Supplementary Material
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1 A Tsallis-perspective: Proofs

4

[

> To prove Lemma 1 we need the following technical result that gives an expression for the Hessian of

433 the Tsallis-perspective H in terms of the (scalar) derivatives of A.

w

s« Lemma 6. The Hessian of H (Eq. (1)) at any point x € R can be expressed as:

1, 3& Xi
V2H(x) = — ~|Ix||; 2 h(—’)zzT
Al L r(,
- d .
Il 2 Z 2h"(” ” aiz]
1

i=
d

+%||x||1’ Z ' (” " )(zz +27") .

a5 where 7 = 14 is the all-ones vector, and z; = 14 — (||x||; /x;)e; for alli € [d].

a6 Proof. Let us first compute the first and second derivatives of f(x) = +/||x||; and g;(x) = h(x;/||x|l;)
437 forafixedi € [d]:

1

1 =
Vf(x) = §||x||1 7
2 Loy 1
Viflx) = —ZIIXIII 222"
Xi 1 Xi
Vgi(x) = h’( )( e — Z)
llxlly 7 Ml llxl1?
= _%h,( i )Zi,
llxllf Mixll
Xi 1 X; 1 xXi \T
Vzg-(x)zh"( : )( e — — Z)( e — — Z)
l el 2V llelly ™ e Ml g ?
X; 1 1 2x;
h’( : )(— Sze] — ——e;7 + ’3zzT)
el 7 el llxI13 llxIIy

2
X Xi Xi

= ’4h”( L )ziz[T+—’3h’( )(zz +2i2).
lll7 Ml llll7 - Ml

sss  Using the formula for the Hessian of a product, we now obtain:

V2 (f(x)gi(x))
= (V2 £ (x))&i(x) + V(1) V&i ()T + Vg () V(1) + f(x) (VPgi(x))

——||x||12h(|| e = Sl () T + )

2 ;
+||x||12 h”(H M )zzz +I|x||1 xih (” T )(zz +2;27")
xi 5
) _
HE [ RN e (R Sl 2t () e + ).
llx]l llxlly llx]l
439 Summing this overi = 1, ..., d, we obtain the expression for the Hessian VZH (x). [ |
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Proof of Lemma 1. Fix x € R% and let y; = x;/||x||, for all i. By Lemma 6 the Hessian of H can be
written as

1 -3 % ’”
VH() = 7l 2 ) (~h(uz" + 4y (0)zie] + 23l () 2] +:2")),

i=1
where z = 14 is the all-ones vector, and z; = 14 — (||x||,/x;)e; for all i € [d]. Then, using the
condition on & and since ¥ &, y;z; = 0 we have

SN VI PO DT & ol (LA C0 Rt 7 WS T
VEH) = G gl P ) | ST eyt Oz + 200 () ] + 2
i=1 2 i

d 2
Ay -3 1. -3 (W (yi) = cn)
= Sl 20+ ) Z] gy I 00zl #2000 00 = en) (e + i)

!

/1 1 h'(y; h(y;) -
AN PR Z(L +2yn/%h~<yi>zi)(Mz+2yn/%h~<yi>zi)
=1\ 10 () \/%h”(yi)

+ 22 Zﬁh’%y,-)zizl

and the result follows since each term in the first summation is psd. ]

B Proof of Main Result

In this section we provide the proof of Theorem 1. In Appendix B.1 we prove useful lemmas which
provide us with stability properties of the FTRL iterates. In Appendix B.2 and Appendix B.3 we
bound the stability and penalty terms (RHS of Eq. (6) and Eq. (5)) towards proving Theorem 2 in
Appendix B.4. We then prove Theorem 1 in Appendix B.5.

B.1 Stability of Iterates

We first establish a technical stability property of the FTRL updates that is crucial for bounding
the stability term (Eq. (6)). This property asserts that for every time step ¢, the clique marginal
probabilities induced by p; are close, up to a constant multiplicative factor, to the clique marginals

induced by p;, where pf £ arg minpesjyv {Z, -p+R;(p)}. The proof uses properties of the log-
barrier component @, and relies on an adaptation of an argument of Jin and Luo [13].
Lemma 7. For all time steps t and cliques Vi it holds that p}(Vi) < %p;(Vk), where pf =

argminpesyV {Z, -p +R,(p)}.

Proof. We define:
Fi(p) =Li1 - p+Ri(p),
FH(p)=Li-p+Ri(p),
so that p, = argminpeS]rV {F;(p)} and p; = argminpesyv {F,*(p)}. Note that V2®(p) is a block

diagonal matrix, with the block corresponding to the clique V. being exactly Jv, where Jy, is

(V P(Vi)?
the |Vi| X |Vi| all-ones matrix. A straightforward calculation then shows that for all p, p’, p”’ € Sy
it holds that:

K ’ ”
||pl //” =9 (p (Vk) - P (Vk))2
2
vie(p) = p(Vi)?

It suffices to prove that ||p} — < 16. This is because by the calculation we just made, we

pt”Vz'ID(p )
have (pf(Vk) — p;(Vk))2 < (gp,(Vk)) which is want we want to prove. It then suffices to show

that for any p’ € S’,’\, with ||p’ - = 16 we have F; (p’) > F;}(p;). This is because as

2
p[”VZ(I)(p,)
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an implication of that, p, which minimizes the convex function F;", must be within the convex set
{p llp — p,||v2®(p ) S 16} We proceed to lower bound F; (p’) as follows:

1
Fr(p) = F (po) + VE ()T (p" = p) + 510" = PellRag,
1
= F(p) + VE(p) (0" = p) + (0" = ) + 510" = Pillfeg, )
> Ff(p) + 0] (p' = pi) + —||P = Pill3g )

where the first equality is a Taylor expansion of F;" around p,, with ¢ being a point between p” and p;,
and the last inequality is due to first-order optimality conditions and the fact that V2R, (&) > V2®(¢)

since ¥ is convex. Note that since ||p’ — p; ||2V2 o(p) = 16, by the same argument as in the beginning

of the proof we conclude that p’(Vy) < % p: (V). Since ¢ lies between p, and p’ we conclude the
same ratio bound for £. We can thus bound the last term as follows:

K

1” E _ 9N (Vi) = pe(Vi))?

) P — Pt V2d(&) 2 — (f(Vk))z
9 Z (P’ (Vi) = pi(Vi))*
( pe(Vi)?

_ 2
2 49||p pt”Vle(pt)

72
=—2>1
49

It now suffices to show that Z,r(p' — pr) = —1; indeed,
lri
G -po) = Z — (Pl —Pi) 2 o Z Cipei 2 =1,
L, (VL) p;(V( 1), 4
and the proof is complete. |
The following lemma showcases another stability property that relates p, to p}. A corollary of this

lemma is that the pseudo-regret of the iterates p, can only be larger than the pseudo-regret of the
iterates py, and it is used in the proof of Theorem 1 in Appendix B.5.

Lemma 8. For all time steps t it holds that

p‘t‘-.ltgpt‘[t’

where pT £ arg minpegﬁv {Zt Pt Rz(P)}~

Proof. Since p} is a minimizer of L -p+ R;(p) and p; is a minimizer of L p+R:(p), we have:
L - pi +Ri(pf) < L - pr+Ri(pr)
=4, p; +Zt—1 Pt + R (pr)
<l pi+ Loy pf+R(p}).

and the claim follows by rearranging terms. |
B.2 Proof of Lemma 5 (Stability)

We now restate Lemma 5 which bounds the stability term to include extra constants which appear in
the bound.
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45 Lemma 5 (restated). The following holds for all time steps t:
E[(18, — £, 107)?] =56 Y \JE[pe(Vi)] + 8E[p} (Vi \i%)].
k#k*

s Here ||g|l; = Vg"(V2¥(p;)) g is the dual local norm induced by ¥ at p, for some intermediate
a7 point py € |ps, p7], where pT = argminpesyv{L, -p+R/(p)}

w8 Proof. By Lemma 2, V>W(p,) is lower bounded by a diagonal matrix D, in which the i’th diagonal
—1 B

4g9 entry corresponding to i € Vi is /(2 p:(Vi) ﬁ,,i) . Equivalently it holds that (Vz‘P(ﬁ,)) f< D,‘l.

a9 Using this fact and the fact that ¢, ; = 0 for i ¢ V(I;) we have

E (17 - ¢1;)’] = E[(Z ) (VW) (- ét,i*l)]

K
<2E [Z\/ﬁt(Vk) Zﬁt,i(zt,i - fz,i*)2l
k=1

ieVy

=26V (V) ) prillii— ) @)

ieV (I,)
+2B Y NV ) praltm)?], )
V£V (1) i€V

491 where in the final equality we split the sum over cliques into a term for V(1;) and a sum over the rest
a2 of the cliques. We first show that the RHS of Eq. (7) is bounded as follows:

E(NGVUD) Y puillui= )| <16 ) NEIp(ViOT +4E[p} (Ves \ 1%)].

iev(Iy) k#k*

03 Indeed, due to Lemma 7 and the fact that j, lies between p, and p; it holds that p, (Vi) < 3p, (Vi)
94 for all k. Plugging in the expression for the loss estimator £, we obtain

~ Cri 2
E\VAVID) ) prillii— )| =ENB(VE) ) ﬁt,i( ’ m)

ieV (I) iev ) p:(V(I1))

_3 - 2
<2E (ps(V(I;)) 2 } pt,i(ét,i —p: (V1)) )
ieV (1)

=2E

us 1
Zpr(Vk)V Zﬁt,i((t,i - Pt(Vk)[t,i*)zl s
k=1

ieVy

a5 where in the last equality we use the law of total expectation and the fact that conditioned on the
496 history up until time step ¢ (including the decision vector p;), the probability that I, belongs to the
a97  clique Vy is exactly p;(V). In more detail:

3
E\pe (VU2 ) il = (VUi ie)?
ieV(l,)

3 i
=E|E|p(VUNT2 ) prillii=pi(VUNLe)?
ieV (I,

9 3
=E|) Prll Vi [ ml-E|pi(Vi) 2 ) pri(Coi = pi(Vi) o)

k=1 i€V
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K

) PV -E

k=1

=E

p(Vi)~ 2 szz Cri = pe(Vi)lriv) H

ieVy

K
Zl’t(vk) 2 Zptl Cri = pr(Vi)ly ix ) H

k=1 ieVy

ZP:(Vk) 2 Zptt Cri— pr(Vi) by ix) l,

i€V

E|E

a8 where h, denotes the hlstory up to and including the choice of p; at time step 7 (not including the
s99  choice of I;), and in the fourth equality we use linearity of expectation and the fact that p,(Vy) is
so0 constant when conditioned on h,. We proceed to bound the above term, while splitting the sum over
so1  cliques into a term for Vi« and a sum for all of the other cliques:

Zpt(vk) > Zp“ Cri = pr(Vi)lyiv) l

ieVy

1
sz(Vk) 2pz(Vk) +E | pe(Vier) 2( Z Pri + Prir(1 = pi (Vi)
k#k* P€Vx ,i#i*
1
<3E vavk +2F | 5o (Vi) 2 i (Viee \ %) |+ 3E [(1 = pe(Vien))?]
k¢k*

< 6E Z \/p,(Vk +2F [\/ﬁz(vk* \i*)]

k#k*
< 8E Z«/pt(vk +2F \/p,*(vk*\i*)}
L k#k*

<8y \/[E[p,wk)] +24E[p} (Vi \i®) ],

k#k*
so2  where in the last inequality we used Jensen’s inequality. We now proceed to bound the RHS of
sos  Eq. (8):

Bl Y Va0 ) pib)?| <E| ) pvi?

Vie#V (1) i€V Vie#V (1)
3
SOE| ) pi(vi)? )
ViV (Ir)
K 3
=6E | ) (1= pi(Vi))pi(Vi)? (10)
k=1
<12E ) Vpi(Va)
k+k*
<12 ) Ep Vol
k#k*

s+ where in Eq. (9) we use Lemma 7 and the fact that j; lies between p; and p;, in Eq. (10) we use the
sos  fact that the probability of the clique Vi not to be chosen at time step ¢ is 1 — p; (Vi) and the last line
so6  uses Jensen’s inequality. Combining the two bounds, we conclude the proof. ]

so7 B.3 Proof of Lemma 4 (Penalty)

sos  In this section we restate Lemma 4 which bounds the penalty term to include the extra constants and
so9  poly-log factors.
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5

o Lemma 4 (restated). The penalty term described in the RHS of Eq. (5) is bounded by

T x
9K10g +5l0g ZZ /Pt(Vk %Z M, (11)
t=1

t=1 k#k*

Y
1-(N -1y

5

1 where p}’ = { * for alli € [N] and - . £0.

5

2 Proof. Noting that ®(-) > 0 we can bound the first term as follows:
1
O(p’) - ®(p1) < P(p’) <9Klog )—/

5

s Continuing with the second part of the penalty term, note that by definition of p¥ we have p¥ (Vix) >
4 p;(Vpr) forall £. Also note that ¥ (p?) < —2(10g2 % + 1) pY (Vix). We then have

5

i(i— 1 )(\If(pY)—\P(pz))si(xfr F)( (log —+1)ZW
t=1

Ne Mi-1 p
K

1 V 1
+) s ) pae P gt~ 4 l)vpV(vm)
= th(Vk) ieVy Pt Y

S2(10g —+1)Z ZW

1 k¢k*
+log — Z Z VP (Vi)
Y t=1 kqtk*
3 pe(Vicr)
Py e Y e )
= t- pl(Vk*) i€V pt,l
< 5log’ - X Y P
=1 kik*
- (Vir)
+ Z Y prilog B (12)
t= t- pt(Vk*) i€Vix Pri
sts  where the second inequality follows from the fact that \/i; - F % and that p, ; > y for all # and
ste 1. It is left to bound the final term. Using the inequality logx < x — 1 for all x > 0 we have

Viex Vix Viw
Z pulogp’( k) _ Z p,,ilogp’( ) +pz,i*10gp’( o)

i 'R
iV Pt PeVi* Pt Pt.i

1 Viex
< log — Z Pt,i"‘Pt,i*(pt( &) _1)

. . t,i*
i€Vpx\i*

= (log$ + 1)p,(vk* \i%)

1
< 2log o (Vier \ i%).

stz Plugging this bound into Eq. (12) while using the fact that pe(Vis\i*) < AP (V= \ i*) completes
VP (Vix)
sts  the proof. |
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B.4 Proof of Theorem 2

In order to prove Theorem 2 we make use of the following simple claim which asserts that the pseudo-
regret is bounded up to an additive constant factor by the regret with respect to some probability
vector in S’]:,.

Lemma9. Forally € [0, ﬁ] and i* € [N] the following holds:

T - T N T . T R
sz'gz—ei*'zftl <E ZP:'&‘PY‘Z& +yTN,
t=1 t=1 t=1 t=1

¥ N
1-(N=-1y i=i*

E

where pz./ = { Vi € [N].

Proof. Fixy € [0, #] and i* € [N]. Note that e;« = p¥ — v where v is defined as follows:

_r i#10* .
Vl_{—(N—l))/ P Vi € [N].

This observation gives us the following:

T R T R
Zpt b —epx - th
t=1 t=1

E

C T T
=E Zpt'tﬂt—ei*'zétl
:t;l t;l ,
=F Zpt-[t—pY-Z[t Z&l
:t;l t;l t;l
=k ZPt'Z:_PY'ZZtl"'V'[E Ztl’
L =1 t=1 t=1

where the first equality is due to the fact that Z, is an unbiased estimator of ¢,. We bound the last
term using the expression for v:

+v-E

T T
ve) =) | yli—(N=Dyls| <YTN,
1=1 =1 Li#i*
where in the last inequality we use the fact that the losses are bounded in [0, 1]. ]

We will also make use of general FTRL regret bound given by Theorem 3 (which we prove in
Appendix C) together with the stability and penalty bounds shown in the previous sections. Theorem 2
is restated here in the precise form proved below.

Theorem 2 (restated). Algorithm I attains the following regret bound, regardless of the corruption
level, for NT > 3.

T
Rr < 9K 10g(NT) + 6log(NT) ZZ [E[pzt(Vk)]

t=1 k+k*

T p T T
+210g(NT) )~ w+16z w_ 13
r=1 1=1

Proof. Note that due to Lemma 9 it suffices to bound E [ZtT:] (pe=p7")- Z,] where p? is defined by

r E .
_{1—(N—1)y = VEIND

since it can only be larger than the pseudo-regret by an additive constant. Using Theorem 3 and then
bounding the penalty and stability terms using Lemma 4 and Lemma 5 we obtain

R < OK] : 3 Elp: (Vo]
+ < 9K log(NT) + (5 log?(NT) + 112) Yy [

t=1 k#k*

pl
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548

T * \j*
+210g(NT)Z Pt(Vk*\l )] 162 (Vk \i*)]
=1

< 9K log(NT) + 61log?(NT) Z Z [E[pt[(Vk)]

t=1 k#k*

T - -
+210g(NT)Z ”f(Vk*\ ) 162 pt(Vk*\l)
t=1

where the last inequality holds for NT > 3!, ]

B.5 Proof of Theorem 1 (Main)
We can now provide a proof of our main result given in Theorem 1, restated here more precisely.

Theorem 1 (restated). Algorithm I attains the following expected pseudo-regret bound in the C-
corrupted stochastic setting, for NT > 3'1:

Ry < 1841og*(NT) - min{ VKT, log (NT)Z gT CZ logT

kAk>0 kAk>0

Proof. We first prove the following:

log 7’
Ry < 1841og* (NT) § el 281002 (NT). | C ) o8
oo Dk ka0 Dk
k k

We proceed bounding the RHS of Eq. (13). For all B, z > 0 we have

5 i( Y \/[E[ptka)] . \/[E[mvi* \in)]

t=1 \k#k*

1
+ 2—(3{T +20), (14)
k:Ak>0 <

where the first inequality is due to Young’s inequality and the fact that A, < §; for all i € Vi, the
second inequality is since Zthl (1/t) < 2logT and the last inequality is due to the following simple
observation which follows from the definition of corruption:

ZZPH th gtl l ZZPH gtl étt
t=1 i= =1 i=1
T N

DY

+ 2

Zua etnml

+2C.

Setting B = 6log?(NT) gives a bound on the second term in the RHS of Eq. (13). Similarly, we have

logT ] v +
16Z pF(Vie\i*)] < 2562 Z A ZZ_Z[E[p,,i]a,
CTINITS ) of S T m)l. (s)

k =1 i=1

< 2567 Z [E

k:Ar>0
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s49  We now use Lemma 8 to bound the rightmost term of Eq. (15) as follows:

T N [ T N
E ZZ gtl_étt ) =k ;P:'([Et[gt]_[t,i*l)l

t=1 i=1

[ T
<E Zpt : ([Et[zt] _ft,i*l)l

L t=1

=E ZZPt,i ([tl O ir )l

Lt=1 i=1

=Rr,
ss0 where we used the fact that Zt is an unbiased estimator for ;. We can conclude that
T
1 logT
16y ) ~E[p} (Vi) <256Z 08 +—(2RT+2C) (16)
t=1 k:Ax>0 k: Ak>0
ss1 Using Theorem 2 and combining the bounds from Eq. (14) and Eq. (16) we obtain
logT 2C
R < 9K log(NT) + (36log4(NT) + 256)z Y gl g
Z z
k:A>0
logT 1 2
< (45 log*(NT) + 256)z Y Ry ¢
Z z
k:A>0
logT 2C
< 46l0g'(NT)z ) % —H{T
Z

k:Ar>0

ss2 where the second inequality is since K < 1+ ;. .0 1/A and the last inequality holds since
sss NT > 3% Rearranging and simplifying we obtain
2C+U

-1
s« where we denote U = 46log*(NT) Y k:ags0logT/Ay for simplicity. We now choose z which
usc

U

Ry <2U+(z-1DHU+

ss5 minimizes the bound, by setting z = 1 +

Ry <2U +24U(U +2C)
<4U +4VUC

log 7
< 18410¢2(NT) E g T | 281082(NT). | C ) o8
ko D Koo Dk
k k

sss  which concludes the first part of the proof. We now show that
Ry <28 logz(NT)\/
ss7 We again use Theorem 2 and also the fact that p7 (Vi) < 3 Ips (Vk) by Lemma 7, to obtain

Ry < 9K log(NT) + (6 log>(NT) + 32) Z% Z\/Pt(vk)
t=1 k=1

. This gives us

T K
< 9K 1og(NT) + 7 log?(NT) Z% Z Vi (Vo).
t=1 k=1

sss  where the inequality holds since NT > 3°. We conclude the proof via the following straightforward
ss9  calculation:

T K L.
Z Y VpVi) < VK ) — <2VKT,
=1 \G k=1 =1 \G

seo where we used Jensen’s inequality and the fact that Z,T:I (1/+/f) < 2NT. We obtained two regret
se1  bounds and thus the minimum of the two holds, which concludes the proof. |
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C Refined Regret Bound for FTRL

Consider the FTRL framework which generates predictions wi, wa, ..., wr € ‘W given a sequence of
arbitrary loss vectors g1, g2, ..., gr and a sequence of regularization functions Hy, H>, ..., Hr. The
following gives a general regret bound which we use in order to prove Theorem 2.

Theorem 3. Suppose H, = n;'w + ¢ for twice-differentiable and convex functions v and ¢, ¥
being strictly convex. Let wi = argmin,,, eW{W . 22:1 gs + H,(w)}. Then there exists a sequence
of points w, € [wy, wf] such that, for all w* € W:

T

T T
;gz (W = w¥) < p(wW¥) — p(wi) + Z(% - #)(W(W*) —y(wi) +2 ;nt(llgtlli‘)2~

t=1

Here ||g|l; = Vg"V2w(W,)g is the local norm induced by w at W,, and ||-||; is its dual. Here we also
define 1/n9 £ 0.

Proof. We directly follow an analysis by Jin and Luo [13], and include the details for completeness.
For simplicity we denote G, = Z§=1 gs- We make the following definitions:

F(w)=w-Gio1 + H (w),

F;(W) =w-G; +H;(w),
such that w, = argmin,, .9 {F;(w)} and w} = argmin,, .y {F;"(w)}. Fix w* € W. We note that
the regret of FTRL with respect to w* has the following decomposition:

T T

T
D g (we=w*) = ) (wiegi+ Fiw) = FFw)) + ) (FFwi) = Fi(owy) = w* - g0).
t=1

=1 =1
We first show that for all time steps ¢ it holds that
2
Wy - & + Fr(we) — FF(wy) < 2n.(llglly)” (17
We lower bound w;, - g; + F;(w,;) — F;}} (w}) as follows:
wi - &+ Fir(wi) = Ff(wf) =w; - G + Hy(w;) — Ff (w))
= F/(wy) = Ff (w})

1
= VFI-F(W;—) : (Wt - W;—) + EHWZ - W:”zVZHt(Wt)

v

+112
E”Wt - W ”VZH,(W,)

\%

1 -1 2
S e = wi

where the third line is a Taylor expansion of F," around w}, with W, being a point between w, and
wi, in the second to last line we use a first-order optimality condition of w, and in the last line we
use the fact that V2H, > n;!V?yw. We now upper bound w, - g; + F;(w,) — F; (w}) as follows:

wy g+ F(wy) = F:(W:) = (Wr - W:) g+ Fy(wy) - Ft(W;-)

< (we=w7) g
< ( 771_1||Wt - W?llz)(\/’fllé’zll?)

= llwe =will; - llgellz,

where in the first inequality we use the fact that w; is the minimizer of F; and the second inequality
is an application of Holder’s inequality. Combining the lower and upper bounds gives us Eq. (17).
Next we show that

T T
D (FF D) = Filo) =" ) < 00 = 90+ Zl(ni - ot -, as)

22



583

584
585

586
587
588

We bound the LHS of Eq. (18) as follows:

T

Y (Fr o) = Filwy) = w* - 1)

t=1
T

<—Fi(w)+ ) (FLi(we) = F(w) + Ff (wi) = w* - Gr
t;Z

<=Fi(w)+ ) (F(w) = F(w) + Ff (w*) =w* - Gr
I:TZ 1 1

=—H;(w) - ;(E T )II/(Wz) + Hr (™)

A
=17 'y (w1) = p(w1) - ;(n— - ﬁ)ww,) + 07 Y (W) + (W)
(1
= p(w*) = p(w) + Z(; - )(w(w*) —(wn)),

t=1

where in the first and second inequalities we use the optimality of w}. Combining Eq. (17) and
Eq. (18) we conclude the proof. |

Proof of Lemma 3. Fix any pY € SIYV. The lemma follows immediately by applying Theorem 3 to
Algorithm 1 with the regularizations Ry, Ra, ..., Ry and the shifted loss estimators ¢, — ¢, ;»1, while
noting that constant shifts in the loss estimators do not change the algorithm whatsoever. |
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