Introduction

Motivation.

Representation learning often incidentally acquires geometric structure e.g.,
class-mean collapse late in training or consistent eigenspectrum decay
across biological and artificial systems. Such phenomena suggest that
useful latent geometry emerges spontaneously but is not explicitly
controlled.

Prior work explicitly shapes latent spaces by (i) controlling local sensitivity
and (ii) contrastive objectives, and (iii) explicit priors. Yet these approaches
do not exploit attractor dynamics as a direct mechanism for organizing
representations.

Approach.

We introduce noise-injected Hopfield retrieval layers inserted between
network layers to explicitly sculpt latent spaces. By tuning two parameters #
of retrieval iterations, and inverse temperature, we control how strongly
representations contract, interpolating from discrete attractors to smooth
continuous manifolds.

Effect.
These layers organize intermediate features into stable clusters, naturally
Improving noise robustness and overall representation quality.

Hopfield Retrieval layer

Modern Hopfield Dynamics.

We formulate a stochastic Hopfield update that introduces noise-driven
attractor dynamics into latent representations. Given a set of unit-norm
memory vectors {e;}i_,with |le;|]l, = 1 and memory matrix C = [e,, -, ep] €
RP*P | the query vector z, € RPis updated as follows. At each iteration t,
Gaussian noise &, ~ N (0,0%1p) is injected and the perturbed vector is
normalized to unit norm. This process corresponds to gradient descent on
the Modern Hopfield energy function.
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Noise-Injected Hopfield Retrieval (NIHR).
We implement these dynamics as NIHR, a TN TN
general and fully differentiable module that can be
inserted between arbitrary network layers.

NIHR performs iterative refinement, pulling . b L
representations toward Hopfield energy minima
and thereby enforcing local geometric structure in
the latent space.
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Structural evolution under Autoencoder framework

We insert NIHR between the encoder and decoder to study how Hopfield retrieval
reshapes latent organization. This allows us to analyze how structured refinement
influences reconstruction robustness and representation quality.

PCA Visualization.

we project latent codes onto their top principal components after T = 1, 5, 10, 15
refinement steps. As T increases, diffuse latents progressively contract into clear,
stable clusters, demonstrating how NIHR sharpens latent geometry over iterations.
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Robustness under Gaussian Noise.

We conduct controlled experiments on MNIST with additive Gaussian noise of
varying standard deviation ¢ to simulate input degradation. Two metrics are used:
the structural similarity index (SSIM) for reconstruction quality, and linear probing
accuracy for assessing the discriminative power of learned representations.
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Evaluation under Gaussian input corruption. Left: SSIM scores for reconstruction fidelity. Right: Linear probing accuracy for
representation quality. Models include AE, VAE, VQ-VAE, and NIHR with T € {1, 5,10, 15}.
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Robust Classification under Corruptions

We integrate NIHR into ResNet-18 as a latent refinement layer to improve
robustness under input corruptions. The insertion point is chosen
empirically: after the first residual block for MNIST and after the last residual
block for CIFAR-10.

Evaluation under Corruption.

Robustness is measured on MNIST-C and CIFAR-10-C, while all models
are trained only on clean data with no augmentation or corruptions. The
resulting classification accuracies on corrupted datasets are summarized
below.

Dataset Model Clean (0) sl s2 s3 s4 sH Overall
ResNet 99.47 £ 0.05 - - - - - 72.13£2.19

MNIST-C R ogNet+ NTHR 99,50 + 0.02 - - - - - 80.56 + 2.2
ResNet 84.78 £0.18 75.69+0.68 70.39+092 64.99+1.03 5851+1.21 4898 =1.04 63.71 +0.96

CIFAR-C ResNet+NIHR  81.81+0.64 73.934+125 69.28+£129 6458+1.38 5873+1.38 51.00+1.94 63.50+1.31

CIFAR-C  ResNet 84.78 £0.18 70.10+1.74 5540293 41.91x4.14 36.36£4.63 31.93+£4.86  47.14 £ 3.53
(Gaussian) ResNet+NTHR  81.81+0.64 72.81+2.30 63.83+3.41 54.47+4.21 49.75+459 45994475 57.37+3.63

PCA Visualization.

We visualized how the intermediate representations of ResNet-18 evolve
under latent attractor dynamics and observed that they become increasingly
coherent as they are pulled toward the attractor.
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Contributions

NIHR is a general, differentiable module that integrates into diverse
architectures without modification. Its noise-driven Hopfield retrieval forms
clear attractor basins that organize intermediate representations, improving
robustness to noise and input corruptions. We also plan to extend this work
to RNNs and explore the connections among Hopfield networks,
Transformers, RNNs, and other ANNs in terms of attractor dynamics.
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