor) * frequency_vp
spatial_domain_image = idct(freq_combined)

# Combine the IDCT image with spatial visual prompt
final_prompted_image = spatial_domain_image + spatial_vp

Intra-class Relation Loss. Previous work [8] propose the intra-
class relation loss in context of knowledge distillation with aim of
preserving the relational dynamics within each class. To this end,
the authors formulate the loss function to maximize the column-
wise correlation between a source prediction matrixY𝑠 and a target
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one as following:

L𝐾𝐷intra =
1
𝐶

𝐶∑︁
𝑗=1

𝑑𝑝 (𝑌 (𝑠 )
:, 𝑗 , 𝑌

(𝑡 )
:, 𝑗 ), (1)

where 𝐶 and 𝑑𝑝 is a number of class and Pearson’s distance respec-
tively. In our scenario, we adapt this formulation to enhance the
alignment between original prediction probabilities and refined
prediction probabilities matrices: 𝑇 (𝑠 ) = {𝑃𝜃 (𝑉𝜙 (X𝑖 ))}𝐵𝑖=1,𝑇

(𝑟 ) =
{𝑃a (𝑉𝜙 (X𝑖 ))}𝐵𝑖=1 ∈ R𝐵×𝐾 in batch size 𝐵. This can be written as:

Lintra =
1
𝐾

𝐾∑︁
𝑗=1

𝑑𝑝 (𝑇 (𝑠 )
:, 𝑗 ,𝑇

(𝑟 )
:, 𝑗 ) . (2)

The relation loss contributes to maintain the relative order or pref-
erences among instances within the same class, thereby enhancing
performance.

A.4 Additional Experiments
Ablation study for pre-trained model backbones. To explore
the adaptability of our approach, we adjusted the underlying ar-
chitecture of the pre-trained target model. Unlike the BAR and VP
methods, which do not enhance the zero-shot visual recognition
capabilities of CNN-based backbones such as ResNet-50 (RN50) and
ResNet-101 (RN101), our technique consistently achieves signifi-
cant performance improvements across various architectures. Ad-
ditionally, it is important to note that in BlackVIP, which employs
a randomly chosen self-supervised trained encoder in its visual
prompter, selecting a suitable encoder architecture that aligns with
the backbone architectures of the target pre-trained models is criti-
cal, yet challenging in a black-box setting. This suggests that our
method may serve as an architecture-independent solution aimed
at generally adapting pre-trained visual recognition models.

Methods RN50 RN101 ViT- ViT-
B/32 B/16

ZS 37.5 32.6 45.2 40.8
BAR 26.9 33.5 70.3 77.2
VP 34.7 31.2 71.1 70.9
BlackVIP (RN50) 51.3 50.8 62.9 68.5
BlackVIP (VIT-B/16) 48.1 51.3 67.9 73.1
Ours 54.5 56.1 75.7 80.3

Table 1: Ablation study for backbone architecture of pre-
trained models. Classification accuracy on EuroSAT across
different backbones of pre-trained CLIP.

REFERENCES
[1] Hyojin Bahng, Ali Jahanian, Swami Sankaranarayanan, and Phillip Isola. 2022.

Exploring visual prompts for adapting large-scale models. arXiv preprint
arXiv:2203.17274 (2022).

[2] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. 2014. Food-101–mining
discriminative components with random forests. In Computer Vision–ECCV 2014:
13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part VI 13. Springer, 446–461.

[3] Gong Cheng, Junwei Han, and Xiaoqiang Lu. 2017. Remote sensing image scene
classification: Benchmark and state of the art. Proc. IEEE 105, 10 (2017), 1865–
1883.

[4] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and An-
drea Vedaldi. 2014. Describing textures in the wild. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 3606–3613.

[5] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255.

[6] Li Fei-Fei, Rob Fergus, and Pietro Perona. 2004. Learning generative visual models
from few training examples: An incremental bayesian approach tested on 101
object categories. In 2004 conference on computer vision and pattern recognition
workshop. IEEE, 178–178.

[7] Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. 2019.
Eurosat: A novel dataset and deep learning benchmark for land use and land
cover classification. IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing 12, 7 (2019), 2217–2226.

[8] Tao Huang, Shan You, Fei Wang, Chen Qian, and Chang Xu. 2022. Knowledge
distillation from a stronger teacher. Advances in Neural Information Processing
Systems 35 (2022), 33716–33727.

[9] Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C
Lawrence Zitnick, and Ross Girshick. 2017. Clevr: A diagnostic dataset for
compositional language and elementary visual reasoning. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 2901–2910.

[10] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 2013. 3d object repre-
sentations for fine-grained categorization. In Proceedings of the IEEE international
conference on computer vision workshops. 554–561.

[11] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and An-
drew Y Ng. 2011. Reading digits in natural images with unsupervised feature
learning. (2011).

[12] Maria-Elena Nilsback and Andrew Zisserman. 2008. Automated flower classifica-
tion over a large number of classes. In 2008 Sixth Indian conference on computer
vision, graphics & image processing. IEEE, 722–729.

[13] Changdae Oh, Hyeji Hwang, Hee-young Lee, YongTaek Lim, Geunyoung Jung,
Jiyoung Jung, Hosik Choi, and Kyungwoo Song. 2023. BlackVIP: Black-Box
Visual Prompting for Robust Transfer Learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 24224–24235.

[14] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. 2012.
Cats and dogs. In 2012 IEEE conference on computer vision and pattern recognition.
IEEE, 3498–3505.

[15] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from natural language supervision.
In International conference on machine learning. PMLR, 8748–8763.

[16] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. 2012. UCF101: A
dataset of 101 human actions classes from videos in the wild. arXiv preprint
arXiv:1212.0402 (2012).

[17] Yun-Yun Tsai, Pin-Yu Chen, and Tsung-Yi Ho. 2020. Transfer learning without
knowing: Reprogramming black-box machine learning models with scarce data
and limited resources. In International Conference on Machine Learning. PMLR,
9614–9624.

[18] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba.
2010. Sun database: Large-scale scene recognition from abbey to zoo. In 2010
IEEE computer society conference on computer vision and pattern recognition. IEEE,
3485–3492.

[19] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. 2022. Conditional
prompt learning for vision-language models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 16816–16825.

[20] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. 2022. Learning
to prompt for vision-language models. International Journal of Computer Vision
130, 9 (2022), 2337–2348.


	A Experimental Settings
	A.1 Datasets
	A.2 Baseline Methods
	A.3 Implementation Details
	A.4 Additional Experiments

	References

