
A Additional related work

Reliability. A learning model that outputs a confidence level is valuable in practical applications, as
it allows us to determine when to trust the model and when to defer the task to a human. However, it is
well-known that models like neural networks can exhibit high confidence, yet still produce incorrect
results [GPSW17]. To tackle this issue, there has been a line of works on learning algorithms
with uncertainty estimate [WR06, BCKW15, GG16, LPB17, MIG+19]. Unlike prior work, our
results take into account the relevant notion of robust loss. In particular, we extend the reliability
guarantees in perfect selective classification [EYW12] and reliable-useful learning model [RS88] to
different robust losses under a test-time attack. Prior work on reliability under data poisoning attacks
[BBHS22] obtained similar results on training-time attacks, by providing guarantees that the learner
is always correct at any point that it makes a prediction provided the training data corruption does not
exceed a point-specific threshold. Our work is also related to learning algorithms with an abstention
option [YCJ16, CDM16, CDG+18, PZ21, ZN22].

Robustness. Robustness against adversarial attacks is essential for the safe deployment of machine
learning models in the real world. Our focus in this work is on perturbation attacks, where we
aim to provide learners that remain robust even when the test data points are perturbed. It is
known that many modern approaches such as deep neural networks fail in this case even when
the perturbation is human-imperceptible [SZS+14, GSS15]. There has been a lot of empirical
effort [MMS+18, ZYJ+19, SNG+19, RWK20, TKP+18, CRS+19] as well as theoretical effort
[TSE+19, SST+18, JSH20, RXY+20, MHS19, MHS21, GKKM20, BPRZ23] to develop learners
with improved robustness, and more broadly to understand various aspects of adversarial robustness.
In particular, there is a line of work on certified robustness [CRK19, LAG+19, LCWC19] which
provides a pointwise guarantee that the prediction does not change, so long as the attack strength is
within a learner-specified ‘radius’ for the point. While the certified robustness research focuses on
this consistency aspect, our work addresses the reliability aspect where we hope to guarantee that the
prediction is also correct.

Distribution shift. A distribution shift refers to the phenomenon where the training distribution
differs from the test distribution which often leads to a degradation in the learner’s performance.
This has been studied under several different settings [QCSSL08], ranging from covariate shift
[Shi00, HGB+06, BBS07], and domain adaptation [MMR08, BDBC+10, ZLLJ19, ZLWJ20] to
transfer learning [PY10, TS10, HK19]. Many algorithms have been proposed to deal with the shift
which involves encouraging invariance between different domains [SS16, ABGLP19, RRR21] or
taking into account the worst-case subpopulation [ND16, DN21, SKHL20, CWG+19]. While prior
work typically focuses on the average performance on the target domain or subpopulation, we provide
point-wise reliability guarantees.

Learning with noise. There is extensive classic literature on learning methods which are tolerant
or robust to noise [KV94, Vap98]—including efficient learning under bounded or Massart noise
[ABHU15, DGT19], agnostic active learning [KKMS08, Dan16], learning under malicious noise
[ABL14, BH21], to list a few. Recent work has considered reliable learning under some of these
classic noise models [HKLM20, BBHS22].

B Additional proof details for robustly-reliable learners w.r.t. metric ball
attacks

Theorem B.1. Let H be any hypothesis class. With respect to M-ball attacks and `CA, for ⌘ � 0,

(a) there exists a robustly-reliable learner L such that RRL

CA(S, ⌘) ◆ Agree(H0(S)), and
(b) for any robustly-reliable learner L, RRL

CA(S, ⌘) ✓ Agree(H0(S)).

The results hold for RRL

TL as well.

Proof. (Proof of Theorem B.1) The robustly-reliable learner L is given as follows. Set hL

S =
argminh2H

errS(h) i.e. an ERM over S, and rLS (z) = 1 if z 2 Agree(H0(S)), else rLS (z) = �1.
By realizability, errS(hL

S)  errS(h⇤) = 0, or hL

S 2 H0(S). We first show that L is robustly-reliable.
For z 2 X , if rLS (z) = ⌘ > 0, then z 2 Agree(H0(S)). We have h⇤(z) = hL

S(z) since the classifiers
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h⇤, hL

S 2 H0(S) and z lies in the agreement region of classifiers in H0(S) in this case. Thus, we
have `h

⇤

CA(h
L

S , x, z) = 0 for any x such that z 2 Bo
M
(x, ⌘). The ⌘ = 0 case corresponds to reliability

in the absence of test-time attack, so [EYW10] applies. Therefore, RRL

CA(S, ⌘) ◆ Agree(H0(S)) for
all ⌘ � 0 follows from the setting rLS (z) = 1 if z 2 Agree(H0(S)).

Conversely, let z 2 DIS(H0(S)). There exist h1, h2 2 H0(S) such that h1(z) 6= h2(z). If possible,
let there be a robustly-reliable learner L such that z 2 RRL

CA(S, ⌘) for some ⌘ > 0. By definition of
the robust-reliability region, we must have rLS (z) > 0. By definition of a ball, we have z 2 Bo

M
(z, ⌘)

for any ⌘ > 0, and therefore `h
⇤

CA(h
L

S , z, z) = 0. But then we must have hL

S(z) = h⇤(z) by definition
of `CA. But we can set h⇤ = h1 or h⇤ = h2 since both are consistent with S. But h1(z) 6= h2(z),
and therefore hL

S(z) 6= h⇤(z) for one of the above choices for h⇤, contradicting that L is robustly-
reliable.

Theorem B.2. Let H be any hypothesis class. With respect to M-ball attacks and `ST, for ⌘ � 0,

(a) there exists a robustly reliable learner L such that RRL

ST(S, ⌘) ◆ AST, and
(b) for any robustly-reliable learner L, RRL

ST(S, ⌘) ✓ AST,

where AST = {z | Bo(z, ⌘) ✓ Agree(H0(S)) ^ 8h 2 H0(S), h(x) = h(z), 8x 2 Bo(z, ⌘)}.

Proof. (Proof of Theorem B.2) Given sample S, consider the learner L which outputs hL

S =
argminh2H

errS(h), and rLS (z) is given by the largest ⌘ > 0 for which Bo(z, ⌘) ✓ Agree(H0(S))
and h(x) = h(z), 8 x 2 Bo(z, ⌘), h 2 H0(S), else ⌘ = 0 if z 2 Agree(H0(S)), and �1
otherwise. Note that the supremum exists here since a union of open sets is also open. By real-
izability, errS(hL

S)  errS(h⇤) = 0, or hL

S 2 H0(S). We first show that L is robustly-reliable
w.r.t. M for loss `ST. For z 2 X , if rLS (z) = ⌘ � 0, then Bo(z, ⌘) ✓ Agree(H0(S)), in particular
z 2 Agree(H0(S)). Moreover, by definition, for any x 2 Bo(z, ⌘), we have hL

S(z) = hL

S(x) by con-
struction. Putting together, and using the property that distance functions of a metric are symmetric,
we have hL

S(z) = h⇤(x) for any x such that z 2 Bo(x, ⌘). Thus, we have `h
⇤

ST (h
L

S , x, z) = 0 for any
x such that z 2 Bo(x, ⌘). Thus L satisfies Definition 3.

Conversely, we will show that for any robustly-reliable learner L w.r.t. `ST, for any ⌘ > 0,

RRL

ST(S, ⌘) ✓ Agree(H0(S)),

which follows from similar arguments from Theorem B.1 which also apply to the `ST loss. Let
z 2 DIS(H0(S)). There exists h1, h2 2 H0(S) such that h1(z) 6= h2(z). If possible, let there be
a robustly-reliable learner L such that z 2 RRL

ST(S, ⌘) for some ⌘ > 0. By definition of the robust-
reliability region, we must have rLS (z) > 0. By definition of a closed ball, we have z 2 Bo

M
(z, ⌘) for

any ⌘ > 0, and therefore `h
⇤

ST (h
L

S , z, z) = I[hL

S(z) 6= h⇤(z)] = 0 which implies that hL

S(z) = h⇤(z).
But we can set h⇤ = h1 or h⇤ = h2 since both are consistent with S. But h1(z) 6= h2(z), and
therefore hL

S(z) 6= h⇤(z) for one of the above choices for h⇤, contradicting that L is robustly-reliable.
Next, we will show that, for any ⌘ > 0,

RRL

ST(S, ⌘) ✓ {z | Bo
M
(z, ⌘) ✓ Agree(H0(S))}.

We will prove this by contradiction. Suppose z 2 Agree(H0(S)), but there exists x0 2 Bo
M
(z, ⌘)

such that x0 62 Agree(H0(S)). Let there be a robustly-reliable learner L such that z 2 RRL

ST(S, ⌘).
By definition, we have `h

⇤

ST (h
L

S , x, z) = 0 for any x that z 2 Bo
M
(x, ⌘). This implies that

`h
⇤

ST (h
L

S , x
0, z) = 0 that is hL

S(z) = h⇤(x0). Because x0 62 Agree(H0(S)), there exists h1, h2 2
H0(S) such that h1(x0) 6= h2(x0). We can set h⇤ = h1 or h⇤ = h2 since both are consistent with S.
But h1(x0) 6= h2(x0), and therefore hL

S(z) 6= h⇤(z) for one of the above choices for h⇤, contradicting
that L is robustly-reliable. Finally, we will show that, for any ⌘ > 0,

RRL

ST(S, ⌘) ✓ {z | Bo
M
(z, ⌘) ✓ Agree(H0(S)) ^ h(x) = h(z), 8 x 2 Bo

M
(z, ⌘), h 2 H0(S)}.

Let z be a data point such that Bo
M
(z, ⌘) ✓ Agree(H0(S)) but there exists x0 2 Bo

M
(z, ⌘) such that

h(x0) 6= h(z) for h 2 H0(S). Let there be a robustly-reliable learner such that z 2 RRL

ST(S, ⌘). This
implies that `ST(hL

S , x, z) = 0 for any x that z 2 Bo
M
(z, ⌘). However, `ST(hL

S , x
0, z) = I[hL

S(z) 6=
h⇤(x0)] = I[hL

S(z) 6= hL

S(x
0)] 6= 0, contradicting that L is robustly-reliable.
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Theorem B.3. Let H be any hypothesis class. With respect to M-ball attacks and `IA, for ⌘ � 0,

(a) there exists a robustly reliable learner L such that RRL

IA(S, ⌘) ◆ AIA, and
(b) for any robustly-reliable learner L, RRL

IA(S, ⌘) ✓ AIA,

where AIA = (AST \ {z | h⇤(z) = 1}) [ {z | z 2 Agree(H0(S)) ^ h⇤(z) = 0}.

Proof. (Proof of Theorem B.3) The construction of the robustly-reliable learner for `IA is similar to
the robustly-reliable learner for `ST. The key difference is that the reliability radius now depends on
the predicted label. Given sample S, consider the learner L which outputs hL

S = argminh2H
errS(h).

1. If hL

S(z) = 1, rLS (z) is given by the largest ⌘ > 0 for which Bo(z, ⌘) ✓ Agree(H0(S))
and h(x) = h(z), 8 x 2 Bo(z, ⌘), h 2 H0(S) and ⌘ = 0 when z 2 Agree(H0(S)), and
�1 otherwise. Note that the supremum exists here since a union of open sets is also open.

2. If hL

S(z) = 0, rLS (z) = 1 when z 2 Agree(H0(S)), and �1 otherwise.

We first show that L is robustly-reliable w.r.t. M for loss `IA. By realizability, errS(hL

S) 
errS(h⇤) = 0, or hL

S 2 H0(S). For z 2 X , if hL

S(z) = 1 and rLS (z) = ⌘ � 0, then Bo(z, ⌘) ✓
Agree(H0(S)), in particular z 2 Agree(H0(S)). Moreover, by definition, for any x 2 Bo(z, ⌘), we
have hL

S(z) = hL

S(x) by construction. Putting together, and using the property that distance functions
of a metric are symmetric, we have hL

S(z) = h⇤(x) for any x such that z 2 Bo(x, ⌘). Thus, we have
`h

⇤

ST (h
L

S , x, z) = 0 for any x such that z 2 Bo(x, ⌘). This also implies that `h
⇤

IA (hL

S , x, z) = 0 since
`ST implies `IA.

On the other hand, if hL

S(z) = 0 and rLS (z) = 1, we have z 2 Agree(H0(S)). This implies
that hL

S(z) = h⇤(z) = 0. For any x that z 2 UIA(x, h⇤), by the incentive-aware property of
the adversary, if h⇤(x) = 1, we must have UIA(x, h⇤) = {x} which implies that z = x and
h⇤(z) = h⇤(x) = 1. In our case, h⇤(z) = 0 also implies that we must also have h⇤(x) = 0.
Therefore, `h

⇤

IA (hL

S , x, z) = I[hL

S(z) 6= h⇤(x)^z 2 UIA(x, h⇤)]  I[hL

S(z) 6= h⇤(x)] = 0. Therefore,
we can conclude that L satisfies Definition 3.

Conversely, we will show that for any robustly-reliable learner L w.r.t. `IA, for any ⌘ > 0,

RRL

IA(S, ⌘) \ {z | hL

S(z) = 0} ✓ Agree(H0(S)) \ {z | h⇤(z) = 0}.

Since z 2 UIA(z), for z to lie in the robustly-reliable region, we need `h
⇤

IA (hL

S , z, z) = I[hL

S(z) 6=
h⇤(z)] = 0 that is z must be reliable. By similar arguments from Theorem B.1, we have the result.

Next, we will show that, for any ⌘ > 0,

RRL

IA(S, ⌘) \ {z | hL

S(z) = 1} ✓ {z | Bo
M
(z, ⌘) ✓ Agree(H0(S))}.

We will prove this by contradiction. Suppose z 2 Agree(H0(S)), but there exists x0 2 Bo
M
(z, ⌘)

such that x0 62 Agree(H0(S)). Let there be a robustly-reliable learner L such that z 2 RRL

IA(S, ⌘)
and hL

S(z) = 1. Because x0 62 Agree(H0(S)), there exists h1 2 H0(S) such that h1(x0) = 0. We
may have h⇤ = h1 since h1 is consistent with S. However, we have UIA(x0, h1) = Bo

M
(x0, ⌘) and

`h
⇤

IA (hL

S , x
0, z) = I[h(z) 6= h⇤(x0) ^ z 2 UIA(x

0)] = 1

which contradicts with z lies in the robustly-reliable region. Furthermore, with a similar argument
that we can’t have h⇤(x0) = 0, we can show that the agreed label of any x must be 1,

RRL

IA(S, ⌘) \ {z | hL

S(z) = 1}
✓ {z | Bo

M
(z, ⌘) ✓ Agree(H0(S)) ^ h(x) = 1, 8 x 2 Bo

M
(z, ⌘), h 2 H0(S)}.

= AST \ {z | h⇤(z) = 1}
This concludes that for any robustly-reliable learner L with respect to `IA, we have

RRL

IA(S, ⌘) ✓ (AST \ {z | h⇤(z) = 1}) [ {z | z 2 Agree(H0(S)) ^ h⇤(z) = 0}.
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C General robustly-reliable learner

Definition 12 (General robustly-reliable learner). A learner L is robustly-reliable for sample S w.r.t.
a perturbation function U , concept space H and robust loss function ` if, for any target concept
h⇤ 2 H, given S labeled by h⇤, the learner outputs functions hL

S : X ! Y and aLS : X ! {0, 1}
such that for all z 2 X if aLS(z) = 1 and z 2 U(x) then `h

⇤
(hL

S , x, z) = 0. On the other hand,
if aLS(z) = 0, our learner abstains from prediction. The robustly-reliable region of a learner L is
defined as RRL(S) = {x 2 X | aLS(x) = 1}, the region that the learner L does not abstain.

We again obtain the pointwise optimal characterization of the robustly-reliable region in terms of the
agreement region. For `CA, `TL the robustly-reliable region would be the same as the region where we
can be sure of what the correct label is: i.e. the agreement region of the version space while for `ST, it
is the region of points z for which U�1(z) lies inside the agreement region of the version space, and
all classifiers in the version space agree on U�1(z).
Theorem C.1. Let H be any hypothesis class, and U be the perturbation function.

(a) There exists a robustly-reliable learner L w.r.t. U and `CA such that RRL

CA(S) ◆ Agree(H0(S)).
Moreover, for any robustly-reliable learner L, RRL

CA(S) ✓ Agree(H0(S)).
(b) The same results hold for RRL

TL as well.
(c) There exists a robustly-reliable learner L w.r.t. U and `ST, such that RRL

ST(S) ◆ AST, and for any
L robustly-reliable w.r.t. `ST, RRL

ST(S) ✓ AST, where AST = {z | U�1(z) ✓ Agree(H0(S)) ^
h(x) = h(z), 8 x 2 U�1(z), h 2 H0(S)}.

(d) There exists a robustly-reliable learner L w.r.t. U and `IA, such that RRL

IA(S) ◆ AIA, and for any
L robustly-reliable w.r.t. `IA, RRL

IA(S) ✓ AIA, where AIA = (AST \ {z | h⇤(z) = 1}) [ {z | z 2
Agree(H0(S)) ^ h⇤(z) = 0}.

Proof. We first establish part (a). Given sample S, consider the learner L which outputs hL

S =
argminh2H

errS(h) i.e. an ERM over S, and aLS(z) = I[z 2 Agree(H0(S))]. By realizability,
errS(hL

S)  errS(h⇤) = 0, or hL

S 2 H0(S). We first show that L is robustly-reliable. For z 2 X , if
aLS(z) = 1, then z 2 Agree(H0(S)). We have h⇤(z) = hL

S(z) since the classifiers h⇤, hL

S 2 H0(S)
and z lies in the agreement region of classifiers in H0(S). Thus, we have `h

⇤

CA(h
L

S , x, z) = 0 for
any x such that z 2 U(x). RRL

CA(S) ◆ Agree(H0(S)) follows from the choice of aLS(z) = I[z 2
Agree(H0(S))].

On the other hand, Let z 2 DIS(H0(S)). There exist h1, h2 2 H0(S) such that h1(z) 6= h2(z).
If possible, let there be a robustly-reliable learner L such that z 2 RRL

CA(S). That is, aLS(z) = 1.
We have z 2 U(z), and therefore `h

⇤

CA(h
L

S , z, z) = 0. But then we must have hL

S(z) = h⇤(z) by
definition of `CA. We can set h⇤ = h1 or h⇤ = h2 since both are consistent with S. However,
h1(z) 6= h2(z), and therefore hL

S(z) 6= h⇤(z) for one of the above choices for h⇤, contradicting that
L is robustly-reliable.

This completes the proof of (a). Essentially the same argument may be used to establish (b), by
substituting `CA with `TL. We will now turn our attention to part (c).

Given sample S, consider the learner L which outputs hL

S = argminh2H
errS(h), that is an ERM

over S, and aLS(z) = I[U�1(z) 2 Agree(H0(S)) ^ hL

S(x1) = hL

S(x2) 8 x1, x2 2 U�1(z)]. By
realizability, errS(hL

S)  errS(h⇤) = 0, or hL

S 2 H0(S). We first show that L is robustly-reliable
w.r.t. `ST. For z 2 X , if aLS(z) = 1, then U�1(z) ✓ Agree(H0(S)), in particular z 2 Agree(H0(S)).
Moreover, by definition, for any x that z 2 U(x), we have hL

S(z) = hL

S(x) by construction of
aLS(z). Putting together, we have hL

S(z) = h⇤(x) for any x such that z 2 U(x). Thus, we have
`h

⇤

ST (h
L

S , x, z) = 0 for any x such that z 2 U(x).
On the other hand, for any robustly-reliable learner L, we will show that

RRL

ST(S) ✓ Agree(H0(S)).

Let z 2 DIS(H0(S)). There exists h1, h2 2 H0(S) such that h1(z) 6= h2(z). If possible, let there
be a robustly-reliable learner L such that z 2 RRL

ST(S). That is, aLS(z) = 1. We have z 2 U�1(z),
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and therefore `h
⇤

ST (h
L

S , z, z) = I[hL

S(z) 6= h⇤(z)] = 0 which implies that hL

S(z) = h⇤(z). But we can
set h⇤ = h1 or h⇤ = h2 since both are consistent with S. However, h1(z) 6= h2(z), and therefore
hL

S(z) 6= h⇤(z) for one of the above choices for h⇤, contradicting that L is robustly-reliable. Next,
we will show that

RRL

ST(S) ✓ {z | U�1(z) ✓ Agree(H0(S))}.
We will prove this by contradiction, z 2 Agree(H0(S)) but there exists x0 2 U�1(z) such that
x0 62 Agree(H0(S)). Let there be a robustly-reliable learner L such that z 2 RRL

ST(S). By definition,
we have `h

⇤

ST (h
L

S , x, z) = 0 for any x that z 2 U(x). This implies that `h
⇤

ST (h
L

S , x
0, z) = 0 that is

hL

S(z) = h⇤(x0). Because x0 62 Agree(H0(S)), there exists h1, h2 2 H0(S) such that h1(x0) 6=
h2(x0). We can set h⇤ = h1 or h⇤ = h2 since both are consistent with S. But h1(x0) 6= h2(x0), and
therefore hL

S(z) 6= h⇤(z) for one of the above choices for h⇤, contradicting that L is robustly-reliable.
Next, we will show that

RRL

ST(S) ✓ {z | U�1(z) ✓ Agree(H0(S)) ^ h(x) = h(z), 8 x 2 U�1(z), h 2 H0(S)}.
Let z be a data point that U�1(z) ✓ Agree(H0(S)) but there exists x0 2 U�1(z) that h(x0) 6= h(z)
for h 2 H0(S). Let there be a robustly-reliable learner that z 2 RRL

ST(S). This implies that
`ST(hL

S , x, z) = 0 for any x that z 2 U(x). However, `ST(hL

S , x
0, z) = I[hL

S(z) 6= h⇤(x0)] =
I[hL

S(z) 6= hL

S(x
0)] 6= 0, contradicting that L is robustly-reliable.

Finally, the proof of part d) is similar to the proof of part c). Given sample S, consider the learner L
which outputs hL

S = argminh2H
errS(h), that is an ERM over S, and

1. if hL

S(z) = 1, let aLS(z) = I[U�1(z) 2 Agree(H0(S)) ^ hL

S(x1) = hL

S(x2) 8 x1, x2 2
U�1(z)];

2. if hL

S(z) = 0, let aLS(z) = I[z 2 Agree(H0(S))].

By realizability, errS(hL

S)  errS(h⇤) = 0, or hL

S 2 H0(S). We first show that L is robustly-reliable
w.r.t. `IA. For z 2 X , if hL

S(z) = 1 and aLS(z) = 1, then U�1(z) ✓ Agree(H0(S)), in particular
z 2 Agree(H0(S)). Moreover, by definition, for any x that z 2 U(x), we have hL

S(z) = hL

S(x) by
construction of aLS(z). Putting together, we have hL

S(z) = h⇤(x) for any x such that z 2 U(x). Thus,
we have `h

⇤

ST (h
L

S , x, z) = 0 for any x such that z 2 U(x). This also implies that `h
⇤

IA (hL

S , x, z) = 0
for any x such that z 2 U(x) since `ST implies `IA.

For z 2 X , if hL

S(z) = 0 and aLS(z) = 1, we have z 2 Agree(H0(S)) and hL

S(z) = h⇤(z) = 0. By
the incentive-aware property of the adversary, any x such that z 2 U(x), we can’t have h⇤(x) = 1
since the adversary has no incentive to make any perturbation in this case. Therefore, we have
h⇤(x) = 0 and UIA(h⇤, x) = U(x). We have `h

⇤

IA (hL

S , x, z) = I[h(z) 6= h⇤(x)^z 2 UIA(x, h⇤)] = 0.
We can conclude that our learner L is robustly-reliable w.r.t. `IA.

Conversely, we will show that for any robustly-reliable learner L w.r.t. `IA, for any ⌘ > 0,
RRL

IA(S) \ {z | hL

S(z) = 0} ✓ Agree(H0(S)) \ {z | h⇤(z) = 0}.
Since z 2 UIA(z), for z to lie in the robustly-reliable region, we need `h

⇤

IA (hL

S , z, z) = I[hL

S(z) 6=
h⇤(z)] = 0 that is z must be reliable. By similar arguments from above, we have the result. Next, we
will show that,

RRL

IA(S) \ {z | hL

S(z) = 1} ✓ {z | U�1(z) ✓ Agree(H0(S))}.
We will prove this by contradiction. Suppose z 2 Agree(H0(S)), but there exists x0 2 U�1(z) such
that x0 62 Agree(H0(S)). Let there be a robustly-reliable learner L such that z 2 RRL

IA(S) and
hL

S(z) = 1. Because x0 62 Agree(H0(S)), there exists h1 2 H0(S) such that h1(x0) = 0. We may
have h⇤ = h1 since h1 is consistent with S. However, we have UIA(x0, h1) = U(x0) and

`h
⇤

IA (hL

S , x
0, z) = I[h(z) 6= h⇤(x0) ^ z 2 UIA(x

0)] = 1

which contradicts with z lies in the robustly-reliable region. Furthermore, with a similar argument
that we can’t have h⇤(x0) = 0, we can show that the agreed label of any x must be 1,

RRL

IA(S, ⌘) \ {z | hL

S(z) = 1}
✓ {z | U�1(z) ✓ Agree(H0(S)) ^ h(x) = 1, 8 x 2 U�1(z), h 2 H0(S)}.
= AST \ {z | h⇤(z) = 1}
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This concludes that for any robustly-reliable learner L with respect to `IA, we have

RRL

IA(S) ✓ (AST \ {z | h⇤(z) = 1}) [ {z | z 2 Agree(H0(S)) ^ h⇤(z) = 0}.

We can also define a safely-reliable region for general perturbations as follows.
Definition 13. (General safely-reliable region) Let L be a robustly-reliable learner w.r.t. a perturba-
tion function U for sample S, concept space H and robust loss function `. The safely-reliable region
of a learner L is defined as SRL(S) = {x 2 X | U(x) ✓ RRL(S)}.

D Additional proof details for safely-reliable region

Lemma D.1. Let D be isotropic log-concave over Rd and H = {h : x ! sign(hwh, xi) | wh 2
Rd, kwhk2 = 1} be the class of linear separators. Let B(·, ⌘) be a L2 ball perturbation with radius
⌘. For S ⇠ Dm, for m = O( 1

"2 (VCdim(H) + ln 1
� )), with probability at least 1� �, we have

Pr({x | B(x, ⌘) ✓ Agree(H0(S)}) � 1� 2⌘ � Õ(
p
d").

Proof. (Proof of Lemma D.1) From uniform convergence (Theorem 4.1 [AB99]), for S ⇠ Dm, for
m = O( 1

"2 (VCdim(H) + ln 1
� )), with probability at least 1 � �, we have Agree(BH

D
(h⇤, ")) ✓

Agree(H0(S)). From [BL13] (Theorem 14), for linear separators on a log-concave distribution
A = {x : kxk2 < ↵

p
d} \ {x : |hwh⇤ , xi| � C1↵"

p
d} ✓ Agree(BH

D
(h⇤, ")) for some constant

C1. We claim that for any x 2 A⌘ := {x : kxk2 < ↵
p
d� ⌘} \ {x : |hwh⇤ , xi| � C1↵"

p
d+ ⌘},

we have B(x, ⌘) ✓ A. Let x 2 A⌘, consider z 2 B(x, ⌘). We have ||z||2  ||z � x||2 + kxk2 
⌘ + ↵

p
d � ⌘ = ↵

p
d and |hwh⇤ , zi| � |hwh⇤ , xi| � |hwh⇤ , z � xi| � C1↵"

p
d + ⌘ � ||z �

x|| � C1↵"
p
d. Therefore, z 2 A for any z 2 B(x, ⌘) which implies that for any x 2 A⌘,

B(x, ⌘) ✓ A which also implies that A⌘ ✓ {x | B(x, ⌘) ✓ Agree(H0(S))}. We can bound the
probability mass of A⌘ with the following fact on isotropic log-concave distribution D over Rd

[LV07]: 1) Prx⇠D(kxk � ↵
p
d)  e�↵+1, 2) When d = 1 Prx⇠D(x 2 [a, b])  |b � a| and

3) The projection hwh⇤ , xi follows a 1-dimensional isotropic log-concave distribution. We have
Prx⇠D(A⌘) � 1�Prx⇠D({x : ||x|| � ↵

p
d� ⌘})�Prx⇠D({x : |hwh⇤ , xi|  C1↵"

p
d+ ⌘}) �

1 � e
�

⇣
↵� ⌘p

d

⌘
+1 � 2C1↵"

p
d � 2⌘ = 1 � 2⌘ � Õ(

p
d"). The final line holds when we set

↵ = ln( 1
p

d"
).

Proof. (Proof of Lemma 3.2) First, we will show that for any sample S ⇠ Dm with no points lying
on the decision boundary of h⇤, there exists a constant �1(S) such that for any h with a small enough
angle to h⇤, ✓(wh, wh⇤)  �1, h must have the same prediction as h⇤ on S that is h 2 H0(S). Since
there is no point lying on the decision boundary, we have minx2S

|hwh⇤ ,xi|
kxk > 0.

For �1, such that 0 < �1 < minx2S
|hwh⇤ ,xi|

kxk , if ✓(wh, wh⇤)  �1, for any x 2 S,

|hwh⇤ , xi � hwh, xi|  kwh⇤ � whkkxk
 ✓(wh⇤ , wh)kxk
< |hwh⇤ , xi|.

The second to last inequality holds due to the fact that the arc length cannot be smaller than corre-
sponding chord length, and the last inequality follows from the assumption ✓(wh, wh⇤)  �1. This
implies that hwh⇤ , xihwh, xi > 0 and h 2 H0(S). Now, consider any x such that c  kxk  d.
We will show that there exists a constant � = �(S, c, d) such that if the margin of |hwh⇤ , xi| is
smaller than � then x 62 Agree(H0(S)). Since |hwh⇤ , xi| = kxk cos(✓(wh⇤ , x)) � c cos(✓(wh⇤ , x)),
� > |hwh⇤ , xi| implies that cos(✓(wh⇤ , x)) < �

c that is the angle between wh⇤ and x is almost ⇡
2 .

Intuitively, we claim that if � is small enough then there exists h 2 H0(S) such that h(x) 6= h⇤(x).
Without loss of generality, let hwh⇤ , xi > 0 (✓(wh⇤ , x) < ⇡

2 ). We will show that if ✓(wh⇤ , x) is
close enough to ⇡

2 , we can rotate wh⇤ to wh with a small enough angle so that ✓(wh, wh⇤)  �1 but
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Figure 5: For any set of samples S (blue and red points) with no point lying on the decision boundary
of a linear separator h⇤, for any 0 < c < d, there exists an area around the decision boundary of
h⇤ (formally defined as {x 2 Rd | c  kxk  d, |hwh⇤ , xi|  �(S, c, d)}, illustrated by a purple
rectangle) such that for any point (purple star) in this area, there exists a hypothesis h that agree with
h⇤ on S but disagree with h⇤ at that point

hwh, xi < 0 (✓(wh, x) >
⇡
2 ) as illustrated in Figure 5. Formally, we consider wh = wh⇤��x

kwh⇤��xk for
some � > 0 (to be specified). We will show that there exists � such that 1) hwh, xi < 0, and 2)
✓(wh, wh⇤)  �1. The first condition corresponds to � > hx,wh⇤ i

kxk2 . The second condition leads to the
following inequality

hwh⇤ � �x,wh⇤i
kwh⇤ � �xk � cos(�1)

1� �hx,wh⇤ip
1� 2�hx,wh⇤i+ kxk2�2

� cos(�1)

Assume that � < 1
hx,wh⇤ i , the inequality is equivalent to

(1� �hx,wh⇤i)2 � cos2(�1)(1� 2�hx,wh⇤i+ kxk2�2)

(cos2(�1)kxk2 � hx,wh⇤i2)�2 + 2�hx,wh⇤i sin2(�1)� sin2(�1)  0.

Solving this inequality leads to

�  �max =
�2 sin2(�1)hx,wh⇤i+ 2 sin(�1) cos(�1)

p
(kxk2 � hx,wh⇤i2)

2(cos2(�1)kxk2 � hx,wh⇤i2) .

Therefore, there exists � that satisfies both of conditions 1), 2) if �max > hx,wh⇤ i
kxk2 . Finally, we

claim that if |hx,wh⇤i|  �(S, c, d)  c2 tan(�1)p
(d+d tan(�1))2+(c2 tan(�1))2

then �max > hx,wh⇤ i
kxk2 . For x with

|hx,wh⇤i|  � , we have hx,wh⇤ i
kxk2  �

kxk2  �
c2 and also

�max =
�2 sin2(�1)hx,wh⇤i+ 2 sin(�1) cos(�1)

p
(kxk2 � hx,wh⇤i2)

2(cos2(�1)kxk2 � hx,wh⇤i2)

>
� sin2(�1)hx,wh⇤i+ sin(�1) cos(�1)

p
(kxk2 � hx,wh⇤i2)

cos2(�1)kxk2

=
� sin2(�1)

hx,wh⇤ i
kxk2 + sin(�1) cos(�1)

q
(1� ( hx,wh⇤ i

kxk )2)

cos2(�1)

�
� sin2(�1)

�
c2 + sin(�1) cos(�1)

q
(1� ( �

c2 )
2)

cos2(�1)d
.
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Figure 6: The safely-reliable region contains any point that retains a reliability radius of at least ⌘2
even after being attacked by an adversary with strength ⌘1.

The last inequality follows from hx,wh⇤ i
kxk2  �

c2 . It is sufficient to show that

� sin2(�1)
�
c2 + sin(�1) cos(�1)

q
(1� ( �

c2 )
2)

cos2(�1)d
� �

c2

, � tan2(�1)
�

c2
+ tan(�1)

r
(1� (

�

c2
)2) � d

�

c2

, tan(�1)

r
(1� (

�

c2
)2) � (d+ tan2(�1))

�

c2

, �(S, c, d)  c2 tan(�1)p
(d+ tan2(�1))2 + c2 tan2(�1)

.

Proof. (Proof of Theorem 3.3) We know that for `CA, `TL, the robustly-reliable region is the same as
the reliable region. This is also a reason why the probability mass does not depend on ⌘2. Consider
the optimal robustly-reliable learner L, we have RRL

CA(S, ⌘2) = RRL

TL(S, ⌘2) = Agree(H0(S))
(Theorem B.1). On the other hand, RRL

ST(S, ⌘2) = {z | B(z, ⌘2) ✓ Agree(H0(S)) ^ h(x) =
h(z), 8 x 2 B(z, ⌘2), h 2 H0(S)} (Theorem B.2). a) Since SRL

TL(S, ⌘1, ⌘2) = {x | B(x, ⌘1) ✓
Agree(H0(S))}. Applying Lemma D.1, we have the first result. b) Recall that SRL

CA(S, ⌘1, ⌘2) =
{x 2 X | B(x, ⌘1) \ {z | h⇤(z) = h⇤(x)} ✓ Agree(H0(S))}. We will show that for any
x 2 SRL

CA(S, ⌘1, ⌘2), B(x, ⌘1) = B(x, ⌘1) \ {z | h⇤(z) = h⇤(x)} by contradiction. Let x 2
SRL

CA(S, ⌘1, ⌘2) and B(x, ⌘1) contain two points with a different label, this implies that this ball
must contain the decision boundary of h⇤ (B(x, ⌘1) \ {x | hw⇤

h, xi = 0} 6= ;). The ball must
also contain a point that has the same label as x with an arbitrarily small margin w.r.t. h⇤. For any
a > 0, there exists z 2 B(x, ⌘1) \ {z | h⇤(z) = h⇤(x)} with |hz, wh⇤i| < a. This is impossible
because by Lemma 3.2 the agreement region Agree(H0(S)) can not contain point with arbitrarily
small margin if S does not contain any point on the decision boundary of h⇤. This event has a
probability 1 as the projection hwh⇤ , xi also follows a log-concave distribution which implies that
Pr(hwh⇤ , xi = 0) = 0. Therefore, with probability 1, B(x, ⌘1) must contain points with the same
label and we can conclude that SRL

CA(S, ⌘1, ⌘2) = SRL

TL(S, ⌘1, ⌘2). c) Similarly, by Lemma 3.2,
we can show that if B(z, ⌘2) ✓ Agree(H0(S)), B(z, ⌘2) then every point in B(z, ⌘2) must have
same label with probability 1. Therefore, RRL

ST(S, ⌘2) = {z | B(z, ⌘2) ✓ Agree(H0(S))}. We
have SRL

ST(S, ⌘1, ⌘2) = {x 2 X | BM(x, ⌘1) ✓ {z | B(z, ⌘2) ✓ Agree(H0(S))}} = {x 2 X |
BM(x, ⌘1+⌘2) ✓ Agree(H0(S))} by a triangle inequality (see Figure 6). Applying Lemma D.1, we
have the result. d) With the result above we have RRL

IA(S, ⌘2) = ({z | B(z, ⌘2) ✓ Agree(H0(S))}\
{z | h⇤(z) = 1}) [ (Agree(H0(S)) \ {z | h⇤(z) = 0}). Recall that SRL

IA(S, ⌘1, ⌘2) = {x 2 X |
h⇤(x) = 0^BM(x, ⌘1) ✓ RRL

IA(S, ⌘2)}[{x 2 X | h⇤(x) = 1^x 2 RRL

CA(S, ⌘2))}. Therefore, we
have SRL

IA(S, ⌘1, ⌘2) = ({z | B(z, ⌘2) ✓ Agree(H0(S))} \ {z | h⇤(z) = 1}) [ ({z | B(z, ⌘1) ✓
Agree(H0(S))} \ {z | h⇤(z) = 0}) We can conclude the result by applying Lemma D.1 and
symmetry.
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E Safely-reliable region for classifiers with smooth boundaries

We also bound the probability mass of the safely-reliable region for more general concept spaces
beyond linear separators. Specifically, we consider classifiers with smooth boundaries in the sense of
[vdVW96].
Definition 14 (↵-norm). Let f : C ! R be a function on C ⇢ Rd, and let ↵ 2 R+. For
k = (k1, . . . , kd) 2 Zd

�0, let ||k||1 =
Pd

i=1 ki and let Dk = @k

@k1x1...@kdxd
. We define ↵-norm of f

as

||f ||↵ := max
||k||1<d↵e

sup
x2C

|Dkf(x)|+ max
||k||1=d↵e�1

sup
x 6=x02C

|Dkf(x)�Dkf(x0)|
|x� x0|↵�d↵e+1

.

We define ↵th order smooth functions to be those which have a bounded ↵-norm. More precisely,
we define the class of ↵th order smooth functions FC

↵ := {f | ||f ||↵  C}. For example, 1st
order smoothness corresponds to Lipschitz continuity. We now define concept classes with smooth
classification boundaries.
Definition 15 (Concepts with Smooth Classification Boundaries, [Wan11]). A set of concepts HC

↵

defined on X = [0, 1]d+1 is said to have ↵th order smooth classification boundaries, if for every
h 2 HC

↵ the classification boundary is the graph of function xd+1 = f(x1, . . . , xd), where f 2 FC
↵

and (x1, . . . , xd+1) 2 X i.e. the predicted label is given by sign(xd+1 � f(x1, . . . , xd)).

If we further assume that the probability density may be upper and lower bounded by some absolute
positive constants (i.e. “nearly” uniform density), we can bound the safely-reliable region of our
learner even in this setting. We start with analogues of Lemmas D.1 and 3.2 for concepts with smooth
classification boundaries.

We first bound the probability mass of points x for which B(x, ⌘) is contained in the agreement
region of sample-consistent classifiers. We use the Lipschitzness of smooth functions to show that
such point x must lie outside of a ‘ribbon’ around the boundary of target concept h⇤, and adapt and
extend the arguments of [Wan11] to bound the probability mass of this ribbon.
Lemma E.1. Let the instance space be X = [0, 1]d+1 and D be a distribution over X with a “nearly”
uniform density where there exist positive constants 0 < a < b such that a  p(x)  b for all
x 2 [0, 1]d+1 when p(x) is the probability density of D. Let HC

↵ be the hypothesis space of concepts
with smooth classification boundaries with d < ↵ < 1, and B(·, ⌘) be a L2 ball perturbation with
radius ⌘. For S ⇠ Dm, for m = O( 1

"2 (VCdim(H)+ ln 1
� )), with probability at least 1� �, we have

Pr({x | B(x, ⌘) ✓ Agree(H0(S)}) � 1� 2b(C + 1)⌘ �O
�
ba�

↵
d+↵ "

↵
d+↵

�
.

Proof. By uniform convergence (Theorem 4.1, [AB99]), for S ⇠ Dm, for m = O( 1
"2 (VCdim(H) +

ln 1
� )), with probability at least 1 � �, we have Agree(BH

D
(h⇤, ")) ✓ Agree(H0(S)). Therefore,

it suffices to lower bound ⇡ := Pr{x | B(x, ⌘) ✓ Agree(BH

D
(h⇤, "))}. Let h⇤ 2 HC

↵ be the
target concept and denote x = (x1, . . . , xd) 2 [0, 1]d. Recall that the predicted label of (x, xd+1)
from h, h⇤ is given by sign(xd+1 � fh(x)) and sign(xd+1 � fh⇤(x)) respectively. Therefore,
h, h⇤ would disagree on (x, xd+1) when xd+1 lies between fh(x) and fh⇤(x). Denote �h(x) =

|
R fh(x)
fh⇤ (x) p(x, xd+1)dxd+1| be the probability mass of points that h disagree with h⇤ over (x, xd+1)

for a fixed x 2 [0, 1]d. With this notation, the probability mass of points (x, xd+1) that h and h⇤

disagree with is given by
R
[0,1]d |�h(x)|dx. Furthermore, from a  p(x, xd+1)  b, we know that

a|fh(x)� fh⇤(x)|  |�h(x)|  b|fh(x)� fh⇤(x)|.
Consider h 2 BD(h⇤, "), we have

R
[0,1]d |�h(x)|dx  ". This implies that

R
[0,1]d |fh(x) �

fh⇤(x)|dx 
R
[0,1]d |

�(x)
a |dx  "

a . Since the classification boundaries are assumed to be ↵th
order smooth with ↵ > d, Lemma 11 of [Wan11] implies that ||fh � fh⇤ ||1 = O

�
( "a )

↵
d+↵

�
where

||g||1 := supx2[0,1]d |g(x)|. Consider

1� ⇡ = Pr
x⇠DX

(9z 2 B(x, ⌘), 9h 2 B(h⇤, "), h(z) 6= h⇤(z)).

Recall that for z = (z, zd+1), h(z) 6= h⇤(z) when zd+1 lies between h(z), h⇤(z) which implies
fh⇤(z)� |fh⇤(z)�fh(z)| < zd+1 < fh⇤(z)+ |fh⇤(z)�fh(z)|. Since z 2 B(x, ⌘) and the boundary
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Figure 7: For any set of samples S (blue and red points) with no point lying on the decision boundary
of a concept with smooth boundary h⇤, there exists a band around the decision boundary of h⇤

(formally defined as {x 2 Rd | |fh⇤(x)� xd+1| < �} (purple)) such that for any point (purple star)
in this area, there exists a hypothesis h (by translation) that agree with h⇤ on S but disagree with h⇤

at that point.

functions fh are C-Lipschitz (by Definition 14) we have |fh(z) � fh(x)|  Ckz � xk  C⌘
and |zd+1 � xd+1|  ⌘. This implies that fh⇤(x) � |fh⇤(z) � fh(z)| � (C + 1)⌘ < xd+1 <
fh⇤(x) + |fh⇤(z) � fh(z)| + (C + 1)⌘. We are interested in the set {x | 9z 2 B(x, ⌘), 9h 2
B(h⇤, "), h(z) 6= h⇤(z)}, this leads to the inequality

fh⇤(x)�D � (C + 1)⌘ < xd+1 < fh⇤(x) +D + (C + 1)⌘

when D = sup z2B(x,⌘)
h2B(h⇤,")

|fh⇤(z)� fh(z)|  suph2B(h⇤,")kfh⇤ � fhk1 = O
�
( "a )

↵
d+↵

�
. Therefore,

1� ⇡ 
Z

[0,1]d

Z fh⇤ (x)+D+(C+1)⌘

fh⇤ (x)�D�(C+1)⌘
p(x, xd+1)dxd+1dx

 2b((C + 1)⌘ +D)

= 2b(C + 1)⌘ +O
�
ba�

↵
d+↵ "

↵
d+↵

�
.

The above bound immediately implies a bound on the probability mass of the safely-reliable region
for `TL, in combination with our previous results. The following lemma allows us to easily handle
the extension of our results to losses `CA and `ST as well, where the safely-reliable region involves
additional constraints.
Lemma E.2. Let the instance space be X = [0, 1]d+1 and D be a distribution over X . Let HC

↵
be the hypothesis space of concepts with smooth classification boundaries with d < ↵ < 1. For
h⇤ 2 HC

↵ , for a set of samples S ⇠ Dm such that there is no data point in S that lies on the decision
boundary, there exists �(S) > 0 such that for any x = (x, xd+1) with |fh⇤(x)� xd+1| < �, we have
x 62 Agree(H0(S)).

Proof. Note that translation preserves smoothness, i.e. any concept ht with fht(x) = fh⇤(x) + t
would also lie in HC

↵ . If |t| < �(S) = minx2S |fh⇤(x) � xd+1|, fht(x) � xd+1 must have the
same sign as (fh⇤(x) � xd+1) for any x 2 S, that is ht would agree with h⇤ on every point
in S. Furthermore, for any x with |fh⇤(x) � xd+1| < �, we can always translate h⇤ to ht that
ht(x) 6= h⇤(x) (see Figure 7). Therefore, x 62 Agree(H0(S)).

Equipped with the above lemmas, we establish bounds on the probability mass of the safely reliable
region for concept classes with smooth classification boundaries.
Theorem E.3. Let the instance space be X = [0, 1]d+1 and D be a distribution over X with a

“nearly” uniform density where there exist positive constants 0 < a < b such that a  p(x)  b for all
x 2 [0, 1]d+1 when p(x) is the probability density of D. Let HC

↵ be the hypothesis space of concepts
with smooth classification boundaries with d < ↵ < 1, and B(·, ⌘) be a L2 ball perturbation with
radius ⌘. For S ⇠ Dm, for m = O( 1

"2 (VCdim(H) + ln 1
� )) with no point lying on the decision

boundary of h⇤, for an optimal robustly-reliable learner L, we have
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(a) Pr(SRL

TL(S, ⌘1, ⌘2)) � 1� 2b(C + 1)⌘1 �O
�
ba�

↵
d+↵ "

↵
d+↵

�
with probability 1� �,

(b) SRL

CA(S, ⌘1, ⌘2) = SRL

TL(S, ⌘1, ⌘2),
(c) Pr(SRL

ST(S, ⌘1, ⌘2)) � 1� 2b(C + 1)(⌘1 + ⌘2)�O
�
ba�

↵
d+↵ "

↵
d+↵

�
with probability 1� �,

(d) Pr(SRL

IA(S, ⌘1, ⌘2)) � 1� b(C + 1)(⌘1 + ⌘2)�O
�
ba�

↵
d+↵ "

↵
d+↵

�
with probability 1� �.

Proof. From Lemma E.2, the agreement region does not contain points that are arbitrarily close to
the boundary of h⇤. Therefore, we can remove the additional conditions on labels for SRL

CA(S, ⌘1, ⌘2)
and SRL

ST(S, ⌘1, ⌘2), that is SRL

CA(S, ⌘1, ⌘2) = SRL

TL(S, ⌘1, ⌘2) = {x | B(x, ⌘1) ✓ Agree(H0(S))}
and SRL

ST(S, ⌘1, ⌘2) = {x 2 X | BM(x, ⌘1) ✓ {z | B(z, ⌘2) ✓ Agree(H0(S))}} = {x 2 X |
BM(x, ⌘1 + ⌘2) ✓ Agree(H0(S))}. Similarly, we have SRL

IA(S, ⌘1, ⌘2) = ({z | B(z, ⌘2) ✓
Agree(H0(S))} \ {z | h⇤(z) = 1}) [ ({z | B(z, ⌘1) ✓ Agree(H0(S))} \ {z | h⇤(z) = 0}). The
result follows from Lemma E.1.

F More on computational efficiency

It is possible to extend the optimization objective to a wide range of hypothesis classes under the
following assumption.
Assumption 1. For a hypothesis class H, we assume that for any h⇤ 2 H, a set of data points S
labeled by h⇤ then for any points x, y that h⇤(x) 6= h⇤(y), the line that connects between x, y must
pass through a disagreement region of H0(S),

{�x+ (1� �)y | � 2 [0, 1]} \DIS(H0(S)) 6= ;.

For example, a class of linear separators and a class of classifiers with smooth boundaries satisfies
this assumption.
Lemma F.1. Let H be a hypothesis class and D be a distribution over Rd. If H satisfies Assumption
1 then for a set of samples S ⇠ Dm, the reliability radius of a test point z is given by

min
h,h0,z0

||z�z0||2

s.t. h 2 H0(S),

h0 2 H0(S),

h(z0) 6= h0(z0).

Proof. Let r be the largest reliability radius of a test point z that is if we perturb z by a radius
at most r then the perturbed point is still in the agreement region. Consider for any perturbation
z0 that there exists h, h0 that h0(z0) has a different label from h0(z). If H satisfies Assumption
1, h0(z) 6= h0(z0) implies that the line between z, z0 must pass through the disagreement region.
Therefore, r  kz � z0k. On the other hand, let r20 be the solution of the optimization given above.
This implies that for any point z0 that kz � z0k < r0, for any h, h0 2 H0(S), we must have that
h(z) = h(z0) that is z0 2 Agree(H0(S)). Therefore, we have r0  r and we can conclude that
r = r0.

Remark. This could be solved efficiently in practice. For example, in the case of linear separators,
the problem takes the form of solving a quadratic program for each test point. We observe that
our proof of Theorem 3.3 above suggests an alternate margin-based approach which might be
even more practical to implement, while retaining high probability reliability guarantees under
the distributional assumption. If ĥ denotes an ERM classifier on sample S, one could check the
membership z 2 Â⌘ := {x : kxk2 < ↵

p
d � ⌘} \ {x : |hwĥ, xi| � C1↵"

p
d + ⌘} for any ⌘ � 0

by just computing the norm and margin w.r.t. ĥ. A simple halving search (e.g. starting with ⌘ = 1
2 )

could be used to estimate the reliability radius.
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Further, we can relax this constrained objective into a regularized objective that can be solved using
empirical risk minimization. In the following Lemma, we show that this provides a lower bound on
the reliability radius.
Lemma F.2. (Relaxation of the optimization objective for reliability radius) Let H be a hypothesis
class and D be a distribution over Rd. If H satisfies Assumption 1 then for a set of samples S ⇠ Dm,
let h1, h2, z⇤ be the optimal solution of the objective

h1, h2, z
⇤ = argmin

h,h0,z0
kz�z0k2 + �(R̂(h, S [ {(z0, 0)}) + R̂(h0, S [ {(z0, 1)}))

when R̂(h,A) is an empirical risk of h on the sample A then kz � z⇤k2  r when r the reliability
radius of z.

Proof. Let h, h0, z0 be the optimal solution of the optimization objective in Lemma F.1 so that the
reliability radius r is given by kz � z0k. Without loss of generality, let h(z0) = 0 and h0(z0) = 1.
By definition, we have R̂(h, S [ {(z0, 0)}) = 0 and R̂(h0, S [ {(z0, 1)})) = 0. Let h1, h2, z⇤ be an
optimal solution of the objective in Lemma F.2 then we have

kz � z⇤k2 + �(R̂(h1, S [ {(z⇤, 0)}) + R̂(h2, S [ {(z⇤, 1)}))
 kz � z0k2 + �(R̂(h, S [ {(z0, 0)}) + R̂(h0, S [ {(z0, 1)}))
= kz � z0k2

Since the empirical risk is non-negative, we can conclude that kz � z⇤k2  kz � z0k2 = r2.

Similar observations also apply to the computation of the safely-reliable region. It may be useful to
compute the safely-reliable region when we want to estimate the robust reliability performance of an
algorithm on test data. In particular, this may be helpful in determining how often and where our
learner gives a bad reliability radius, which can inform its safe deployment in practice.

G Bounds on the P!Q disagreement coefficient

We will now consider some commonly studied concept spaces, and bound the P!Q disagreement
coefficient for broad classes of distribution shifts.

Linear separators and nearly log-concave or s-concave distributions. We give a bound on
⇥P!Q for P and Q isotropic nearly log-concave distributions [AK91] over Rd, a broad class that
includes isotropic log-concave distributions.
Definition 16 (�-log-concavity). A density function f : Rd ! R�0 is �-log-concave if for any
� 2 [0, 1] and any x1, x2 2 Rd, we have f(�x1 + (1� �)x2) � e��f(x1)�f(x2)1��.

For example, 0-log-concave densities are also log-concave. Also, since the condition in the definition
holds for � = 0, we have � � 0. Note that a smaller value of � makes the distribution closer
to logconcave. We have the following bound on ⇥P!Q for distribution shift involving nearly
log-concave densities. At a high level, we bound the angle between the normal vectors of the
linear separators with small disagreement with h⇤ under P , and bound the probability mass of their
disagreement region under Q, by refining and generalizing the arguments from [BL13]. In particular,
we quantify how much near-logconcavity is sufficient for the angle bound to hold, which further
implies that any point in the disagreement region is either far away from the mean or close to the
margin.
Theorem G.1. Let the concept space H be the class of linear separators in Rd. Let P be isotropic
�1-log-concave and Q be isotropic �2-log-concave, over Rd. Then for 0  �1,�2  1

56dlog2(d+1)e ,

we have ⇥P!Q(") = O(d1/2+
�2

2 ln 2 log(d/")).

Proof. Our proof builds on and generalizes the arguments used in the proof of Theorem 14 in
[BL13]. Let h 2 BP(h⇤, r), i.e. d(h, h⇤)  r. We can apply the whitening transform from
Theorem 16 of [BL13] provided (1/20 + c1)

p
1/C1 � c21  1/9, where C1 = e�1dlog2(d+1)e and

28



c1 = e(C1 � 1)
p
2C1. It may be verified that this condition holds for 0  �1  1

56dlog2(d+1)e . Now,
by Theorem 11 of [BL13] we can bound the angle between their normal vectors as ✓(wh, wh⇤)  cr
where c is an absolute constant. Now if x 2 X has a large margin |wh⇤ · x| � cr↵ and small norm
||x||  ↵, for some ↵ > 0, we have

|wh · x� wh⇤ · x|  ||wh � wh⇤ || · ||x|| < cr↵.

Now the large margin condition |wh⇤ · x| � cr↵ implies hwh, xihwh⇤ , xi > 0, or h(x) = h⇤(x).
Since h 2 BP(h⇤, r) was arbitrary, we have x /2 DIS(BP(h⇤, r))). Therefore, the set {x | ||x|| >
↵} [ {x | |wh⇤ · x|  cr↵} contains the disagreement region DIS(BP(h⇤, r))).

By Theorem 11 of [BL13], since Q is an isotropic �2-log-concave distribution, we have PrQ[||x|| >
R
p
Cd] < Ce�R+1, for C = e�2dlog2(d+1)e. Thus setting ↵ =

p
Cd log

p
C
r gives PrQ[||x|| >

↵] < e
p
Cr. Also, by Theorem 11 of [BL13], for sufficiently small non-negative �2  1

56dlog2(d+1)e ,

we have PrQ[|wh⇤ · x|  cr↵]  c0r
p
Cd log

p
C
r for constant c0. The proof is concluded by a union

bound and applying Definition 9.

We further consider the case where the distributions belong to the broad class of isotropic s-concave
distributions. In particular, unlike �-log-concave distributions, the distributions from this class can
potentially be fat-tailed.
Definition 17 (s-concavity). A density function f : Rd ! R�0 is s-concave for s 2 (�1, 1] [
{�1} if for any � 2 [0, 1] and any x1, x2 2 Rd, we have f(�x1 + (1 � �)x2) � (�f(x1)s +
(1� �)f(x2)s)1/s.

Note that any s-concave function is also s0-concave if s > s0. Moreover, concave functions are
1-concave and log-concave functions are s-concave for any s < 0. Using results from [BZ17], we
adapt the arguments in Theorem G.1 to show a bound on the disagreement coefficient when P is
isotropic �-log-concave and Q is isotropic s-concave.
Theorem G.2. Let the concept space H be the class of linear separators in Rd. Let P be isotropic
�-log-concave and Q be isotropic s-concave, over Rd. Then for s � �1/(2d+ 3) and sufficiently
small non-negative �  1

56dlog2(d+1)e , we have ⇥P!Q(") = O
⇣p

d 2(1+ds)2

s+s2(d+2) (1� "s/(1+ds))
⌘
.

Proof. Similar to the proof of Theorem G.1, we can apply the whitening transform from Theorem
16 of [BL13] provided (1/20 + c1)

p
1/C1 � c21  1/9, where C1 = e�dlog2(d+1)e and c1 =

e(C1 � 1)
p
2C1. It may be verified that this condition holds for 0  �  1

56dlog2(d+1)e . We can
also show that the set {x | ||x|| > ↵} [ {x | |wh⇤ · x|  cr↵} contains the disagreement region
DIS(BP(h⇤, r))).

By Theorem 11 of [BZ17], we have PrQ[|wh⇤ ·x|  cr↵]  2(1+ds)
1+s(d+2) ·cr↵. By Theorem 5 of [BZ17],

since Q is an isotropic s-concave distribution, we have PrQ[||x|| > t
p
d] <

⇣
1� c1st

1+ds

⌘(1+ds)/s
,

for any t � 16 and absolute constant c1. This implies PrQ[||x|| > c1
p
d 1+ds

s (1� rs/(1+ds))] < Cr

for some constant C. Thus setting ↵ = c1
p
d 1+ds

s (1 � rs/(1+ds)) gives PrQ[||x|| > ↵] < Cr.
Also, for this ↵, we have PrQ[|wh⇤ · x|  cr↵]  c 2(1+ds)

1+s(d+2) · c1
p
d 1+ds

s (1 � rs/(1+ds))r =

c0
p
d 2(1+ds)2

s+s2(d+2) (1 � rs/(1+ds))r for constant c0. The proof is concluded by a union bound and
applying Definition 9.

Smooth classification boundaries. We also illustrate our notion for more general concept spaces
beyond linear separators. Specifically, we consider classifiers with smooth boundaries (Definition 15).
If we further assume that the probability density may be upper and lower bounded by an ↵th order
smooth function, we can bound the disagreement coefficient for shift from P to Q. Interestingly,
while [Wan11] need the distribution to be sandwiched between smooth functions, our result only
needs a lower bound on the smoothness of P and an upper bound on the smoothness of Q.
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Theorem G.3. Let the instance space be X = [0, 1]d+1. Let the hypothesis space be HC
↵ , with

d < ↵ < 1. If the marginal distributions PX ,QX have densities p(x) and q(x) on [0, 1]d+1 such
that there exists an ↵th order smooth function g(x) and ap, bq 2 R+ such that apg(x)  p(x) and
q(x)  bqg(x) for all x 2 [0, 1]d+1, then ⇥P!Q(") = O

⇣
bqa

�
↵

d+↵
p "�

d
d+↵

⌘
.

Proof. We will extend the arguments from [Wan11] to the distribution shift setting. Let x =
(x1, . . . , xd) 2 [0, 1]d and let h 2 BP (h⇤, r) where h⇤ 2 H↵ is the target concept. Denote
�p

h(x) =
R fh(x)
fh⇤ (x) p(x, xd+1)dxd+1, and �q

h(x) =
R fh(x)
fh⇤ (x) q(x, xd+1)dxd+1. It is easy to verify by

taking derivatives that �̃h(x) =
R fh(x)
fh⇤ (x) g(x, xd+1)dxd+1 is ↵th order smooth. Since h 2 BP (h⇤, r),

Z

[0,1]d
|�̃h(x)|dx 

Z

[0,1]d

1

ap
|�p

h(x)|dx  r

ap
.

By Lemma 11 of [Wan11], this implies ||�̃h||1 = O
⇣
( r
ap
)

↵
d+↵

⌘
, and therefore ||�q

h||1 

bq||�̃h||1 = O
⇣
bqa

�
↵

d+↵
p r

↵
d+↵

⌘
. Since this holds for any h 2 BP(h⇤, r), we have

sup
h2BP (h⇤,r)

||�q
h||1 = O

⇣
bqa

�
↵

d+↵
p r

↵
d+↵

⌘
.

By definition of region of disagreement, we have

Pr
x⇠QX

[x 2 DIS(BP(h
⇤, r))] = Pr

x⇠QX

[x 2 [h2BP(h⇤,r){x0 | h(x0) 6= h⇤(x0)}]

 2

Z

[0,1]d
sup

h2BP(h⇤,r)
||�q

h||1dx

= O
⇣
bqa

�
↵

d+↵
p r

↵
d+↵

⌘
.

The result follows from definition of ⇥P!Q(✏).

H Simple examples for the P!Q disagreement coefficient

Example 1. (Non-overlapping spheres the same center) Let P , Q be uniform distribution over a
sphere with the center at the origin with radius 1 and 2 respectively. Let H be a class of linear
separators that pass through the origin and h⇤ 2 H. By symmetry, we have

⇥P!Q(") = sup
r�"

PrQ(DIS(BP(h⇤, r)))

r

= sup
r�"

PrP(DIS(BP(h⇤, r)))

r

= ⇥P(").

The disagreement coefficient from P to Q is the same as the disagreement coefficient on P .

Example 2. (Thresholds) Let P , Q be uniform distribution over an interval [� 1
2 ,

1
2 ] and [�1, 1]

respectively. Let H be a class of a threshold function. Let h⇤ have a thereshold at 0. We have
DIS(BP(h⇤, r)) = [�r, r] and

⇥P!Q(") = sup
r�"

PrQ([�r, r])

r

=
2r
2

r
= 1

compared to the disagreement coefficient ⇥P(") = 2.
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I Additional proof details for distribution shift

Proof. (of Theorem 5.1) If S ⇠ Pm, with m � c
✏2 (d + ln 1

� ) for some sufficiently large constant
c, we have by uniform convergence ([AB99], Theorem 4.10) that with probability at least 1 � �,
we have dP(h, h⇤)  dS(h, h⇤) + ✏ for all h 2 H. Here dD(h1, h2) = Prx⇠DX [h1(x) 6= h2(x)],
and dS(h1, h2) =

1
|S|

P
x2S I[h1(x) 6= h2(x)]. Therefore, Agree(BH

P
(h⇤, ✏)) ✓ Agree(H0(S)) ✓

RL(S) in this event. Denoting this event by ‘E’ and its complement by ‘Ē’, we have

Pr
x⇠Q,S⇠Pm

[x 2 RL(S)] = Pr
x⇠Q

[x 2 RL(S) | E] Pr[E] + Pr
x⇠Q

[x 2 RL(S) | Ē] Pr[Ē]

� Pr
x⇠Q

[x 2 RL(S) | E] · (1� �)

� Pr
x⇠Q

[x 2 RL(S) | E]� �

� Pr
x⇠Q

[x 2 Agree(BH

P
(h⇤, ✏))]� �.

Noting Prx⇠Q[x 2 Agree(BH

P
(h⇤, ✏))] = 1� Prx⇠Q[x 2 DIS(BH

P
(h⇤, ✏))] and using Definition 9

completes the proof.

J Safely-reliable correctness under distribution shift

There is a growing practical [SSZ+20, SIE+20] as well as recent theoretical interest [DGH+23] in
the setting of ‘robustness transfer’, where one simultaneously expects adversarial test-time attacks as
well as distribution shift. We will study the reliability aspect for this more challenging setting. We
note that the definition of a robustly-reliable learner does not depend on the data distribution (see
Definition 3) as the guarantee is pointwise. Our optimality result in Section 3 applies even when a
test point is drawn from a different distribution Q. In this case, the safely-reliable region instead
would have a different probability mass.
Definition 18 (P!Q safely-reliable correctness). The P!Q safely-reliable correctness of L (at
sample rate m, for distribution shift from P to Q, w.r.t. robust loss `) is defined as the probabil-
ity mass of its safely-reliable region under Q, on a sample S ⇠ Pm, i.e. PQRL

` (S, ⌘1, ⌘2) :=
Prx⇠Q,S⇠Pm [x 2 SRL

` (S, ⌘1, ⌘2)].

We will now combine our results on test-time attacks and distribution shift to give a general bound on
the P!Q safely-reliable correctness for the different robust losses (Definition 1).
Theorem J.1. Let Q be a realizable distribution shift of P with respect to H, and h⇤ 2 H be the
target concept. There exist learners for robust losses `CA, `TL, `ST, `IA with P!Q safely-reliable
correctness given by

(a) PQRL

CA(S, ⌘1, ⌘2) = Prx⇠Q[BM(x, ⌘1) \ {z | h⇤(z) = h⇤(x)} ✓ Agree(H0(S))],

(b) PQRL

TL(S, ⌘1, ⌘2) = Prx⇠Q[BM(x, ⌘1) ✓ Agree(H0(S))],

(c) PQRL

ST(S, ⌘1, ⌘2) = Prx⇠Q[BM(x, ⌘1) ✓ {z | Bo(z, ⌘) ✓ Agree(H0(S)) ^ h(x) =
h(z), 8 x 2 Bo(z, ⌘), h 2 H0(S)}],

(d) PQRL

IA(S, ⌘1, ⌘2) = Prx⇠Q[({z | B(z, ⌘2) ✓ Agree(H0(S))} \ {z | h⇤(z) = 1}) [ ({z |
B(z, ⌘1) ✓ Agree(H0(S))} \ {z | h⇤(z) = 0})].

Proof. The proof follows by applying Theorems B.1 and B.2, and using Definitions 6 and 18.

We consider an example when the training distribution P is isotropic log-concave and the test
distribution Qµ is log-concave with its mean shifted by µ but the covariance matrix is still an identity
matrix (see Figure 4, right).
Theorem J.2. Let P,Q be isotropic log-concave over Rd. Let Qµ be a distribution after shifting
the mean of Q by µ 2 Rd. Let H = {h : x ! sign(hwh, xi) | wh 2 Rd, kwhk2 = 1} be the
class of linear separators. Let B(·, ⌘) be a L2 ball perturbation with radius ⌘. For S ⇠ Pm, for
m = O( 1

"2 (VCdim(H) + ln 1
� )), for an optimal robustly-reliable learner L, we have
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(a) PrQµ(SRL

TL(S, ⌘1, ⌘2)) � 1� 2(⌘1 + kµk2)� Õ(
p
d") with probability 1� �,

(b) SRL

CA(S, ⌘1, ⌘2) = SRL

TL(S, ⌘1, ⌘2),
(c) PrQµ(SRL

ST(S, ⌘1, ⌘2)) � 1� 2(⌘1 + ⌘2 + kµk2)� Õ(
p
d") with probability 1� �,

(d) PrQµ(SRL

IA(S, ⌘1, ⌘2)) � 1� (⌘1 + ⌘2 + 2kµk2)� Õ(
p
d") with probability 1� �.

The Õ-notation suppresses dependence on logarithmic factors and distribution-specific constants.

Proof. From triangle inequality, we know that B(x�µ, r+kµk2) ◆ B(x, r). We can simply extend
the proofs from Theorem 3.3. Recall that SRL

CA(S, ⌘1, ⌘2) = SRL

TL(S, ⌘1, ⌘2) = {x | B(x, ⌘1) ✓
Agree(H0(S))} ◆ {x | B(x� µ, ⌘1 + kµk2) ✓ Agree(H0(S))} and SRL

ST(S, ⌘1, ⌘2) = {x 2 X |
BM(x, ⌘1 + ⌘2) ✓ Agree(H0(S))} ◆ {x 2 X | BM(x� µ, ⌘1 + ⌘2 + kµk2) ✓ Agree(H0(S))}.
When x is drawn from a distribution Qµ, we know that x � µ follows a distribution Q which is
isotropic log-concave. We can apply Lemma D.1 to bound the probability mass of the safely-reliable
region under Qµ. Similarly, we can do the same for SRL

IA(S, ⌘1, ⌘2).

Similar bounds on reliability under robustness transfer may be given for linear separators under more
general source or target distributions, including isotropic �-log-concave or s-concave distributions,
as well as for concept classes with smooth classification boundaries, by applying Theorem J.1 to the
examples from previous sections.

K Agnostic setting

Proof of Theorem 7.1. The robustly-reliable learner L is given as follows. Set hL

S =
argminh2H

errS(h) i.e. an ERM over S, and rLS (z) = 1 if z 2 Agree(H⌫(S)), else rLS (z) = �1.
To study the robustly-reliable region, we assume there is some concept h⇤ 2 H which satisfies
errS(h⇤)  ⌫. By definition of ERM, errS(hL

S)  errS(h⇤) = ⌫, or hL

S 2 H⌫(S). We first
show that L is robustly-reliable. For z 2 X , if rLS (z) = ⌘ > 0, then z 2 Agree(H⌫(S)).
We have h⇤(z) = hL

S(z) since the classifiers h⇤, hL

S 2 H⌫(S) and z lies in the agreement re-
gion of classifiers in H⌫(S) in this case. Thus, we have `h

⇤

CA(h
L

S , x, z) = 0 for any x such that
z 2 Bo

M
(x, ⌘). In the ⌘ = 0 case, h⇤(z) = hL

S(z) by definiton and the same argument applies.
Therefore, RRL

CA(S, ⌫, ⌘) ◆ Agree(H⌫(S)) for all ⌘ � 0 follows from the setting rLS (z) = 1 if
z 2 Agree(H⌫(S)).

Conversely, let z 2 DIS(H⌫(S)). There exist h1, h2 2 H⌫(S) such that h1(z) 6= h2(z). By
definition, robustly-reliable learning with ⌘ = 0 is not possible for z. If possible, let there be
a robustly-reliable learner L such that z 2 RRL

CA(S, ⌫, ⌘) for some ⌘ > 0. By definition of the
robust-reliability region, we must have rLS (z) > 0. By definition of a ball, we have z 2 Bo

M
(z, ⌘)

for any ⌘ > 0, and therefore `h
⇤

CA(h
L

S , z, z) = 0 for every h⇤ 2 H such that errS(h⇤)  ⌫. But then
we must have hL

S(z) = h⇤(z) by definition of `CA. But we can set h⇤ = h1 or h⇤ = h2 since both
are in H⌫(S). But h1(z) 6= h2(z), and therefore hL

S(z) 6= h⇤(z) for one of the above choices for h⇤,
contradicting that L is robustly-reliable.
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