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Abstract
We present a Witness Autoencoder (W-AE) – an autoencoder that captures
geodesic distances of the data in the latent space. Our algorithm uses
witness complexes to compute geodesic distance approximations on a mini-
batch level and leverages topological information from the entire dataset
while performing batch-wise approximations. This way, our method allows
to capture the global structure of the data even with a small batch size,
which is beneficial for large-scale real-world data. We show that our method
captures the structure of the manifold more accurately than the recently
introduced topological autoencoder (TopoAE).

Witnessing a neighborhood graph Motivation
Currently, autoencoders (AEs) are widely used for non-linear dimensionality
reduction in various applications, mainly due to the expressiveness of
neural networks and the encoder-decoder architecture. However, one of the
key issues of AEs is that their latent spaces do not necessarily reflect the
geometric and topological structure of the true data manifold – i.e., they are
not guaranteed to preserve relative distances between points and the
topological structure of the data. Preserving this structure is beneficial not
only for interpretability of the latent space, but also for generalization
capabilities [1,2] and robustness to adversarial attacks [3] .

Optional caption for images, charts, and graphs

References
[1] Cem Anil, James Lucas, and Roger Grosse. Sorting out Lipschitz function 
approximation. ICML 2019, 

[2] Peter L. Bartlett, Dylan J. Foster, and M. Telgarsky. Spectrally-normalized 
margin bounds for neural networks Peter, (Nips  2017). 
[3] Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-margin 
training: Scalable certification of perturbation invariance for deep neural 
networks. NeurIPS 2018
[4] Michael Moor, Max Horn, Bastian Rieck, and Karsten Borgwardt. 
Topological Autoencoders. ICML 2019 
[5] Stan Z. Li, Zelin Zhang, and Lirong Wu. Markov-Lipschitz Deep Learning. 
2020

Simon Scönenberger1,2, Anastasiia Varava1, Vladislav Polianskii1,
Jen Jen Chung2, Roland Siegwart2, Danica Kragic1

1Robotics, Perception and Learning Group (KTH), 2Autonomous Systems Lab (ETH Zürich)

𝑛!" Method
Neighbors (k)

N/A 1 2 3

64
VR 100 - - -
k-NN - 77 100 100
k-NN-WC - 5 11 72

128
VR 61 - - -
k-NN - 35 76 100
k-NN-WC - 0 2 10

256
VR 6 - - -
k-NN - 3 11 77
k-NN-WC - 0 0 0

Figure 1: Different graphs constructed on the Swiss roll dataset. The graphs
constructed from edges of VR 0-order persistence pairings (left) and 1-NN (middle)
fail to approximate the geodesic distances, i.e. there are short-circuit errors. 1-NN-
WC (right) approximates the geodesic distances well. (𝑛!" = 128, 𝑊 = 2048)

Table 1: Observed number of mini-batches out of 100 containing short-circuit
errors/wrong neighbors for 0-order persistence pairings of a VR filtration (VR), k-NN
and k-NN-WC.

Proposed Method
We present a Witness Autoencoder (W-AE), which introduces a novel loss
term for autoencoders to enforce structure preservation in the latent space,
i.e. alignment of the geodesic distances between data and latent space.
Thus the total loss becomes,

ℒ 𝓍 ≔ ℒ# 𝓍, �̂� + 𝜆$ℒ$ .

The loss term is closely related to the ones presented in [10, 11] and relies
on the construction of a neighborhood graph to approximate distances on
the manifold. For the construction of such a neighborhood graph, we
present a new method that is based on witness complexes. It improves
geodesic distance approximations on a mini-batch level, which is desirable
since false neighbors and missed neighbors are more likely to occur for
small mini-batches since low density regions are more likely. In figure 1 our
neighborhood graph construction is compared to the method used in
TopoAE and k-NN neighborhood graphs for the Swiss roll dataset, where
wrong neighbors occur as so called short-circuit errors.

To construct a neighborhood graph on a mini-batch level, that leverages
topological information of the entire dataset we rely on a witness complex
filtration. We refer to the datapoints of the mini-batch as landmark points (L)
from which we construct a graph and the entire dataset as witnesses (𝑊), that
determine at what filtration value 𝑅 an edge occurs. Formally for a defined
distance measure 𝑑(⋅) an edge (𝑙%, 𝑙&) occurs at filtration value 𝑅 iff,

𝑎𝑟𝑔𝑚𝑖𝑛'∈)max 𝑑 𝑙%, 𝑤 , 𝑑 𝑙&, 𝑤 = 𝑅.

The filtration values for all possible pairs in the mini-batch then determine the k-
NN. Intuitively, this formulation “shortens” the distance measured along the
manifold, since it is likely that a witness lies between two neighbors, whereas a
witness between non-neighbors is unlikely. Hence the number of short-circuit
errors can be reduced (see figure 1 and table 1). Figure 2: Latent representation obtained with TopoAE and W-AE of Swiss roll 

dataset for different mini-batch sizes. W-AE is able preserve the structure of the 
manifold better for smaller batch sizes (𝑛!").

For evaluation W-AE was train with different batch-sizes on the Swiss roll
dataset and compared to TopoAE, UMAP, tSNE and a vanilla AEs. In figure 2
qualitative results are presented and compared to TopoAE, that show that W-AE
approximates geodesic distances better even for small mini-batch sizes (𝑛!"). In
the publication, qualitative and quantitative results for all methods are
presented.

Experimental Study on Swiss Roll Dataset


