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ABSTRACT

We study the problem of training neural stochastic differential equations, or dif-
fusion models, to sample from a Boltzmann distribution without access to target
samples. Existing methods for training such models enforce time-reversal of the
generative and noising processes, using either differentiable simulation or off-
policy reinforcement learning (RL). We prove equivalences between families of
objectives in the limit of infinitesimal discretization steps, linking entropic RL
methods (GFlowNets) with continuous-time objects (partial differential equations
and path space measures). We further show that an appropriate choice of coarse
time discretization during training allows greatly improved sample efficiency and
the use of time-local objectives, achieving competitive performance on standard
sampling benchmarks with reduced computational cost.

1 INTRODUCTION

We consider the problem of sampling from a distribution on R3 with density ?target, which is described
by an unnormalized energy model ?target (G) = exp(−E(G))// with / =

∫
R3

exp(−E(G)) dG. We have
access to E but not to the normalizing constant / or to samples from ?target. This problem is ubiquitous
in Bayesian statistics and machine learning and has been an object of study for decades, with Monte
Carlo methods (Duane et al., 1987; Roberts & Tweedie, 1996; Hoffman et al., 2014; Leimkuhler
et al., 2014; Lemos et al., 2023) recently being complemented by deep generative models (Albergo
et al., 2019; Noé et al., 2019; Gabrié et al., 2021; Midgley et al., 2023; Akhound-Sadegh et al., 2024).

Neural SDE

Paths - ∼ P-

Policy −→c

Trajectories -̂ ∼ P̂
-̂

Reverse SDE

Paths . ∼ Q.

Policy←−c in rev. MDP

Trajectories .̂ ∼ Q̂
.̂

Euler-Maruyama
discretization

Continuous-time limit
(Prop. 3.1)

Euler-Maruyama
discretization

Continuous-time limit
(Prop. 3.1)

Generative process Diffusion process

objectives

!

Continuous-time processes

Discrete-time processes

Figure 1: The problem of making continuous-time
forward and reverse processes determine the same
path space measure is approximated by matching
distributions over discrete-time trajectories.

Building upon the success of diffusion models in
data-driven generative modeling (Sohl-Dickstein
et al., 2015; Ho et al., 2020; Dhariwal & Nichol,
2021; Rombach et al., 2021, inter alia), recent work
(e.g., Zhang & Chen, 2022; Berner et al., 2022;
Vargas et al., 2023; Richter & Berner, 2024; Vargas
et al., 2024; Sendera et al., 2024) has proposed
solutions to this problem that model generation
as the reverse of a diffusion (noising) process in
discrete or continuous time (Fig. 1). Thus ?target is
modeled by gradually transporting samples, by a
sequence of stochastic transitions, from a simple
prior distribution ?prior (e.g., a Gaussian) to the target
distribution. When a dataset of samples from ?target
is given, diffusion models are trained using a score
matching objective equivalent to a variational bound
on data log-likelihood (Song et al., 2021a). The problem is more challenging when we have no
samples but can only query the energy function, as training methods necessarily involve simulation
of the generative process. (We survey additional related work in Appendix A.)

In continuous time, we assume the generative process takes the form of a stochastic differential
equation (SDE) (with initial condition ?prior and diffusion coefficient f):

d-C = −→̀(-C , C) dC + f(C) d,C , -0 ∼ ?prior. (1)

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Path KL (15)

EP

[
log dP

dQ

]

Trajectory KL (5)

EP̂

[
log dP̂

dQ̂

]
≈Riemann sum

ΔC → 0 limit
(Prop. 3.2)

2nd moment / VarGrad

EW

[(
log dP

dQ − log /̂
)2

]

TB / VarGrad (7)

EŴ

[(
log dP̂

dQ̂
− log /̂

)2
]

ΔC → 0 limit
(Prop. 3.3)≈Riemann sum

E[gradient]
(if Ŵ = P̂)

(Richter et al.,
Malkin et al.)

E[gradient]
(ifW = P)

(Richter et al.)

Nelson’s identity (12)

←−̀
=
−→̀ − f2∇ log ?

Vanishing to O(
√
ΔC)

for a.e. G=+1 | G=
(Prop. 3.4)

Fokker-Planck PDEs (10)
mC ? = −∇ · (?−→̀) + f2

2 Δ?

mC ? = −∇ · (?←−̀) − f2

2 Δ?

Detailed balance (8)

log
[
?̂= (G=)−→c = (G=+1 | G=)

]
− log

[
?̂=+1(G=+1)←−c =+1(G= | G=+1)

]
= 0

Vanishing to O(ΔC)
in EG=+1 |G=
(Prop. 3.4)

up to ∇ · ?

fwd⇔ bwd

if P1 = Q1

GFN theory

(Bengio et al.,
Lahlou et al.)

Global KL divergence Path measure proportionality Density evolutionReversal formula

Global consistency Local consistency

On-policy objectives Off-policy objectives

Figure 2: Training objectives for neural SDEs (top row) and their approximations by objectives for discrete-time
policies (bottom row). On-policy objectives minimize a divergence by differentiating through SDE integration,
while off-policy objectives enforce local or global consistency constraints. Our results explain the behavior of
discrete-time objectives as the time discretization becomes finer.

When the drift ` is given by a parametric model, such as a neural network, (1) is called a neural SDE
(Tzen & Raginsky, 2019; Kidger et al., 2021a; Song et al., 2021b). The goal is to fit the parameters
so as to make the distribution of -1 induced by the initial conditions and the SDE (1) close to ?target.

In discrete time, we assume the generative process is described by a Markov chain with transition
kernels −→c = ( -̂=+1 | -̂=), = = 0, . . . , # − 1, and initial distribution -̂0 ∼ ?prior. The goal is to learn
the transition probabilities −→c = so as to make the distribution of -̂# close to ?target. This is the
setting of stochastic normalizing flows (Hagemann et al., 2023), which are, in turn, a special case of
(continuous) generative flow networks (GFlowNets; Bengio et al., 2021; Lahlou et al., 2023).

Training objectives for both the continuous-time and discrete-time processes are typically based on
minimization of a bound on the divergence between the distributions over trajectories induced by the
generative process and by the target distribution together with the noising process. These objectives
may rely on differentiable simulation of the generative process (Li et al., 2020; Kidger et al., 2021b;
Zhang & Chen, 2022) or on off-policy reinforcement learning (RL), which optimizes objectives
depending on trajectories obtained through exploration (Nüsken & Richter, 2021; Malkin et al., 2023).
Objectives may further be classified as global (involving the entire trajectory) or local (involving a
single transition). Common objectives and the relationships among them are summarized in Fig. 2.

Any SDE determines a discrete-time policy when using a time discretization, such as the Euler-
Maruyama integration scheme; conversely, in the limit of infinitesimal time steps, the discrete-time
policy obtained in this way approaches the continuous-time process (Kloeden & Platen, 1992). The
question we study in this paper is how the training objectives for continuous-time and discrete-time
processes are related in the limit of infinitesimal time steps. We formally connect RL methods to
stochastic control and dynamic measure transport with the following theoretical contributions:

(1) We show that global objectives in discrete time converge to objectives that minimize divergences
between measures induced by the forward and reverse processes in continuous time (Prop. 3.3).

(2) We show that local constraints enforced by GFlowNet training objectives asymptotically approach
partial differential equations that govern the time evolution of the marginal densities of the SDE
under the generative and noising processes (Prop. 3.4).

These results motivate the hypothesis that an appropriate choice of time discretization during training
can allow for greatly improved sample efficiency. Training with shorter trajectories obtained by
coarse time discretizations would further allow the use of time-local objectives without the computa-
tionally expensive bootstrapping techniques that are necessary when training with long trajectories.
Confirming this hypothesis, we make the following empirical contribution:

(3) In experiments on standard sampling benchmarks, we show that training with nonuniform time
discretizations much coarser than those used for inference achieves similar performance to
state-of-the-art methods, at a fraction of the computational cost (Fig. 4).

2 DYNAMIC MEASURE TRANSPORT IN DISCRETE AND CONTINUOUS TIME

Recall that our goal is to sample from a target distribution ?target = 1
/

exp(−E(G)) given by a
continuous energy function E : R3 → R. To achieve this goal, we present approaches using discrete-
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time policies in the framework of Markov decision processes (MDPs) in §2.1 and continuous-time
processes in the context of neural SDEs in §2.2. In particular, we will draw similarities between
the two approaches and show how time discretizations of neural SDEs give rise to specific policies
in MDPs in §2.3. This allows us to rigorously analyze the asymptotic behavior of corresponding
distributions and divergences in §3. Note that our general assumptions can be found in Appendix B.1.

Our exposition synthesizes the definitions for MDP policies (Bengio et al., 2023; Lahlou et al.,
2023), results on neural SDEs for sampling (Richter & Berner, 2024; Vargas et al., 2024), and PDE
perspectives (Máté & Fleuret, 2023; Sun et al., 2024). The results in §3 extend classical results on
SDE approximations (see, e.g., Kloeden & Platen (1992)) to objectives for diffusion-based samplers.

2.1 DISCRETE-TIME SETTING: STOCHASTIC CONTROL POLICIES

A discrete-time Markovian process -̂ with density P̂( -̂) – a distribution over R3-valued variables
-̂0, . . . , -̂# – can be identified with a policy −→c in the deterministic Markov decision process (MDP)
(S,A, ), ') depicted in Fig. 6, given by

−→c (0 | •) = P̂( -̂0 = 0) = ?prior (0), −→c = (0 | (G, C=)) = P̂( -̂=+1 = 0 | -̂= = G). (2)

We sometimes write −→c = (· | G) for −→c = (· | (G, C=)) for convenience. We relegate formal definitions
to Appendix B.2; in short, the states are pairs of space and time coordinates (G, C=) (together with
abstract initial and terminal states), actions represent steps from -̂= to -̂=+1 (taking action 0 leads
to state (0, C=+1)), and the reward for terminating from a state (G, C# ) is set to −E(G). The learning
problem is to find −→c whose induced distribution over -̂# is the Boltzmann distribution of the reward.

Distributions over trajectories. The possible trajectories in the MDP starting at • and ending
in ⊥ have the form • → (GC0 , C0) → · · · → (GC# , C# ) → ⊥, which we sometimes abbreviate to
GC0 → GC1 → · · · → GC# . Following the policy −→c for # + 1 steps starting at • yields a distribution
over trajectories GC0 → GC1 → · · · → GC# , i.e.,

P̂( -̂) = P̂( -̂0)
∏#−1
==0 P̂( -̂=+1 | -̂=) = ?prior ( -̂0)

∏#−1
==0
−→c = ( -̂=+1 | -̂=). (3)

The same construction is possible in reverse time: a density ?target over -̂# and a policy←−c (anal-
ogously to (2) defining transitions probabilities from -̂=+1 to -̂=) on the reverse MDP yields a
Markovian distribution over trajectories Q̂, given analogously to (3) in reverse time. Given a (for-
ward) policy, the reverse policy generating the same distribution over trajectories can be recovered
using the marginal state visitation distributions via the detailed balance formula (8).

Radon-Nikodym derivative and divergences. The distributions P̂, Q̂ determined by a pair of
policies −→c ,←−c and densities ?prior, ?target allow us to develop divergences (losses) for learning the
parameters of suitable parametric families of policies. Our goal is to make the forward and reverse
processes approximately equal by minimizing a divergence between the distributions over their trajec-
tories. The density ratio of these distributions, also known as Radon-Nikodym derivative, is given by

dP̂
dQ̂
( -̂) = P̂( -̂)

Q̂( -̂)
=
P̂( -̂0)

∏#−1
==0 P̂( -̂=+1 | -̂=)

Q̂( -̂# )
∏#−1
==0 Q̂( -̂= | -̂=+1)

=
?prior ( -̂0)

∏#−1
==0
−→c = ( -̂=+1 | -̂=)

?target ( -̂# )
∏#−1
==0
←−c =+1 ( -̂= | -̂=+1)

. (4)

Using (4), we can write the Kullback-Leibler (KL) divergence �KL (P̂, Q̂) B E-̂∼P̂
[
log dP̂

dQ̂
( -̂)

]
as

�KL (P̂, Q̂) = E-̂∼P̂

[
log ?prior ( -̂0) + E( -̂# ) +

#−1∑
==0

log
−→c = ( -̂=+1 | -̂=)
←−c =+1 ( -̂= | -̂=+1)

]
+ log /. (5)

Since log / is constant, this expression can be minimized via gradient descent on the parameters
of the policies, for instance by zeroth-order gradient estimation (REINFORCE; Williams (1992)).
If the policies allow for a differentiable reparametrization as a function of noise (e.g., if they are
conditionally Gaussian) we can use a deep reparametrization trick, amounting to writing the KL
as a function of the noises introduced at each step. In particular, by fitting the parameters of −→c and←−c
so that the two processes are approximate time-reversals of one another, we also get an approximate
solution to the sampling problem, i.e., -̂# is approximately distributed as the target distribution
?target. This can be motivated by the data processing inequality, which yields that

�KL (P̂( -̂# ), ?target ( -̂# )) ≤ �KL (P̂, Q̂). (6)
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We can also consider other divergences between two measures P̂ and Q̂. For instance, the trajectory
balance (TB, also known as second-moment, Malkin et al. (2022); Nüsken & Richter (2021)) and
related log-variance (LV, also known as VarGrad, Richter et al. (2020)) divergences are given by

�ŴTB (P̂, Q̂) = E-̂∼Ŵ
[(

log dP̂
dQ̂
( -̂)

)2
]

and �ŴLV (P̂, Q̂) = Var
-̂∼Ŵ

[
log dP̂

dQ̂
( -̂)

]
, (7)

where the density ratio inside the square is given by (4) and Ŵ is a reference measure. We are free
in the choice of reference measure, which allows for exploration in the optimization task (in RL, this
is called off-policy training). We note that computing the second-moment divergence in (7) requires
either knowledge of the normalizing constant / of ?target or a learned approximation, with the LV
divergence coinciding with TB when using a batch-level estimate of log / (see, e.g., Malkin et al.
(2023, §2.3)). While estimators of the two divergences in (7) have different variance (which is related
to baselines in RL), the expectations of their gradients with respect to the policy of P̂ coincide when
Ŵ = P̂ and are then, in turn, equal to the gradient of the KL divergence (5) (Richter et al., 2020;
Malkin et al., 2023). In §2.2, we will see that one can define analogous concepts in continuous time.

Local divergences. Instead of looking at entire trajectories, we can as well define divergences
locally, i.e., on small parts of the trajectories. To this end, one can define the so-called detailed
balance (DB) divergence as

�ŴDB,= (P̂, Q̂, ?̂) = E-̂∼Ŵ

log

(
?̂= ( -̂=)−→c ( -̂=+1 | -̂=)

?̂=+1 ( -̂=+1)←−c ( -̂= | -̂=+1)

)2 , (8)

for the time step =, where ?̂= is a learned estimate of the density of -̂= for 0 < = < # , while
?̂0 = ?prior and ?̂# = ?target are fixed. Minimizing the DB divergence enforces that the transition
kernels −→c and←−c of P̂ and Q̂, respectively, are stochastic transport maps between distributions with
densities ?̂= and ?̂=+1, for each =. If the policies and density estimates jointly minimize (8) to 0
for some full-support reference distribution Ŵ and all =, it can be shown that they also minimize
the trajectory-level divergences (7); see Bengio et al. (2021) for the discrete case, Lahlou et al.
(2023) for the continuous case, Malkin et al. (2023) for the connection to nested variational inference
(Buchner, 2021), and Deleu & Bengio (2023) for the connection to detailed balance for Markov
chains. The divergence used for training may be a (possibly weighted1) sum of the DB divergences
(8) for = = 0, . . . , # − 1. ‘Subtrajectory’ interpolations between the global TB objective (7) and the
local DB objective (8) exist; see Appendix B.4 and Nüsken & Richter (2023).

Uniqueness of solutions. Learning both the generative policy −→c and the time-reversed policy←−c
in the general setting as above leads to non-unique solutions. We can achieve uniqueness of the
objectives by prescribing←−c (as in diffusion models), adding additional regularizers (as in Schrödinger
(half-)bridges), or prescribing the densities (P̂( -̂=))#−1

==1 and imposing constraints on the policies (as
in annealing schemes); see Blessing et al. (2024, Tables 6 & 7) and Sun et al. (2024).

2.2 CONTINUOUS-TIME SETTING: NEURAL SDES

We consider neural stochastic differential equations (neural SDEs) with isotropic additive noise, i.e.,
families of stochastic processes - = (-C )C∈[0,1] given as solutions of SDEs of the form

d-C = −→̀(-C , C) dC + f(C) d,C , -0 ∼ ?prior, (9)

where −→̀ : R3 × [0, 1] → R3 is the drift (also called the control function), parametrized by a neural
network2; f : [0, 1] → R>0 is the diffusion rate, which in this paper is assumed to be fixed (more
generally, it could be a 3 × 3 matrix that depends also on -C ); and,C is a standard 3-dimensional
Brownian motion. Using a time discretization, the drift −→̀, together with the noise given by the
diffusion rate and the Brownian motion, can be connected to a policy −→c of a MDP, which can be
sampled to approximately simulate the process - (see §2.3).

Distributions over trajectories. Similar to the previous section, we can define a measure on
the trajectories of the process - . Since the trajectories C ↦→ -C are almost surely continuous, the
distribution (also known as law or push-forward) of the process - defines a path space measure P,

1Our result Prop. 3.4 suggests a weighting of 1
#ΔC=

, in the notation of §2.3, but our experiments showed no
significant difference between such a weighting and a uniform one.

2For notational convenience, we do not make the dependence of - on the neural network parameters explicit.
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which is a measure on the space � ( [0, 1],R3) of continuous functions, representing the distribution
of trajectories of - . We will show in §2.3 that such a path measure can be interpreted as the limit of
distributions over discrete-time trajectories as in (3) when the step-sizes C=+1 − C= tend to zero.

We can also define the time marginals ? : R3 × [0, 1] → R, where for each time C ∈ [0, 1], ?(·, C)
gives the density of -C . In measure-theoretic notation, the time marginals are the densities of the
pushforwards of the path measure P by the evaluation maps - ↦→ -C sending a continuous function
(trajectory) to its value at time C. Thus, we will also denote the distribution of the time marginals
by PC . The evolution of ? is governed by the Fokker-Planck equation (FPE), which is the partial
differential equation (PDE)

mC ? = −∇ · (?−→̀) + f
2

2
Δ?, ?(·, 0) = ?prior, (10)

where Δ? denotes the Laplacian of ?. The Fokker-Planck equation generalizes the continuity equation
for ordinary differential equations, which corresponds to the case f = 0. It expresses the conservation
of probability mass when particles distributed with density ?(·, C) are stochastically transported by
the drift −→̀ and diffused with scale f. While such a PDE perspective is only possible in continuous
time, in §3 we derive that certain MDPs satisfy FPEs in the limit of finer time discretizations.

Reverse process. As for reverse-time MDPs, we can also define reverse-time SDEs

d-C =←−̀(-C , C) dC + f(C) d
←−
, C , -1 ∼ ?target, (11)

where
←−
, C is a reverse-time3 Brownian motion and←−̀ is a suitable drift, potentially also parametrized

by a neural network. This SDE gives rise to another path space measureQ. While in discrete time
(§2.1) local reversibility is given by detailed balance (8), in continuous time one can characterize
when the path space measure Q of the reverse-time SDE in (11) coincides with the path space
measure P of the forward SDE in (9) by a local condition known as Nelson’s identity (Nelson (1967),
also attributed to Anderson (1982)), which states thatQ = P if and only if

←−̀
=
−→̀ − f2∇ log ? and Q1 = P1, (12)

where ? denotes the densities of P’s time marginals. It can be shown that substituting this expression
into the FPE for the backward process recovers the FPE (10) for the forward process, and similarly
that the KL divergence, given by (15) below, between the forward and backward processes is zero.

Radon-Nikodym derivative and divergences. Since we typically cannot compute the time
marginals, we cannot directly use Nelson’s identity to solve the sampling problem. However,
similar to §2.1, we can establish learning problems to infer the parameters of the neural networks −→̀,
←−̀, so that the induced terminal distribution of the forward SDE (9) is close to the target, P1 ≈ ?target,
in some suitable measure of divergence.

The tool to establish such learning problems is Girsanov’s theorem, which states the following. Let
P(1) and P(2) be the path space measures defined by SDEs of the form (9) with drifts −→̀(1) , −→̀(2) .
Then, for P(2) -almost every - ∈ � ( [0, 1],R3), the Radon-Nikodym derivative is given by

log
dP(1)

dP(2)
(-) =

∫ 1

0

‖−→̀(2) (-C , C)‖2 − ‖−→̀(1) (-C , C)‖2
2f(C)2

dC +
∫ 1

0

−→̀(1) (-C , C) − −→̀(2) (-C , C)
f(C)2

· d-C .
(13)

An intuitive explanation of (13) using a discrete-time approximation can be found in Särkkä & Solin
(2019, Section 7.4) or in the proof of Lemma B.7. The same result holds for reverse-time processes
as in (11) with d-C replaced by integration against the reverse-time process d←−- C . Using a reversible
Brownian motion as a reference path measure (see Léonard (2014; 2013)), we can thus derive the
Radon-Nikodym derivative between the path measures P and Q of the forward and reverse-time
SDEs in (9) and (11) as

log
dP
dQ
(-) = log

?prior (-0)
?target (-1)

+
∫ 1

0

‖←−̀(-C , C)‖2 − ‖−→̀(-C , C)‖2
2f(C)2

dC

+
∫ 1

0

−→̀(-C , C)
f(C)2

· d-C −
∫ 1

0

←−̀(-C , C)
f(C)2

· d←−- C ,
(14)

3We refer to Kunita (2019); Vargas et al. (2024) for details on reverse-time SDEs and backward Itô integration.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

see Vargas et al. (2024). A related result was derived by Richter & Berner (2024) using the conversion
formula

∫ 1
0 5 (-C , C) · d-C =

∫ 1
0 5 (-C , C) · d

←−
- C −

∫ 1
0 f(C)2∇ · 5 (-C , C) dC. By integrating (14) over

- ∼ P, it can be derived that the KL divergence is given by an expression analogous to (5):

�KL (P,Q) = E-∼P

[
log ?prior (-0) + E(-) )

+
∫ 1

0

(
‖−→̀(-C , C) −←−̀(-C , C)‖2

2f(C)2
− ∇ · ←−̀(-C , C)

)
dC

]
+ log /,

(15)

Informally, the derivation uses that in expectation over - ∼ P, the integral with respect to d-C in (14)
is the sum of an integral with respect to −→̀(-C ) dC and a stochastic integral with zero expectation.

The KL divergence can also be interpreted as the cost of a continuous-time stochastic optimal control
problem (Dai Pra, 1991; Berner et al., 2022). Some objectives, such as those in Zhang & Chen (2022),
optimize the parameters of the drift defining P by minimizing variants of the KL divergence (15)
approximately: by passing to a time discretization of the SDE (§2.3) and expressing the objective as
a function of the Gaussian noises introduced at each step of the SDE integration, amounting to a deep
reparametrization trick. For suitable integration schemes (Vargas et al., 2023; 2024), the discretized
Radon-Nikodym derivative can be written as a density ratio, so that this approach corresponds to
optimizing a discrete-time KL as in (5).

Analogously to the discrete-time setting (7), we can also consider the second-moment or log-variance

divergences �WTB (P,Q) = E-∼W
[(

log dP
dQ (-)

)2
]

and �WLV(P,Q) = Var-∼W
[
log dP

dQ (-)
]
, where

W is a reference path space measure. These divergences were explored by Nüsken & Richter (2021).

Local time reversal: PDE viewpoint. The continuous-time perspective also offers to employ the
PDE framework for learning the dynamical measure transport. Recall that the density ? of the process
- defined in (9) fulfills the Fokker-Planck equation (10). One can thus aim to learn −→̀ so as to make
it satisfy the FPE, with the boundary values ?(·, 0) = ?prior and ?(·, 1) = ?target, where ? is either
prescribed or also learned (as done in Máté & Fleuret (2023)). In Sun et al. (2024) it is shown that
when using suitable losses on this problem one recovers a loss equivalent to �TB. When choosing the
diffusion loss from Nüsken & Richter (2023), one recovers a continuous-time variant of �SubTB (see
Appendix B.4) and thus �DB. In §3, we show that it also works the other way around: we can start
with the discrete-time detailed balance divergence and derive PDE constraints in the limit.

2.3 FROM SDES TO DISCRETE-TIME EULER-MARUYAMA POLICIES

Simulation of the process - can be achieved by discretizing time and applying a numerical integration
scheme, such as the Euler-Maruyama scheme (Maruyama, 1955). Specifically, one fixes a sequence
of time points 0 = C0 < C1 < · · · < C# = 1 and defines the discrete-time process -̂ = ( -̂=)#==0 by

-̂0 ∼ ?prior, -̂=+1 = -̂= + −→̀( -̂=, C=)ΔC= + f(C=)
√
ΔC= b=, b= ∼ N(0, �3), (16)

where ΔC= B C=+1 − C=. This defines the policy −→c (0 | (G, C=)) = N(0; G + −→̀(G, C=)ΔC=, f(C=)2ΔC=)
on an MDP as in (2). It is clear by comparing (2) and (16) that this distribution exactly coincides
with the distribution P̂ in (3) over sequences ( -̂0, -̂1, . . . , -̂# ) of the Euler-Maruyama-discretized
process -̂ . As we will discuss below, with decreasing mesh size, the marginals P̂(-=) of the =-th
step of the discretized process converge to the marginals ?(·, C=) of the continuous-time process at
time C=. Based on the Central Limit Theorem, such convergence can also be shown for non-Gaussian
policies that satisfy suitable consistency conditions (Kloeden & Platen, 1992, §6.2).

Finally, the same discretization is possible for reverse time: a reverse-time process of the form (11)
with drift function −→̀ together with a target density ?target determine a policy←−c on the reverse MDP,
corresponding to reverse Euler-Maruyama integration:

-̂# ∼ ?target, -̂= = -̂=+1 −←−̀( -̂=+1, C=+1)ΔC= − f(C=+1)
√
ΔC= b=, b= ∼ N(0, �3). (17)

However, note that the Euler-Maruyama discretizations of a process and of its reverse-time process
defined by (12) do not, in general, coincide. That is, a policy on the reverse MDP can be constructed
either by discretizing an SDE to yield a policy on the forward MDP, then reversing it, or by discretizing
the reverse SDE to directly obtain a policy on the reverse MDP, possibly with different results. In
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particular, the Gaussianity of transitions is not preserved under time reversal: the reverse of a discrete-
time process with Gaussian increments does not, in general, have Gaussian increments. However,
Nelson’s identity (12) shows that the two are equivalent in the continuous-time limit.

The discretization allows us to compare the two Radon-Nikodym derivatives: those of the discretiza-
tions in (4) and of the continuous-time processes in (14). In particular, in Lemma B.7 we will show
that these expressions are equal in the limit.

3 ASYMPTOTIC CONVERGENCE

3.1 DISTRIBUTIONS OVER TRAJECTORIES

A standard result shows that the discretized process -̂ converges to the continuous counterpart - as the
time discretization becomes finer, i.e., as the maximal step size max#−1

==0 ΔC= goes to zero (Maruyama,
1955). The precise statement of convergence requires the processes to be embedded in a common
probability space. Let ] be the mapping from the observation space of -̂ (discrete-time trajectories) to
that of - (continuous-time paths) that takes a sequence -̂0, . . . , -̂= to the function 5 ∈ � ( [0, 1],R3)
defined by 5 (C=) = -̂= and linearly interpolating between the C= (note that ] implicitly depends on the
discretization). We then have convergence of ]( -̂) to -:

Proposition 3.1 (Convergence of Euler-Maruyama scheme). As max#−1
==0 ΔC= → 0, ]( -̂) converges

weakly and strongly to - with order W = 1 and the path measures ]∗P̂ converge weakly to P.

We refer the reader to Appendix B.3 for definitions of strong and weak convergence. The result can,
e.g., be found in Kloeden & Platen (1992) and we refer to Baldi (2017, Corollary 11.1) and Kloeden
& Neuenkirch (2007) for the convergence of path measures. Generally, the Euler-Maruyama scheme
has order of strong convergence W = 1/2. However, since we consider additive noise, i.e., f not
depending on the spatial variable G, the Milstein scheme reduces to the Euler-Maruyama scheme and
we inherit order W = 1 as stated in Prop. 3.1 (Kloeden & Platen, 1992, Section 10.2 and 10.3).

3.2 RADON-NIKODYM DERIVATIVE AND DIVERGENCES

Beyond the convergence of path measures, this section shows – more relevant for practical applications
– that commonly used local and global objectives converge their continuous-time counterparts as the
time discretization is refined. To this end, we leverage Lemma B.7, which analyzes the convergence
of time discretizations of Radon-Nikodym derivatives dP

dQ appearing in (14) to their discrete-time
analogs dP

dQ . We note that Vargas et al. (2024, Proposition E.1) shows that, for constant f, an
Euler-Maruyama discretization of dP

dQ can be written as a density ratio as in (4). This also implies
that the ratio in the detailed balance divergence in (8) arises from a single-step Euler-Maruyama
approximation of the Radon-Nikodym derivative dP

dQ on the subinterval [C=, C=+1]. We present proofs
of all results in this Section in Appendix B.6.

Global objectives: Second-moment divergences approach the continuous-time equivalents.
The following key result uses convergence of the Radon-Nikodym derivatives (Lemma B.7):
Proposition 3.2 (Convergence of functionals). If P,Q,W are path measures of three forward-time
SDEs, and 5 : R→ R is a continuous function with polynomial growth at∞, then

E
-̂∼Ŵ

[
5

(
log dP̂

dQ̂
( -̂)

)] max= ΔC=→0−−−−−−−−−→ E-∼W
[
5

(
log dP

dQ (-)
)]
.

We now show that the second-moment losses in (7) converge to their continuous-time counterparts.
Proposition 3.3 (Asymptotic consistency of TB and VarGrad). Under the assumptions of Prop. 3.2,
the divergences �ŴTB (P̂, Q̂) and �ŴLV (P̂, Q̂) converge to �WTB (P,Q) and �WLV (P,Q), respectively.

The convergence holds for the TB divergence with respect to any 2, i.e., E
Ŵ

[ (
log dP̂

dQ̂
−2

)2
]
, showing

that Prop. 3.3 continues to hold if one uses a learned estimate of the log-partition function log / in
the TB divergence, as typically done in practice.

Local objectives: Detailed balance approaches the Fokker-Planck PDE. Consider a pair of
forward and reverse SDEs with drifts −→̀ and ←−̀, respectively, defining processes P and Q, and
suppose that ?̂ : R3 × [0, 1] → R is a density estimate with ?̂(·, 0) = ?prior and ?̂(·, 1) = ?target.
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For 0 ≤ C < C′ ≤ 1, consider any time discretization in which C and C′ are adjacent time steps (C= = C
and C=+1 = C′). The discretization defines a pair of policies −→c ,←−c corresponding to Euler-Maruyama
discretizations of the two SDEs. Let us define the detailed balance discrepancy:

ΔC→C ′ (G, G′) B log
?̂= (G)−→c = (G′ | G)

?̂=+1 (G′)←−c =+1 (G | G′)
, (18)

where we set ?̂= (G) = ?̂(G, C=). Recalling the definition (8), we have that

�ŴDB,= (P̂, Q̂, ?̂) = E/̂∼Ŵ
[
ΔC=→C=+1 (/̂=, /̂=+1)2

]
. (19)

The following proposition will show that the two SDEs are time reversals of one another if and only if
certain asymptotics of the DB discrepancy vanish. It is proved using a technical lemma (Lemma B.8),
which shows that the asymptotics of the discrepancy in ℎ are precisely the errors in the satisfaction of
Nelson’s identity and the Fokker-Planck equation.

Proposition 3.4 (Asymptotic equality of DB and FPE). Under the smoothness conditions in
Lemma B.8, −→̀,←−̀, ?̂ jointly satisfy Nelson’s identity (←−̀ =

−→̀ − f2∇ log ?̂) at (GC , C) if and only if

lim
ℎ→0

[
1
√
ℎ
ΔC→C+ℎ (GC , GC+ℎ)

]
= 0 for almost every I,

where GC+ℎ B GC + −→̀(GC , C)ℎ + f(C)
√
ℎI. If in addition

lim
ℎ→0
EI∼N(0,�3 )

[
1
ℎ
ΔC→C+ℎ (GC , GC+ℎ)

]
= 0,

then the Fokker-Plank equation is satisfied at (GC , C). If both conditions hold at all (GC , C) ∈ R3× (0, 1),
then −→̀,←−̀ define a pair of time-reversed processes with marginal density ?̂.

In particular, this result shows that if we impose a parametrization of −→̀ and←−̀ as two vector fields
that differ by f2∇ log ?̂, where ?̂ is a fixed or learned marginal density estimate, then asymptotic
satisfaction of DB implies that the continuous-time forward and backward processes coincide.

Generalization to processes defined by discrete-time reversal. The generative and diffusion
processes play a symmetric role in Prop. 3.4. However, some past work – starting from Zhang &
Chen (2022), from which we adopt the experiment settings in §4 – has defined←−c as the reversal of the
Euler-Maruyama discretization of a forward SDE, rather than as the Euler-Maruyama discretization
of a backward SDE, in a special case where the former happens to have Gaussian increments. To
ensure the applicability of the results to the experiment setting, we need a slight generalization:

Proposition 3.5 (DB and FPE for Brownian bridges). The results of Prop. 3.4 hold if f(C) is constant
and←−c is the discrete-time reversal of the Euler-Maruyama discretization of the process

?prior (G) = N(G; 0, f0�3), d-C = f(C) d,C . (20)

Our theoretical results guarantee that global and local objectives with different discretizations are
approximating unique continuous-time objects when max#−1

==0 ΔC= → 0. This justifies training and
inference of samplers with different discretizations, allowing us to greatly reduce the computational
cost of training (see §4). These observations are particularly relevant for diffusion-based samplers
which rely on discretization of (partial) trajectories during training. In contrast, for generative
modeling, one can use denoising score-matching objectives which can be minimized without any
discretization in continuous time.

4 EXPERIMENTS

We evaluate the effect of time discretization on the training of diffusion samplers using the objectives
introduced in §2, targeting several unnormalized densities. In all experiments, we follow the training
setting from Sendera et al. (2024), extending their published code with an implementation of variable
time discretization (see Appendix C.1 for details). The following objectives are considered:

• Path integral sampler (PIS) (Zhang & Chen, 2022): The trajectory-level KL divergence (5),
which approximates the path space measure KL (15) is minimized via the deep reparametrization
trick (i.e., through differentiable simulation of the generative SDE, hence necessarily on-policy).

• Trajectory balance (TB) and VarGrad: The trajectory-level divergences of the second-moment
type (7), optimized either on-policy or using the off-policy local search technique introduced in

8
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Sendera et al. (2024). As TB and VarGrad are found to be nearly equivalent in unconditional
sampling settings, we consider VarGrad only for conditional sampling (see Fig. 9).

• Detailed balance (DB): The time-local detailed balance divergence (8), and its variant FL-DB,
which places an inductive bias on the log-density estimates – first used by Wu et al. (2020); Máté
& Fleuret (2023) and evaluated in the off-policy RL setting by Zhang et al. (2024); Sendera et al.
(2024) – that assumes access to the target energy at intermediate time points (see Appendix B.5).

Table 1: Properties of training objectives. Variants
with LP also use the intermediate energy gradient.
Property ↓ Objective→ PIS TB/VarGrad DB FL-DB

Time-local 7 7 3 3
Off-policy 7 3 3 3
Use intermediate energy 7 7 7 3
Use energy gradient 3 7 7 7

Each objective is additionally studied with and with-
out the Langevin parametrization (LP), a tech-
nique introduced by Zhang & Chen (2022) that
parametrizes the generative SDE’s drift function via
the gradient of the target energy. The assumptions
made by each objective are summarized in Table 1.
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Figure 3: Difference between true log / and ELBO as
a function of #train, always evaluating with 100-step
uniform integration. Additional targets in Fig. 8 and
Fig. 9, Equidistant results in Fig. 10.

The noising process is always fixed to the re-
verse of a Brownian motion, following Zhang &
Chen (2022) and subsequent work. The follow-
ing densities are targeted:

• Standard targets 25GMM (2-dimensional
mixture of Gaussians), Funnel (10-
dimensional funnel-shaped distribution),
Manywell (32-dimensional synthetic energy),
and LGCP (1600-dimensional log-Gaussian
Cox process) as defined in the benchmarking
library of Sendera et al. (2024).

• VAE: the conditional task of sampling the 20-
dimensional latent I of a variational autoen-
coder trained on MNIST given an input image
G, with target density ?(I | G) ∝ ?(G | I)?(I).

• Bayesian logistic regression problems for the
German Credit and Breast Cancer datasets
(25- and 31-dimensional, respectively), from
the benchmark by Blessing et al. (2024).

We use a well-established primary met-
ric: the ELBO of the target distribution
computed using the learned sampler and
the true log-partition function, estimated
using #-step Euler-Maruyama integration.
In our notation, the ELBO is log /̂ =

E
-̂∼P̂

[
−E( -̂# ) + log Q̂(-̂ | -̂# )

P̂(-̂)

]
(see (33) for

details). While recent work on diffusion sam-
plers has used a discretization with uniform-
length time intervals for both integration and
training, we vary the time discretization. Un-
less stated otherwise, we evaluate ELBO using
#eval = 100 uniform discretization steps. How-
ever, during training, we vary the number of
time steps #train and their placement:

• Uniform: Time steps uniformly spaced: C8 = 8
#train

for 8 = 0, . . . , #train.
• Random and Equidistant: Two ways of constructing nonuniform partitions of the time interval
[0, 1] into #train segments, described in Appendix C.2 and illustrated in Fig. 7.

Results: Training-time discretization. In Fig. 3, we show the ELBO gaps on three of the datasets
for different training-time discretizations as a function of #train. We observe that, for all objectives,
training with Random discretization consistently outperforms Uniform discretization with a small
number of steps, with the two converging as #train increases to approach #eval = 100. The Equidistant
discretization performs similarly to Random in most cases (see Fig. 10).
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Figure 4: Left: Time to train for 25k iterations on Manywell as a function of #train, mean and std over 3 runs
(note the log-log scale). Right: Runtime and ELBO gap, showing that Random discretization gives a superior
balance of speed and performance. Results for 25GMM and Funnel densities in Fig. 11.

Notably, the time-local objectives (DB and FL-DB) perform similarly to the trajectory-level objectives
(TB and PIS) when trained with few steps. However, as #train increases, the time-local models’
performance typically plateaus or even (on some targets they even diverge with 100 steps). These
results suggest that time-local objectives trained with nonuniform discretization and few steps can be
a viable alternative to trajectory-level objectives in high-dimensional problems where the memory
requirements associated with long trajectories are prohibitive.

Results: Time efficiency. The training time per iteration is expected to scale approximately linearly
with the trajectory length #train. Fig. 4 (left) confirms this scaling and illustrates the relative cost of
different objectives: FL-DB and methods using the Langevin parametrization are the most expensive,
as they require stepwise evaluations of the target energy and its gradient, respectively. Fig. 4 (right)
shows the ELBO gap plotted against training time, demonstrating that methods with nonuniform
discretization achieve a superior trade-off between training time and sampling performance.
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Integration steps
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Random disc.

Figure 5: ELBO gaps for models trained with
various discretization schemes and #train =

10, then evaluated with various numbers of
integration steps #eval. Results on Manywell
energy; others shown in Fig. 12.

Results: Inference-time discretization. To study the ef-
fect of sampling-time discretization, we train models with
#train = 10 steps (using TB with Langevin parametriza-
tion) and different placement of time steps, then evaluate
with different #eval ∈ {1, 2, ..., 100}. From Fig. 5, we ob-
serve that randomized discretization (Random or Equidis-
tant) during training leads to smooth ELBO curves as
a function of #eval, whereas training with Uniform dis-
cretization gives unstable behavior with periodic features
at multiples of #train, which may be due both to the re-
stricted set of inputs C to the model −→̀(G, C) during training
and to the harmonic timestep embedding in the model ar-
chitecture. This result is further evidence that nonuniform
discretization during training yields more robust samplers
that are less sensitive to the choice of #eval.

Additional results. Figures complementing those in the main text appear in Appendices D.2
and D.3, while Appendix D.1 contains more metrics and comparisons in tabular form. In particular, we
combine the above objectives with the off-policy local search of Sendera et al. (2024) to achieve near-
state-of-the-art results with much coarser (nonuniform) time discretizations during training, whereas
local search does not help the performance of methods using coarse Uniform schemes (Table 2).

5 CONCLUSION

We have shown the convergence of off-policy RL objectives used for the training of diffusion samplers
to their continuous-time counterparts. Those are Nelson’s identity and the Fokker-Planck equation for
stepwise objectives and path space measure divergences for trajectory-level objectives. Our experi-
mental results give a first understanding of good practices for training diffusion samplers in coarse time
discretizations. We expect that the increased training efficiency and the ability to use local objectives
without expensive energy evaluations are especially beneficial in very high-dimensional problems
where trajectory length is a bottleneck, noting that trajectory balance was recently used in fine-tuning
of diffusion foundation models for text and images (Venkatraman et al., 2024). Future theoretical work
could generalize our results to diffusions on general Riemannian manifolds and to non-Markovian
continuous-time processes, such as those studied in Daems et al. (2024); Nobis et al. (2023).
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A ADDITIONAL RELATED WORK

Classical sampling methods. The gold standard for sampling is often considered Annealed Impor-
tance Sampling (AIS) (Neal, 2001) and its Sequential Monte Carlo (SMC) extensions (Chopin, 2002;
Del Moral et al., 2006). The former can be viewed as a special case of our discrete-time setting,
where, however, the transition kernels are fixed and not learned, thus requiring careful tuning. For
the kernels, often a form of Markov Chain Monte Carlo (MCMC), such Langevin dynamics and
extensions (e.g., ULA, MALA, and HMC) are considered. While they enjoy asymptotic convergence
guarantees, they can suffer from slow mixing times, in particular for multimodal targets (Doucet
et al., 2009; Kass et al., 1998; Dai et al., 2022). Alternatives are provided by variational methods
that reformulate the sampling problem as an optimization problem, where a parametric family of
tractable distributions is fitted to the target. This includes mean-field approximations (Wainwright
et al., 2008) as well as normalizing flows (Papamakarios et al., 2021). We note that MCMC can also
be interpreted as a variational approximation in an extended state space (Salimans et al., 2015).

Normalizing flows. There exist various versions of combining (continuous-time or discrete-time)
normalizing flows with classical sampling methods, such as MCMC, AIS, and SMC (Wu et al.,
2020; Arbel et al., 2021; Matthews et al., 2022). Most of these methods rely on the reverse KL
divergence that suffers from mode collapse. To combat this issue, the underlying continuity equation
(and Hamilton-Jacobi-Bellman equations in case of optimal transport) have been leveraged for the
learning problem (Ruthotto et al., 2020; Máté & Fleuret, 2023; Sun et al., 2024). However, in all
the above cases, one needs to either restrict model expressivity or rely on costly computations of
divergences (in continuous time) or Jacobian determinants (in discrete time). Our Prop. 3.4 shows that,
in the stochastic case, the discrepancy in the corresponding Fokker-Planck equation – an expression
involving divergences and Laplacians – can be approximated by detailed balance divergences, which
require no differentiation.

Diffusion-based samplers. Motivated by (annealed) Langevin dynamics and diffusion models,
there is growing interest in the development of SDEs controlled by neural networks, also known as
neural SDEs, for sampling. This covers methods based on Schrödinger (Half-)bridges (Zhang &
Chen, 2022), diffusion models (Vargas et al., 2023; Berner et al., 2022), and annealed flows (Vargas
et al., 2024). These methods can be interpreted as special cases of stochastic bridges, aiming at
finding a time-reversal between two SDEs starting at the prior and target distributions (Vargas et al.,
2024; Richter & Berner, 2024). In particular, this allows to consider general divergences between
the associated measures on the SDE trajectories, such as the log-variance divergence (Richter et al.,
2020; Nüsken & Richter, 2021). We note that there has also been some work on combining classical
sampling methods with diffusion models (Phillips et al., 2024; Doucet et al., 2022).

GFlowNets. GFlowNets are originally defined in discrete space (Bengio et al., 2023), but were
generalized to general measure spaces in (Lahlou et al., 2023), who proved the correctness of
objectives in continuous time and experimented with using them to train diffusion models as samplers.
However, the connection between GFlowNets and diffusion models had already been made informally
by Malkin et al. (2023) for samplers of Boltzmann distributions and by Zhang et al. (2023) for
maximum-likelihood training, and the latter showed a connection between detailed balance and sliced
score matching, which has a similar flavor to our Prop. 3.4. GFlowNets are, in principle, more general
than diffusion models with Gaussian noising, as the state space may change between time steps and
the transition density does not need to be Gaussian, which has been taken advantage of in some
applications (Volokhova et al., 2024; Phillips & Cipcigan, 2024).

Accelerated integrators for diffusion models. We remark that there has been great interest in
developing accelerated sampling methods for diffusion models and the related continuous normalizing
flows (e.g., Shaul et al., 2024; Pandey et al., 2024). In particular, one can consider higher-order
integrators for the associated probability flow ODE (Song et al., 2021b) or integrate parts of the
SDE analytically (Zhang & Chen, 2023). However, we note that this research is concerned with
accelerating inference, not training, of diffusion models and thus orthogonal to our research. For
generative modeling, one has access to samples from the target distribution, allowing the use of
simulation-free denoising score matching for training. For sampling problems without access to
samples, diffusion-based methods, such as those outlined in the previous paragraphs, need to rely on
costly simulation-based objectives. However, our findings show that we can significantly accelerate
these simulations during training with a negligible drop in inference-time performance.
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B THEORY DETAILS

B.1 ASSUMPTIONS

Throughout the paper, we assume that all SDEs admit densities of their time marginals (w.r.t. the
Lebesgue measure) that are sufficiently smooth such that we have strong solutions to the corresponding
Fokker-Planck equations. In particular, we assume that4 ?prior, ?target ∈ �∞ (R3 ,R>0) are bounded.
Furthermore, we assume that ` ∈ �∞ ( [0, 1] × R3 ,R3) for all drifts `, i.e., they are infinitely
differentiable, and satisfy a uniform (in time) linear growth condition, i.e., there exists a constant �
such that for all G, H ∈ R3 and C ∈ [0, 1] it holds that

‖`(G, C) − `(H, C)‖ ≤ �‖G − H‖. (21)
Moreover, we assume that the diffusion rate satisfies that f ∈ �∞ ( [0, 1],R>0). These conditions
guarantee the existence of unique strong solutions to the considered SDEs. They are also sufficient
for all considered path measures to be equivalent and for Girsanov’s theorem and Nelson’s relation
to hold. Moreover, they allow the definition of the forward and backward Itô integrals via limits
of time discretizations that are independent of the specific sequence of refinements (Vargas et al.,
2024). While we use these assumptions to simplify the presentation, we note they can be significantly
relaxed.

B.2 FORMAL DEFINITION OF THE MDP

?prior −→c 0 −→c #−1 −E(G# )

• · · · ⊥

{(G, C0)} {(G, C1)} {(G, C#−1)} {(G, C# )}

-̂0 -̂1 -̂#−1 -̂#

• • •
•

Figure 6: The MDP and policy representing the
process P̂, a distribution over -̂ = ( -̂0, . . . , -̂# ).

We elaborate the definition of the MDP in §2.1, see
also Fig. 6.

• The state space is

S = {•} ∪
#⋃
==0
{(G, C=) : G ∈ R3}

BS=

∪{⊥}, (22)

where • and ⊥ are abstract initial and terminal
states.

• The action space is A = R3 .
• The transition function ) : S × A → S describing

the deterministic effect of actions is given by

) (•, 0) = (0, C0), ) ((G, C=), 0) =
{
(0, C=+1) = < #

⊥ = = #
, ) (⊥, 0) = ⊥. (23)

• The reward is nonzero only for transitions from
states in S# to ⊥ and is given by '(G, C# ) =
−E(G).

It is arguably more natural from a control theory perspective to treat the addition of (e.g., Gaussian)
noise as stochasticity of the environment, making the policy deterministic. However, we choose
to formulate integration as a constrained stochastic policy in a deterministic environment to allow
flexibility in the form of the conditional distribution. We also note that the policy at ⊥ is irrelevant
since ⊥ is an absorbing state.

B.3 NUMERICAL ANALYSIS

Definition B.1 (Strong convergence). A numerical scheme -̂ = ( -̂=)#==0 is called strongly convergent
of order W if

max
==0,...,#

E
[
‖ -̂= − -C= ‖

]
≤ �

(
#−1max
==0

ΔC=

)W
, (24)

where 0 < � < ∞ is independent of # ∈ N and the time discretization 0 = C0 < C1 < · · · < C# = 1.

4Note that we also consider samplers using a Dirac delta prior, which can be treated by relaxing our
conditions (Dai Pra, 1991). Under the policy given by (16), we can equivalently consider a (discrete-time) setting
on the time interval [C1, 1] using a Gaussian prior with learned mean and variance f2 (C0)ΔC0.
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Definition B.2 (Weak convergence). A numerical scheme -̂ = ( -̂=)#==0 is called weakly convergent
of order W if

max
==0,...,#




E[ 5 ( -̂=)] − E[ 5 (-C= )]


 ≤ � (
#−1max
==0

ΔC=

)W
(25)

for all functions 5 in a suitable test class, where we consider 5 ∈ �∞ (R3 ,R) with at most poly-
nomially growing derivatives. The constant 0 < � < ∞ is independent of # ∈ N and the time
discretization 0 = C0 < C1 < · · · < C# = 1, but may depend on the class of test functions considered.

Note that if 5 is globally Lipschitz, then strong convergence implies weak convergence. The converse
does not hold.

Let us also consider a continuous version ]( -̂) of the numerical scheme -̂ = ( -̂=)#==0 defined by
]( -̂)C= = -̂= and linearly interpolating between the C=, where we note that ] implicitly depends on the
discretization. We can then define the pushforward ]∗P̂ of the distribution P̂ of -̂ on the space of
continuous functions � ( [0, 1],R3). We say that ]∗P̂ converges weakly to the path measure P of - if
for any bounded, continuous functional 5 : � ( [0, 1],R3) → R it holds that

E
-∼ ]∗P̂ [ 5 (-)] −→ E-∼P [ 5 (-)] (26)

as max= ΔC= → 0.

B.4 SUBTRAJECTORY BALANCE

Generalizing trajectory balance (7) and detailed balance (8), we can define divergences for subtrajec-
tories of any length : by multiplying the log-ratios appearing in (8) for several consecutive values of
=, which through telescoping cancellation yields a subtrajectory balance divergence, defined for any
0 ≤ = < = + : ≤ # by

�ŴSubTB,=,=+: (P̂, Q̂, ?̂) = E-̂∼Ŵ

log

(
?̂= ( -̂=)

∏:−1
8=0
−→c ( -̂=+8+1 | -̂=+8)

?̂=+: ( -̂=+:)
∏:−1
8=0
←−c ( -̂=+8 | -̂=+8+1)

)2 . (27)

The subtrajectory balance (SubTB) divergence generalizes detailed balance and trajectory balance, as
one has

�ŴSubTB,=,=+1 (P̂, Q̂, ?̂) = �
=,Ŵ

DB (P̂, Q̂, ?̂) and �ŴSubTB,0,# (P̂, Q̂, ?̂) = �
Ŵ
TB (P̂, Q̂).

The SubTB divergence was introduced for GFlowNets by Malkin et al. (2022) and studied as a
learning scheme, in which the divergences with different values of : are appropriately weighted,
by Madan et al. (2023). SubTB was tested in the diffusion sampling case by Zhang et al. (2024),
although Sendera et al. (2024) found that it is, in general, not more effective than TB while being
substantially more computationally expensive.

B.5 INDUCTIVE BIAS ON DENSITY ESTIMATES

We describe the inductive bias on density estimates used in the FL-DB learning objective. While
normally one parametrizes the log-density as a neural network taking G and C as input:

log ?̂(G, C) = NN\ (G, C),
the inductive bias proposed by Wu et al. (2020); Máté & Fleuret (2023) and studied earlier for
GFlowNet diffusion samplers by Zhang et al. (2024); Sendera et al. (2024) writes

log ?̂(G, C) = −CE(G) + (1 − C) log ?ref (G) + NN\ (G, C),
where ?ref (·, C) is the marginal density at time C of the uncontrolled process, i.e., the SDE (1) that sets
−→̀ ≡ 0 and has initial condition ?prior. Thus a correction is learned to an estimated log-density that
interpolates between the prior at C = 0 and the target at C = 1.

The acronym ‘FL-’ stands for ‘forward-looking’, referring to the technique studied for GFlowNets by
Pan et al. (2023) and understood as a form of reward-shaping scheme in Deleu et al. (2024).

B.6 PROOFS OF RESULTS FROM THE MAIN TEXT

Proposition B.3 (Convergence of functionals). If P,Q,W are path measures of three forward-time
SDEs, and 5 : R→ R is a continuous function with polynomial growth at∞, then

E
-̂∼Ŵ

[
5

(
log dP̂

dQ̂
( -̂)

)] max= ΔC=→0−−−−−−−−−→ E-∼W
[
5

(
log dP

dQ (-)
)]
.
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Proof of Prop. 3.2. As shown in the proof of Lemma B.7, log dP̂
dQ̂
( -̂) is the Euler-Maruyama integra-

tion of an Itô process (with space-dependent diffusion) evaluated at time 1. The result follows by
weak convergence. �

Proposition B.4 (Asymptotic consistency of TB and VarGrad). Under the assumptions of Prop. 3.2,
the divergences �ŴTB (P̂, Q̂) and �ŴLV (P̂, Q̂) converge to �WTB (P,Q) and �WLV (P,Q), respectively.

Proof of Prop. 3.3. Immediate from Prop. 3.2, taking 5 (G) = G2 and 5 (G) = G. �

Proposition B.5 (Asymptotic equality of DB and FPE). Under the smoothness conditions in
Lemma B.8, −→̀,←−̀, ?̂ jointly satisfy Nelson’s identity (←−̀ =

−→̀ − f2∇ log ?̂) at (GC , C) if and only if

lim
ℎ→0

[
1
√
ℎ
ΔC→C+ℎ (GC , GC+ℎ)

]
= 0 for almost every I,

where GC+ℎ B GC + −→̀(GC , C)ℎ + f(C)
√
ℎI. If in addition

lim
ℎ→0
EI∼N(0,�3 )

[
1
ℎ
ΔC→C+ℎ (GC , GC+ℎ)

]
= 0,

then the Fokker-Plank equation is satisfied at (GC , C). If both conditions hold at all (GC , C) ∈ R3× (0, 1),
then −→̀,←−̀ define a pair of time-reversed processes with marginal density ?̂.

Proof of Prop. 3.4. We write ?̂C (G), −→̀C (G), fC for ?̂(G, C), −→̀(G, C), f(C) for convenience. By
Lemma B.8, the first condition implies that for almost all I,

〈I, f2
C ∇ log ?̂C (GC ) − (−→̀C (GC ) −←−̀C (GC ))〉 = 0, (28)

which implies Nelson’s identity at (GC , C), while the second condition implies that

mC log ?̂C (GC )+
〈−→̀

C (GC ),∇ log ?̂C (GC )
〉
+〈∇,←−̀C (GC )〉+

f2
C

2

(
Δ log ?̂C (GC ) −





−→̀C (GC ) −←−̀C (GC )
f2
C





2)
= 0.

(29)
Substituting the expression (28) into (29) and simplifying, we get

mC log ?̂C (GC ) = −〈∇,−→̀C (GC )〉 − 〈−→̀C (GC ),∇ log ?̂C (GC )〉 +
f2
C

2

(
Δ log ?̂C (GC ) + ‖∇ log ?̂C (GC )‖2

)
,

which gives exactly the logarithmic form of the Fokker-Planck equation. �

Proposition B.6 (DB and FPE for Brownian bridges). The results of Prop. 3.4 hold if f(C) is constant
and←−c is the discrete-time reversal of the Euler-Maruyama discretization of the process

?prior (G) = N(G; 0, f0�3), d-C = f(C) d,C . (20)

Proof of Prop. 3.5. Using the changes of variables G ↦→ fG followed C ↦→ C − f0, it suffices to show
this for f0 = 0, f = 1, making (20) a standard Brownian motion (the change of bounds for C is
insubstantial as the conditions are local in time).

Let←−c be the backward policy as originally defined. The reverse drift is←−̀(G, C) = G
C
, so we have

←−c (GC | GC+ℎ) = N
(
GC ;

C

C + ℎGC+ℎ, ℎ
)
.

Let←−c ′ be the discrete-time reversal of the forward-discretized Brownian motion. By elementary
properties of Gaussians, we have

←−c ′ (GC | GC+ℎ) = N
(
GC ;

C

C + ℎGC+ℎ,
C

C + ℎ ℎ
)
.

Let ΔC→C+ℎ (GC , GC+ℎ) and Δ′
C→C+ℎ (GC , GC+ℎ) be the discrepancies (18)) defined using←−c and←−c ′, respec-

tively. We will show that replacing Δ by Δ′ does not affect the asymptotics in Prop. 3.4.
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We have
ΔC→C+ℎ (GC , GC+ℎ) − Δ′C→C+ℎ (GC , GC+ℎ) = log←−c ′ (GC | GC+ℎ) − log←−c (GC | GC+ℎ)

=
−1
2

[
3 log

C

C + ℎ +



GC − C

C + ℎGC+ℎ



2 (

1
C
C+ℎ ℎ

− 1
ℎ

)]
=
−1
2

[
3 log

(
1 − ℎ

C + ℎ

)
+ 1
C





GC − GC+ℎ + ℎ

C + ℎGC+ℎ




2

]
.

Setting GC+ℎ = GC + −→̀C (GC )ℎ +
√
ℎI, the above becomes

−1
2

[
− ℎ
C
3 +$ (ℎ2) + 1

C

(
ℎ‖I‖2 +$ (ℎ3/2)

)]
.

For fixed I, the
√
ℎ-order asymptotics of this expression vanish. In expectation over I ∼ N(0, �3),

the ℎ-order asymptotics vanish because EI∼N(0,�3 )
[
‖I‖2

]
= 3. �

B.7 TECHNICAL LEMMAS

Lemma B.7 (Convergence of Radon-Nikodym derivatives). (a) Let P(1) and P(2) be the path
space measures defined by SDEs of the form (9) with initial conditions ? (1) , (2)prior and drifts
−→̀(1) , (2) . Let P̂(1) , (2) be the Euler-Maruyama-discretized measures with respect to a time dis-
cretization (C=)#==0. For P(2) -almost every - ∈ � ( [0, 1],R3), dP̂(1)

dP̂(2)
(-C0 ,...,C# ) → dP(1)

dP(2) (-) as
max= ΔC= → 0, where -C0 ,...,C# is the restriction of - to the times C0, . . . , C# .

(b) The same is true for a path space measureP defined by a forward SDE with initial conditions and
a measureQ defined by a reverse SDE with terminal conditions: if P̂ and Q̂ are the discrete-time
processes given by Euler-Maruyama and reverse Euler-Maruyama integration, respectively, then
forQ-almost every - ∈ � ( [0, 1],R3), as max= ΔC= → 0, dP̂

dQ̂
(-C0 ,...,C# ) → dP

dQ (-).

Proof. We first show (a). We have

log
dP̂(1)

dP̂(2)
(-C0 ,...,C# ) = log

?
(1)
prior (-0)

∏#−1
==0
−→c = (-C=+1 | -C= )

?
(2)
prior (-0)

∏#−1
==0
−→c = (-C=+1 | -C= )

= log
?
(1)
prior (-0)

?
(2)
prior (-0)

+
#−1∑
==0

log
N(-C=+1 ; -C= + −→̀(1) (-C= , C=)ΔC=, f(C=)2ΔC=)
N (-C=+1 ; -C= + −→̀(2) (-C= , C=)ΔC=, f(C=)2ΔC=)

= log
?
(1)
prior (-0)

?
(2)
prior (-0)

+
#−1∑
==0

[
−
‖−→̀(1) (-C= , C=)‖2 − ‖−→̀(2) (-C= , C=)‖2

2f(C=)2
ΔC=

+
−→̀(1) (-C= , C=) − −→̀(2) (-C= , C=)

f(C=)2
· (-C=+1 − -C= )

]
. (30)

This is precisely the (Riemann) sum for the integral defining the continuous-time Radon-Nikodym
derivative (13); by continuity and our assumptions in Appendix B.1, the sum approaches the integral
as max= ΔC= → 0.

We now show (b) assuming (a). Let P0 be the path measure defined by Gaussian N(0, �) initial
conditions and drift 0 and P̂0 its discretization. Similarly, letQ0 be defined by Gaussian terminal
conditions and zero reverse drift and let Q̂0 be its reverse-time discretization. By absolute continuity,
we have

dP
dQ
(-) = dP/dP0 (-)

dQ/dQ0 (-)
dP0

dQ0 (-),
dP̂
dQ̂
(-C0 ,...,C# ) =

dP̂/dP̂0 (-C0 ,...,C# )
dQ̂/dQ̂0 (-C0 ,...,C# )

dP̂0

dQ̂0
(-C0 ,...,C# ).
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By (a), dP̂/dP̂0 (-C0 ,...,C# ) → dP/dP0 (-), and similarly for Q. It remains to show that
log dP̂0/dQ̂0 (-C0 ,...,C# ) → log dP0/dQ0 (-) = logN(-0; 0, �) − logN(-1; 0, �). Indeed, we have

log dP̂0/dQ̂0 (-C0 ,...,C# ) = log
N(-0; 0, �)
N (-1; 0, �) +

#∑
==1

log
N(-C= ; -C=−1 , f(C=−1)ΔC=−1)
N (-C=−1 ; -C= , f(C=)ΔC=−1)

= log
N(-0; 0, �)
N (-1; 0, �) +

#∑
==1

[ ‖-C= − -C=−1 ‖2

2ΔC=−1

(
1

f(C=)2
− 1
f(C=−1)2

)
+ 3 log

f(C=)
f(C=−1)

]
a.s.−−→ log

N(-0; 0, �)
N (-1; 0, �) + 3 log

f(1)
f(0) +

∫ 1

0

3f(C)2
2

df(C)−2

=−d(3 log f (C ) )

= log
N(-0; 0, �)
N (-1; 0, �) . (31)

which coincides with the continuous-time Radon-Nikodym derivative. �

Lemma B.8 (Continuous-time asymptotics of the DB discrepancy). Let us define the abbreviations
?̂C (G), −→̀C (G), fC to refer to ?̂(G, C), −→̀(G, C), f(C). Suppose that ←−̀C and ←−̀C are continuously
differentiable in G and once in C and that log ?̂C is continuously differentiable once in C and twice in G.

(a) For a given I, the asymptotics of the DB discrepancy at (GC , C) are of order
√
ℎ and are given by

lim
ℎ→0

[
1
√
ℎ
ΔC→C+ℎ (GC , GC + −→̀C (GC )ℎ + fC I)

]
= f−1

C 〈I, f2
C ∇ log ?̂C (GC ) − (−→̀C (GC ) −←−̀C (GC ))〉.

(b) The expectation of the DB discrepancy over the forward policy (i.e., over I ∼ N(0, �)) is
asymptotically of order ℎ, with leading term

lim
ℎ→0
EGC+ℎ∼−→c (GC+ℎ |GC )

[
1
ℎ
ΔC→C+ℎ (GC , GC+ℎ)

]
= mC log ?̂C (GC ) +

〈−→̀
C (GC ),∇ log ?̂C (GC )

〉
+ 〈∇,←−̀C (GC )〉

+
f2
C

2

(
Δ log ?̂C (GC ) −





−→̀C (GC ) −←−̀C (GC )
f2
C





2)
.

Similarly, the expectation over the backward policy is

lim
ℎ→0
EGC−ℎ∼←−c (GC−ℎ |GC )

[
1
ℎ
ΔC−ℎ→C (GC−ℎ, GC )

]
= mC log ?̂C (GC ) +

〈←−̀
C (GC ),∇ log ?̂C (GC )

〉
+ 〈∇,−→̀C (GC )〉

−
f2
C

2

(
Δ log ?̂C (GC ) −





−→̀C (GC ) −←−̀C (GC )
f2
C





2)
.

Proof. We will simultaneously show (a) and the first part of (b). The second part of (b) is symmetric,
by reversing time.

Identifying GC+ℎ with GC + −→̀C (GC )ℎ + fC
√
ℎI, we will analyze the leading asymptotics of the DB

discrepancy:

ΔC→C+ℎ (GC , GC+ℎ) =
√
ℎ〈I, . . . 〉 + ℎ(. . . ) + O(ℎ3/2).

The coefficient of
√
ℎ will be the scalar product of I with a term that is independent of I and equals

the expression on the right side in (a), and thus vanishes in expectation over I. The coefficient of ℎ,
in expectation over I, will equal the expression on the right side in (b).
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We can show using Taylor expansions that

log
?̂C+ℎ (GC+ℎ)
?̂C (GC )

=
√
ℎ 〈I, fC∇ log ?̂C (GC )〉

+ ℎ
[
mC log ?̂C (GC ) +

〈−→̀
C (GC ),∇ log ?̂C (GC )

〉
+ 1

2
f2
C 〈I,∇2 log ?̂C (GC )I〉

]
+ O(ℎ3/2).

(32)
Now we are going to analyze the second part of (18), which involves the policies. We have

log
←−c (GC | GC+ℎ)
−→c (GC+ℎ | GC )

=
−1
2

[
‖GC − GC+ℎ +←−̀C+ℎ (GC+ℎ)ℎ‖2

f2
C+ℎℎ

− ‖GC+ℎ − GC −
−→̀
C (GC )ℎ‖2

f2
C ℎ

+ 3 log
2cf2

C+ℎ
2cf2

C

]
=
−1
2

[
‖GC − GC+ℎ +←−̀C+ℎ (GC+ℎ)ℎ‖2

f2
C+ℎℎ

]
+ ‖fC

√
ℎI‖2

2f2
C ℎ

− 3 log
fC+ℎ
fC

.

=
−1
2

[
‖GC − GC+ℎ +←−̀C+ℎ (GC+ℎ)ℎ‖2

f2
C+ℎℎ

]
+ ‖I‖

2

2
− 3ℎmC (logfC ) + O(ℎ2).

Next we will write
GC − GC+ℎ +←−̀C+ℎ (GC+ℎ)ℎ = GC − GC+ℎ + −→̀C (GC )ℎ − (−→̀C (GC ) −←−̀C+ℎ (GC+ℎ))ℎ

= −fC
√
ℎI − (−→̀C (GC ) −←−̀C+ℎ (GC+ℎ))ℎ

and substitute this into the first term above, yielding

−1
2

[
‖GC − GC+ℎ +←−̀C+ℎ (GC+ℎ)ℎ‖2

f2
C+ℎℎ

]
+ ‖I‖

2

2
− 3ℎmC (logfC ) + O(ℎ2)

=
−1
2

[
‖ − fC

√
ℎI − (−→̀C (GC ) −←−̀C+ℎ (GC+ℎ))ℎ‖2

f2
C+ℎℎ

]
+ ‖I‖

2

2
− 3ℎmC (logfC ) + O(ℎ2)

= − ‖
−→̀
C (GC ) −←−̀C+ℎ (GC+ℎ)‖2

2f2
C+ℎ

ℎ − 〈fC I,
−→̀
C (GC ) −←−̀C+ℎ (GC+ℎ)〉

f2
C+ℎ

√
ℎ

−
f2
C ‖I‖2

2f2
C+ℎ
+ ‖I‖

2

2
− 3ℎmC (logfC ) + O(ℎ2)

=
√
ℎ

[〈
I,−f−1

C (−→̀C (GC ) −←−̀C (GC ))
〉
+ fC 〈I, fC

√
ℎ∇←−̀C (GC )I〉
f2
C+ℎ

]
+ ℎ

[
− ‖
−→̀
C (GC ) −←−̀C (GC )‖2

2f2
C

− 3mC (logfC )
]
+ ‖I‖

2

2

(
1 −

f2
C

f2
C+ℎ

)
=2mC (log fC )ℎ+O(ℎ2 )

+O(ℎ3/2)

=
√
ℎ
〈
I,−f−1

C (−→̀C (GC ) −←−̀C (GC ))
〉

+ ℎ
[
− ‖
−→̀
C (GC ) −←−̀C (GC )‖2

2f2
C

+ 〈I,∇←−̀C (GC )I〉 −
(
‖I‖2 − 3

)
mC (logfC )

]
+ O(ℎ3/2).

Combining with the terms in (32), we get that the coefficient of
√
ℎ is exactly as desired. For the

coefficient of ℎ, and the terms of the form 〈I, . . . 〉 and ‖I‖2 − 3 vanish in expectation over I. For the
terms that are quadratic in I, Hutchinson’s formula implies that

EI∼N(0,� )
[
〈I,∇←−̀C (GC )I〉

]
= 〈∇,←−̀C (GC )〉,

EI∼N(0,� )
[
〈I,∇2 log ?̂C (GC )I〉

]
= Δ log ?̂C (GC ).
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0.00 0.25 0.50 0.75 1.00

Uniform

0.00 0.25 0.50 0.75 1.00

Random

0.00 0.25 0.50 0.75 1.00

Equidistant

Figure 7: Sampled 10-step discretizations of the unit interval using the three schemes considered.

Putting these identities together, we obtain that

lim
ℎ→0
EGC+ℎ∼−→c (GC+ℎ |GC )

[
1
ℎ
ΔC→C+ℎ (GC , GC+ℎ)

]
= mC log ?̂C (GC ) +

〈−→̀
C (GC ),∇ log ?̂C (GC )

〉
+ 1

2
f2
C Δ log ?̂C (GC ) −

‖−→̀C (GC ) −←−̀C (GC )‖2

2f2
C

+ 〈∇,←−̀C (GC )〉,

which is equivalent to the expression in (b). �

C EXPERIMENT DETAILS

C.1 TRAINING SETTINGS

All models are trained for 25,000 steps using settings identical to those suggested by Sendera
et al. (2024) (https://github.com/GFNOrg/gfn-diffusion). For DB, we use the same
learning rates as for SubTB (10−3 for the drift and 10−2 for the flow function), and for PIS, 10−3 or
10−4 depending on its stability in the specific case.

Training times are measured by wall time of execution on a large shared cluster, primarily on
RTX8000 GPUs. Although all runs were assigned by the same job scheduler, some variability in
results is inevitable due to inconsistent hardware.

C.2 DISCRETIZATION SCHEMES

We define the two nonuniform discretization schemes used in the experiments:

• Random: We sample i.i.d. numbers I0, . . . , I#train−1 ∼ U([1, 2]), where 2 is a sufficiently large
constant (we take 2 = 10). We then define

ΔC8 =
I8∑#train−1

9=0 I 9
, C8 =

8−1∑
9=0

ΔC 9 .

Thus, the interval lengths sum to 1, and no two have a ratio of lengths greater than 2. (Note that we
also tested setting the C8 (0 < 8 < #train) to be i.i.d. random values sampled fromU([0, 1]) sorted
in increasing order, but this caused numerical instability when very short intervals were present.)

• Equidistant: We sample C1 ∼ U([n, 2/#train − n]), where for us n = 10−4, then set

C8 = C1 +
8 − 1
#train

for 8 = 1, . . . , #train − 1. Thus ΔC8 = 1
#train

for all 1 < 8 < #train − 1, i.e., all intervals are of equal
length except possibly the first and last.

See Fig. 7 for illustration.
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D ADDITIONAL RESULTS

D.1 ADDITIONAL METRICS AND OBJECTIVES

In Table 2, we show extended results on the four unconditional sampling benchmarks from Sendera
et al. (2024), reporting the ELBO log /̂ and importance-weighted ELBO log /̂RW. Specifically, the
two are computed as

log /̂ B
1
 

 ∑
8=1

[
−E( -̂ (8)

#
) + log

Q̂( -̂ (8) | -̂ (8)
#
)

P̂( -̂ (8) )

]
= log / + 1

 

 ∑
8=1

[
log
Q̂( -̂ (8) )
P̂( -̂ (8) )

]
,

log /̂RW B log
1
 

 ∑
8=1

exp

[
−E( -̂ (8)

#
) + log

Q̂( -̂ (8) | -̂ (8)
#
)

P̂( -̂ (8) )

]
= log / + log

1
 

 ∑
8=1

[
Q̂( -̂ (8) )
P̂( -̂ (8) )

]
,

(33)

where -̂ (1) , . . . -̂ ( ) ∼ P̂ and we note that E[log /̂] = log /−�KL (P̂, Q̂) ≤ log / and E[/RW] = / .
We take  = 2000 samples and report the difference between the ground truth log / and the ELBO
when log / is known.

These results are consistent with the conclusions in the main text. Notably, when combined with local
search, coarse nonuniform discretizations continue to show results comparable to those of 100-step
training discretization in most cases. Table 3 shows results on two additional target energies and on
the conditional VAE task.

Table 2: ELBOs and IS-ELBOs on 25GMM, Funnel, and Manywell (absolute error from the true value).

25GMM (3 = 2)
Training discretization→ 10-step random 10-step equidistant 10-step uniform 100-step uniform

Evaluation steps→ 10 100 10 100 10 100 100

Algorithm ↓Metric→ Δ log / Δ log /RW Δ log / Δ log /RW Δ log / Δ log /RW Δ log / Δ log /RW Δ log / Δ log /RW Δ log / Δ log /RW Δ log / Δ log /RW

PIS 2.40±0.10 1.02±0.09 1.56±0.10 0.93±0.16 2.39±0.11 0.97±0.10 1.51±0.09 1.01±0.09 2.43±0.12 0.85±0.58 5.62±0.32 1.03±0.14 1.65±0.30 1.12±0.20
TB 2.10±0.05 1.02±0.05 1.23±0.03 1.03±0.03 2.10±0.04 0.96±0.14 1.22±0.03 1.04±0.03 2.10±0.03 0.99±0.11 8.77±0.69 1.02±0.96 1.13±0.01 1.02±0.01
TB + LS 1.71±0.06 0.02±0.17 0.47±0.06 0.002±0.04 1.71±0.04 0.16±0.07 0.42±0.03 0.03±0.02 1.67±0.06 0.05±0.02 10.38±2.78 1.87±0.77 0.16±0.01 0.0004±0.01
VarGrad 2.12±0.04 1.04±0.04 1.22±0.01 1.04±0.01 2.09±0.03 1.04±0.01 1.19±0.03 1.03±0.01 2.12±0.02 1.02±0.04 9.13±0.87 0.92±1.19 1.12±0.01 1.02±0.01
VarGrad + LS 1.68±0.07 0.04±0.09 0.37±0.06 0.02±0.02 1.67±0.01 0.07±0.07 0.33±0.07 0.02±0.01 1.62±0.04 0.06±0.07 8.25±0.95 1.11±0.24 0.15±0.004 0.01±0.01

PIS + LP 2.80±0.07 1.02±0.17 1.98±0.06 0.10±0.42 2.77±0.10 1.00±0.21 1.94±0.03 0.05±0.30 2.77±0.08 1.00±0.20 3.49±0.08 0.14±1.24 1.76±0.02 0.43±0.45
TB + LP 1.57±0.05 0.03±0.18 0.32±0.02 0.02±0.05 1.56±0.03 0.01±0.16 0.36±0.06 0.03±0.03 2.70±2.33 0.11±0.33 5.30±0.80 0.43±0.47 0.16±0.01 0.01±0.01
TB + LS + LP 1.78±0.10 0.02±0.08 0.41±0.06 0.02±0.04 1.82±0.01 0.08±0.06 0.43±0.05 0.07±0.08 1.68±0.09 0.05±0.02 8.37±1.50 1.50±0.46 0.16±0.01 0.01±0.01
VarGrad + LP 1.59±0.04 0.03±0.08 0.35±0.06 0.01±0.02 1.46±0.005 0.07±0.06 0.32±0.04 0.04±0.01 1.53±0.01 0.01±0.01 5.52±0.80 0.53±0.54 0.15±0.01 0.003±0.01
VarGrad + LS + LP 1.68±0.09 0.02±0.08 0.26±0.02 0.01±0.01 1.69±0.05 0.07±0.06 0.24±0.01 0.01±0.01 1.64±0.06 0.04±0.07 7.07±1.50 0.90±0.85 0.16±0.01 0.01±0.005

Funnel (3 = 10)
Training discretization→ 10-step random 10-step equidistant 10-step uniform 100-step uniform

Evaluation steps→ 10 100 10 100 10 100 100

Algorithm ↓Metric→ Δ log / Δ log /RW Δ log / Δ log /RW Δ log / Δ log /RW Δ log / Δ log /RW Δ log / Δ log /RW Δ log / Δ log /RW Δ log / Δ log /RW

PIS 1.11±0.01 0.59±0.03 0.72±0.02 0.09±0.50 1.11±0.01 0.59±0.03 0.72±0.02 0.02±0.58 1.11±0.01 0.58±0.02 8.63±4.20 1.65±0.74 0.52±0.01 0.08±0.54
TB 1.09±0.02 0.51±0.04 0.76±0.02 0.48±0.04 1.09±0.02 0.47±0.10 0.74±0.01 0.45±0.03 1.07±0.01 0.42±0.11 10.86±5.22 2.29±1.35 0.54±0.01 0.26±0.06
TB + LS 1.46±0.02 0.66±0.03 1.13±0.03 0.40±0.02 1.40±0.09 0.62±0.08 1.11±0.18 0.46±0.09 1.41±0.02 0.62±0.07 268.47±327.21 29.70±46.66 1.01±0.03 0.36±0.04
VarGrad 1.09±0.02 0.50±0.05 0.76±0.02 0.42±0.05 1.11±0.01 0.36±0.24 0.76±0.01 0.46±0.06 1.07±0.02 0.46±0.04 9.97±4.49 2.41±1.20 0.53±0.01 0.17±0.18
VarGrad + LS 1.68±0.11 0.65±0.04 1.48±0.21 0.37±0.16 1.58±0.07 0.32±0.22 1.28±0.02 0.45±0.06 1.51±0.06 0.59±0.02 78.04±90.93 3.93±6.23 1.11±0.05 0.02±0.56

PIS + LP 1.11±0.01 0.56±0.07 0.71±0.01 0.28±0.09 1.10±0.01 0.56±0.04 0.69±0.02 0.29±0.05 1.10±0.02 0.57±0.02 8.85±2.48 1.80±0.74 0.50±0.03 0.13±0.17
TB + LP 1.08±0.02 0.40±0.12 0.72±0.03 0.37±0.03 1.54±0.51 0.50±0.12 0.91±0.21 0.44±0.11 1.07±0.02 0.38±0.11 30.07±22.61 9.56±13.27 0.48±0.005 0.25±0.03
TB + LS + LP 1.30±0.02 0.46±0.05 0.90±0.04 0.30±0.05 1.27±0.01 0.45±0.09 0.86±0.04 0.32±0.03 1.26±0.03 0.43±0.03 149.16±187.71 14.23±19.54 0.82±0.04 0.25±0.09
VarGrad + LP 1.08±0.02 0.46±0.17 0.72±0.02 0.37±0.02 1.10±0.01 0.43±0.08 0.74±0.02 0.38±0.04 1.07±0.01 0.43±0.13 48.10±42.22 21.80±30.37 0.48±0.01 0.23±0.04
VarGrad + LS + LP 1.39±0.04 0.46±0.04 0.99±0.05 0.33±0.03 1.44±0.04 0.44±0.08 1.09±0.18 0.36±0.06 1.32±0.05 0.44±0.04 162.54±189.06 10.68±12.41 0.77±0.07 0.25±0.05

Manywell (3 = 32)
Training discretization→ 10-step random 10-step uniform 100-step uniform

Evaluation steps→ 10 100 10 100 100

Algorithm ↓Metric→ Δ log / Δ log /RW Δ log / Δ log /RW Δ log / Δ log /RW Δ log / Δ log /RW Δ log / Δ log /RW

PIS (lr = 10−3) 14.08±0.14 2.70±0.30 4.74±0.15 2.77±0.05 14.08±0.13 2.97±0.37 69.72±13.41 33.84±11.79 3.87±0.03 2.69±0.03
PIS (lr = 10−4) 14.34±0.28 3.23±0.54 6.37±0.08 2.80±0.20 14.16±0.27 2.86±0.73 75.30±1.89 35.65±1.45 4.17±0.04 2.62±0.06
TB 14.96±0.22 2.92±1.10 5.49±0.43 2.70±0.11 14.81±0.17 2.55±2.05 62.95±10.12 30.07±5.79 4.05±0.05 2.75±0.01
TB + LS 15.24±0.62 1.54±0.77 7.24±0.46 0.55±0.43 14.86±0.60 0.45±0.89 51.08±4.27 16.82±3.08 4.52±0.91 0.37±0.14
VarGrad 14.94±0.28 2.79±1.35 5.64±0.56 2.77±0.05 14.80±0.14 2.86±1.61 71.71±18.54 35.53±11.51 4.04±0.11 2.78±0.04
VarGrad + LS 16.02±0.26 2.84±0.15 7.03±0.56 2.00±0.46 16.08±0.75 3.26±1.10 69.14±12.35 28.45±13.46 6.53±3.56 4.43±2.70

PIS + LP (lr = 10−3) 13.97±0.18 2.15±0.28 4.34±0.25 1.69±0.41 d i v e r g i n g 3.60±0.06 1.37±0.22
PIS + LP (lr = 10−4) 31.98±0.09 4.46±3.45 17.55±0.26 1.39±0.64 31.87±0.21 5.26±3.39 35.96±0.34 8.42±1.61 14.71±0.07 0.50±0.75
TB + LP 14.87±0.36 3.02±1.23 4.72±0.27 2.66±0.03 14.62±0.21 3.27±1.19 19.66±1.49 4.20±0.63 3.66±0.25 2.42±0.32
TB + LS + LP 13.88±0.58 0.60±0.23 2.40±0.39 0.00±0.20 13.67±0.44 0.81±0.51 24.32±1.02 2.10±0.43 1.81±0.05 0.03±0.07
VarGrad + LP 14.79±0.39 3.11±1.11 4.68±0.34 2.71±0.03 14.63±0.20 3.15±0.02 20.72±3.32 3.89±0.72 3.41±0.10 2.09±0.27
VarGrad + LS + LP 16.24±0.70 1.31±0.75 5.12±0.68 0.32±0.21 14.22±0.22 0.35±0.08 22.89±4.12 1.71±1.87 1.77±0.06 0.05±0.06
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Table 3: ELBOs with different numbers of training and integration steps on Credit, Cancer, the conditional
VAE, and LGCP. Training on LGCP was often unstable, consistent with findings of prior work, so fewer
methods are reported.

Credit (3 = 25)
Training discretization→ 10-step random 10-step equidistant 10-step uniform 100-step uniform

Algorithm ↓ Evaluation steps→ 10 100 10 100 10 100 100

PIS -1174.23±14.07 -671.68±8.14 -1181.62±17.17 -667.03±21.25 -1171.35±14.59 -1130.57±20.69 -606.61±0.65
TB -1301.50±9.68 -911.04±16.74 -1318.14±22.13 -898.98±24.18 -1281.31±9.74 -1179.87±30.61 -634.08±2.88
VarGrad -1279.95±14.36 -847.65±22.65 -1288.40±10.49 -838.67±14.12 -1264.02±15.67 -1172.46±32.20 -631.84±3.20

PIS + LP -1175.46±14.14 -671.60±12.01 -1183.60±17.90 -669.30±16.34 -1174.25±17.00 -1114.56±43.56 -608.29±2.12
TB + LP -1342.96±6.77 -943.63±18.37 -1360.68±32.84 -956.97±4.12 -1300.17±8.29 -1165.11±25.76 -666.49±2.79
VarGrad + LP -1303.67±15.11 -876.12±10.70 -1323.16±3.03 -933.40±50.79 -1281.15±6.49 -1186.95±150.69 -651.98±0.18

Cancer (3 = 31)
Training discretization→ 10-step random 10-step equidistant 10-step uniform 100-step uniform

Algorithm ↓ Evaluation steps→ 10 100 10 100 10 100 100

PIS -6.60±1.60 9.51±3.13 -7.73±0.63 9.15±1.45 -8.94±4.87 -4933.64±986.02 17.64±12.51
TB -48.57±23.39 -28.02±18.77 -59.77±45.25 -29.81±18.81 -35.42±8.76 -1096.80±530.21 5.32±6.03
VarGrad -28.97±6.03 -5.84±0.98 -31.83±2.58 -11.76±5.90 -30.09±3.76 -966.70±357.24 9.41±1.77

PIS + LP -12.27±2.99 7.30±1.92 -16.87±3.26 6.35±2.27 -11.51±1.76 -3649.25±629.76 19.47±1.87
TB + LP -25.79±3.04 -4.33±2.77 -41.52±28.79 -12.60±16.39 -24.33±1.48 -2738.75±344.22 11.56±0.59
VarGrad + LP -30.55±0.14 -1.69±1.94 -28.16±4.40 -6.05±4.59 -26.36±1.95 -978.60±140.28 13.41±2.19

VAE (3 = 20)
Training discretization→ 10-step random 10-step equidistant 10-step uniform 100-step uniform

Algorithm ↓ Evaluation steps→ 10 100 10 100 10 100 100

PIS -117.83±1.25 -104.52±0.36 -117.68±1.29 -104.29±0.58 -117.74±1.12 -154.88±6.51 -102.71±0.52
TB -161.97±1.26 -149.86±4.93 -162.72±4.85 -149.76±0.75 -160.49±0.56 -161.90±5.63 -142.88±5.14
VarGrad -122.04±1.62 -109.45±1.40 -170.51±4.78 -159.71±7.46 -120.98±0.96 -133.39±4.98 -104.16±0.67

PIS + LP -115.90±0.64 -100.20±0.33 -115.81±0.31 -100.13±0.06 -115.83±0.82 -120.61±1.41 -99.34±0.40
TB + LP -140.41±2.18 -114.80±1.07 -140.72±1.10 -114.81±1.39 -137.54±2.51 -136.64±2.96 -109.25±1.68
VarGrad + LP -118.52±1.47 -102.24±0.27 -138.51±0.70 -113.49±1.39 -117.35±0.99 -122.22±0.70 -99.01±0.27

LGCP (3 = 1600)
Training discretization→ 10-step random 10-step uniform 100-step uniform

Algorithm ↓ Evaluation steps→ 10 100 10 100 100

PIS -1471.16±6.83 -1467.85±2.59 -1471.49±11.66 -1729.56±103.09 -1465.14±20.76
TB -1618.86±3.01 -1617.35±1.34 -1617.33±6.54 -1666.37±13.78 -1619.89±6.56
TB + LS -1878.87±23.04 -1880.52±13.07 -1877.13±18.69 -1705.60±36.86 -1891.62±4.77

PIS + LP 343.46±0.31 472.24±0.68 343.18±0.33 -211.79±293.49 473.74±1.14
TB + LP 332.16±0.42 461.53±1.16 337.37±0.12 -1931.42±2636.38 468.68±4.13
TB + LS + LP 341.53±0.36 472.43±0.42 341.65±0.16 -77.64±77.72 451.89±3.28
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D.2 ADDITIONAL FIGURES
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Figure 8: Results extending main text Fig. 3: Credit and Cancer densities.
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Figure 9: Results extending main text Fig. 3 on the conditional VAE target density.
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Figure 10: Comparison of Random and Equidistant distretizations on the 25GMM (unconditional) and VAE
(conditional) targets.
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Figure 11: Results extending main text Fig. 4: Efficiency of nonuniform coarse discretizations on Funnel and
25GMM densities.
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Figure 12: Results extending main text Fig. 5. Evaluation of models trained with #train = 10 steps using varying
numbers of integration steps.
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D.3 VAE RECONSTRUCTIONS

MNIST data VAE reconstruction (pretrained encoder)

10-step Uniform training
Reconstruction from 100-step integration

10-step Uniform training
Reconstruction from 10-step integration

10-step Random training
Reconstruction from 100-step integration

10-step Random training
Reconstruction from 10-step integration

10-step Equidistant training
Reconstruction from 100-step integration

10-step Equidistant training
Reconstruction from 10-step integration

Figure 13: Mode of decoder ?(· | I) evaluated on encoded latents I for the VAE experiment: input data G and
reconstruction using I sampled from the pretrained VAE encoder (top row) and reconstructions using I sampled
from diffusion encoders (next three rows).
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