Entropy-Driven Pre-Tokenization for Byte-Pair Encoding

Yifan Hu"' Frank Liang”' Dachuan Zhao"' Jonathan Geuter'?> Varshini Reddy® Craig W. Schmidt 3
Chris Tanner *

Abstract

Byte-Pair Encoding (BPE) has become a widely
adopted subword tokenization method in mod-
ern language models due to its simplicity and
strong empirical performance across downstream
tasks. However, applying BPE to unsegmented
languages such as Chinese presents significant
challenges, as its frequency-driven merge opera-
tion is agnostic to linguistic boundaries. To ad-
dress this, we propose two entropy-informed pre-
tokenization strategies that guide BPE segmen-
tation using unsupervised information-theoretic
cues. The first approach uses pointwise mutual
information and left/right entropy to identify co-
herent character spans, while the second lever-
ages predictive entropy derived from a pretrained
GPT-2 model to detect boundary uncertainty. We
evaluate both methods on a subset of the PKU
dataset and demonstrate substantial improvements
in segmentation precision, recall, and F1 score
compared to standard BPE. Our results suggest
that entropy-guided pre-tokenization not only en-
hances alignment with gold-standard linguistic
units but also offers a promising direction for im-
proving tokenization quality in low-resource and
multilingual settings.

1. Introduction

Modern large language models (LLMs) often rely on BPE
as a core tokenization strategy because it is simple and
effective, leading to its widespread adoption (Sennrich et al.,
2015). BPE iteratively merges frequent character pairs to
construct a compact vocabulary, which enables the model
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to capture meaningful subword units and represent a wide
range of linguistic phenomena across different languages.
Its success in English and many Indo-European languages
has made it the default tokenizer in many large-scale models
such as GPT (Radford et al., 2019a), BERT (Devlin et al.,
2019), and RoBERTa (Liu et al., 2019).

However, the application of BPE to Chinese presents unique
challenges. Unlike alphabetic languages, Chinese lacks ex-
plicit word boundaries (e.g., spaces), and each character can
serve as a standalone word or part of multi-character words
with varying syntactic or semantic roles (Sproat et al., 1994).
When BPE is applied naively, treating each character as a
base unit and relying solely on frequency-driven merging, it
often fails to capture the true internal structure of Chinese
words. As a result, the created token sequences may not
align with linguistically meaningful units, which can de-
grade downstream performance and interpretability. To this
end, we introduce and evaluate two distinct entropy-driven
pre-tokenization strategies for BPE (cmp. Section 3):

* Statistical Methods: We compute pointwise mutual in-
formation (PMI) (Church & Hanks, 1990) and left/right
entropy to identify potential segmentation boundaries
based on local co-occurrence strength and contextual
diversity.

* Auto-regressive LLM-based Methods: We use a pre-
trained GPT-2 model (Radford et al., 2019a) to esti-
mate token-level predictive entropy, leveraging model
uncertainty to guide boundary detection.

We examine each approach independently and analyze their
effect on BPE vocabulary learning and downstream segmen-
tation quality. We compare both entropy-informed BPE
variants to a standard frequency-driven BPE baseline, high-
lighting differences in tokenization granularity, compression
efficiency, and alignment with gold-standard Chinese word
segmentation. Our findings demonstrate that incorporating
entropy in pre-tokenization can reshape BPE token structure
and outperform naive BPE with respect to human-annotated
gold-standard segmentation boundaries, offering new in-
sights into subword modeling in unsegmented scripts for
languages without native whitespace-denoted word bound-
aries like Chinese.



Entropy-Driven Pre-Tokenization for Byte-Pair Encoding

2. Related Works
2.1. Subword Tokenization via BPE

Byte-Pair Encoding (BPE) was introduced in
data-compression research (Gage, 1994), then repur-
posed for open-vocabulary neural translation (Sennrich
et al., 2015). As a greedy algorithm, BPE begins with
an initial vocabulary of individual characters. At each
iteration, it identifies the most frequent pair of symbols
(z,y) that occur adjacently in the corpus and merges them
into a new symbol z = zy. The corpus is then updated
by replacing all the occurrences of (x,y) with z, and the
process repeats until a target vocabulary size is reached.
The core pair-finding and merging operation of BPE is
computationally efficient, since it only considers bigrams
at each step. As for vocabulary robustness, initialization
with individual characters guarantees complete vocabulary
coverage, thereby eliminating out-of-vocabulary issues.
Subsequently, the iterative merge process captures frequent
subword patterns, effectively enhancing the representation
with more informative subword units. Consequently, BPE
is widely used as a tokenization method in many large
language models (Radford et al., 2019a; Liu et al., 2019;
Touvron et al., 2023).

2.2. Pre-tokenization Constraints

Most subword algorithms, including BPE, operate on preto-
kenized input sequences, where initial boundaries, typically
defined by whitespace, act as hard constraints on the merge
process. In fact, only very recently has research investi-
gated removing these constraints (Schmidt et al., 2025; Liu
et al., 2025). The merge space produced by BPE is thus
bounded by this pre-tokenization constraint. While whites-
pace provides reliable word boundaries in alphabetic scripts
(Manning & Schutze, 1999), Chinese lacks such delimiters.
Traditional Chinese NLP pipelines often rely on heuristic
rules to segment text, compensating for the absence of ex-
plicit word boundaries in written Chinese. These heuristics
commonly involve dictionary-based matching, statistical
modeling, or rule-based systems to determine segmentation
points (Wu & Tseng, 1993; Ma et al., 2005). While such
approaches have achieved reasonable success, they struggle
with ambiguities and out-of-vocabulary words, often result-
ing in inconsistent or fragmented tokenization. Dictionary-
based methods are particularly sensitive to lexicon coverage,
failing on novel terms, while statistical methods require
extensively annotated corpora and may lack domain adapt-
ability.

2.3. Information-Theoretic Cues

Information theory offers language-agnostic cues for identi-
fying word boundaries. Early work suggested that statistical

irregularities, such as peaks in mutual information and en-
tropy, correlate with morphological structure (Light, 1996).
This insight was later formalized through models based on
branching entropy, which measures the uncertainty of char-
acter sequences in left and right contexts to identify likely
segmentation points (Tanaka-Ishii, 2005). Such entropy-
based methods have enabled effective unsupervised word
segmentation, particularly in languages like Chinese (Jin &
Tanaka-Ishii, 2006). To the best of our knowledge, however,
these techniques have not been widely adopted in modern
tokenizers for large language models.

2.4. Morphological and Sub-character Tokenization

Beyond word-level tokenization, recent work has advanced
morphological and sub-character tokenization techniques to
better capture linguistic structure and improve generaliza-
tion across typologically diverse languages. For example,
MorphPiece (Jabbar, 2023) is a morphologically informed
tokenizer that applies an analyzer to split off any known
prefixes, suffixes, and stems.

In languages with rich character composition, breaking char-
acters into smaller linguistic units has proven effective. For
Chinese, one approach (Si et al., 2023) encodes each char-
acter as a short sequence of glyph-based or phonetic compo-
nents before applying subword segmentation. This results
in shorter token sequences, shared representations for ho-
mophones, and strong downstream performance. Similarly,
in Korean, decomposing each Hangul syllable into its con-
stituent Jamo letters before applying byte-pair encoding
yields a significantly smaller vocabulary and shorter se-
quences (Lee et al., 2025). Such methods retain sub-syllabic
morphological information and outperform syllable-level
tokenization in low-resource machine translation tasks.

2.5. Byte-Level Tokenization

An emerging line of research in language modeling seeks to
eliminate reliance on fixed subword vocabularies by operat-
ing directly on raw byte sequences. Byte Latent Transformer
(BLT) (Pagnoni et al., 2024) exemplifies this approach by
dynamically segmenting input into variable-length byte
patches, with boundaries guided by next-byte entropy from
a lightweight language model. This enables adaptive compu-
tation and has shown performance comparable to BPE-based
models at the 8B scale.

Other notable byte-level models include ByT5 (Xue et al.,
2022), which processes UTF-8 byte sequences directly, re-
moving the need for explicit tokenization. It shows strong
multilingual performance and robustness to noise, particu-
larly in low-resource settings and languages under-served
by subword vocabularies. Similarly, CANINE (Clark et al.,
2022) operates at the character level and introduces a down-
sampling mechanism to manage sequence length. Both mod-
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els perform competitively with subword-based approaches,
underscoring the potential of tokenization-free pipelines for
language-agnostic applications.

3. Methods

Motivated by information-theoretic signals and the struc-
tural challenges of unsegmented scripts like Chinese, we
investigate two pre-tokenization strategies for Chinese BPE
based on entropy signals. Both aim to identify linguistically
plausible token boundaries prior to subword vocabulary
construction. The first method uses symbolic statistical
measures (detailed in Algorithm 1), while the second lever-
ages uncertainty estimates from an auto-regressive language
model. In both cases, the resulting pre-segmented corpus is
passed to a standard BPE tokenizer with whitespace-based
pre-tokenization, thereby constraining merges to occur only
within identified spans. This preserves the efficiency and
scalability of BPE while biasing token construction toward
linguistically meaningful units.

3.1. Statistical-based Pre-tokenization

N T 51 RPN/

City Yangtze g0
River

Greedy Maximal Matching

Scorer
Left Entropy + PMI Right
Entropy
Compute Score
N-grams Set
RiK (18,92 KIIK
Mayor of GRS Mayor Jing KT Yangtze River
Jing Mayor Yangtze Big
‘tf River
Long
Input Corpus FR LA

Nanjing Yangtze River Bridge

Figure 1. Overview of the statistical method. The algorithm applies
greedy maximal matching based on scores from Left Entropy, PMI,
and Right Entropy to select meaningful n-grams, producing the
final segmentation.

The statistical method draws inspiration from unsupervised
word-segmentation literature (Jiang et al., 2022). We enu-

merate every possible n-gram (1 < n < npax = 6) in the
corpus and then assign a utility score to each occurring n-
gram. Specifically, every n-gram is treated as a candidate
w, and its utility score is based on a combination of internal
cohesion and contextual separability:

Ust(w) =  min
(circit1)Cw

+ A miH(Hleft(w)7 Hrighl(w))7

PMI(CZ', Cit+1 )

where ¢; denote the characters within w, and (¢;, ¢;+1) de-
note consecutive characters. Here, we use pointwise mutual
information (PMI) which measures the associative strength
between two adjacent characters:

f(cic’i+1) T
fei) fleirn)’

where f(-) denotes corpus frequency and 7' is the total
number of n-gram tokens observed in the corpus. A large
PMI indicates that the pair co-occurs far more often than
chance, suggesting that they should remain in the same
token. We take the minimum PMI among all adjacent pairs
inside w so that a single weak link can lower the overall
cohesion score, preventing loosely connected parts from
being merged.

PMI(¢;, ¢iq1) = log

Contextual separability: Left and right entropy quan-
tifies how diverse a span w appears within its immediate
context:

Hieri(w) = —ZP(Z | w)log P(l | w),
!

Hygn(w) = =Y P(r | w)log P(r | w),

where P(l | w) = % and P(r | w) = %,
with [ and r indexing the set of distinct characters that can
occur immediately to the left resp. right of w in the corpus
(and similar for I’ and r’). A large entropy means the span
occurs with many different neighbors, signaling a plausible
word boundary. We again take the minimum of left and
right entropies so that a single side with low diversity keeps
w from being split prematurely.

Balancing the two terms: As illustrated in Figure 2, the
ranges of PMI and entropy differ significantly, often by
several orders of magnitude. This disparity can cause one
score to dominate the utility score if left unadjusted. To ad-
dress this imbalance, we introduce a scaling hyperparameter,
A > 0, which serves to modulate the relative contributions
of both terms. By tuning A, we can control the extent to
which each term influences the overall optimization process,
ensuring neither overwhelms the other.
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Figure 2. Distributions of statistical features from the PKU dataset
subset. Top: PMI distribution showing a peak in the range of 9—12.
Bottom: Left and right entropy distributions, shown on a log scale,
are heavily skewed toward zero, indicating that many characters
consistently occur within fixed contexts.

Greedy maximal matching: After assigning utility
scores to candidate spans, the sentence is processed in a
left-to-right traversal. At each character position, the span
with the highest score that begins at that location is selected.
Once a span is chosen, all characters it encompasses are
marked as fixed, thereby preventing subsequent spans from
overlapping with it. This single-pass procedure produces a
non-overlapping segmentation that optimizes local utility
without requiring backtracking. Characters not included in
any multi-character span are treated as singleton segments.
We then insert a space after every selected segment, pro-
ducing a whitespace-delimited corpus. The space-delimited
corpus is finally fed to a standard BPE tokenizer, which per-
forms merge operations only within the boundaries defined
by these spaces.

3.2. Auto-regressive LLM-based Pre-tokenization

The second approach estimates token boundaries using pre-
dictive uncertainty derived from a pretrained auto-regressive
language model. At each character position ¢, we compute
the conditional entropy of the next token conditioned on
the tokens observed so far (up to position ¢) in the input
sequence:

H(zy | xey) = — Z Play =z | x<t)logPlay = | v<4)
zeV
ey

The conditional entropy measures the model’s uncertainty
about the next character. When the value is low, the up-
coming symbol is highly predictable from its left context;

Algorithm 1 Statistical-based Pre-tokenization
1: Input: Corpus C', maximum span length 1.y, weight-
ing hyperparameter A
: Output: Pre-segmented corpus C’
: W « all unique n-grams in C' for 1 < n < npax
: for all n-grams w € W do
Uvstat(w) — miIl(ci,cHl)Cw PMI(Ci70i+1) + A
min(Hien(w), Hrighe(w))
6: end for
7: for all sentence s in C do
8
9

AT S I o)

Cl«1[,i+0
while i < len(s) do

10: S; «— {w e W : wstarts at 7 in s}
11: w* +— arg maxy,cg, Uspar (W)

12: Append w* followed by a space to C",
13: i< i+ |w*

14:  end while

15: end for

16: Concatenate all C’, into final pre-segmented corpus C”

conversely, sharp spikes in entropy indicate a sudden drop
in predictability, signaling a likely semantic shift and the
onset of a new token. Figure 3 shows the resulting entropy
boundaries on sample sentences. For more samples, see
Appendix A.

For this method, we use a GPT-2 model trained specifically
for Chinese language modeling (Radford et al., 2019b; Zhao
et al., 2019), which is open source and easily accessible
on HuggingFace. Although we explored larger and more
recent architectures, we found that this GPT-2 model offers
a good balance between model capacity and computational
efficiency. The model consists of 24 transformer decoder
layers with a hidden size of 1024, yielding approximately
325 million parameters in total. During inference, we to-
kenize input sentences at the character level, compute the
per-token entropy based on the model’s output distribution,
and insert segmentation boundaries at entropy peaks.

4. Experiments
4.1. Datasets

This study uses a subset of the PKU dataset from the
SIGHAN 2005 bake-off task (Emerson, 2005). The PKU
corpus is a widely used benchmark in Chinese word seg-
mentation, consisting of sentences from news articles. The
sentences are manually annotated by human annotators fol-
lowing internal guidelines for defining word boundaries
in formal news text. These gold-standard segmentation
boundaries provide a reliable reference for evaluating the
alignment of predicted segmentation boundaries with lin-
guistically validated ground truth.
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W

0.0

0.0

Entropy of Next Tokens
o

o

=}

EFN- -

WIERE, fEiEEss, WiEET A3 &5 E 1Z.[SEP]
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Figure 3. Next-character entropy scores for two randomly selected
Chinese sentences evaluated by GPT-2. Each plot illustrates the
entropy of the model’s next-character prediction at each token
position. Blue dashed lines denote local peaks, which serve as
span boundaries. These examples are provided to illustrate how
the model’s uncertainty varies across different parts of a sentence.

Due to the computational cost associated with pre-
tokenization entropy calculation using the autoregressive
method, which required approximately two days on two
NVIDIA A100 GPUs, we limited our experiments to 10%
of the full PKU training corpus. This subset consists of
2,255 sentences and approximately 90,000 Chinese char-
acters. All characters are in simplified Chinese, and the
original corpus is split into sentences based on ending punc-
tuation.

4.2. Baseline and Configurations

We evaluate three tokenization strategies, each based
on Byte-Pair Encoding (BPE). Prior work suggests that
a smaller vocabulary size is more suitable for Chinese
character-based models (Li et al., 2019). For example, the
GPT-2 model used in Section 3.2 has a vocabulary size of
21,128 tokens. Given the size of our dataset, we chose a
reduced vocabulary of 12,000 tokens to balance represen-
tational efficiency and data sparsity. All methods operate
on the same input sequences derived from the preprocessed
PKU corpus described in Section 4.1. Our three methods
are as follows:

e Standard BPE: A baseline implementation of
frequency-based BPE applied directly to character se-
quences, without any pre-tokenization. This mirrors
the standard application of BPE in languages like Chi-
nese, where whitespace-based tokenization is not ap-
plicable. Merges are selected purely based on adja-

cent symbol pair frequency, without any linguistic con-
straints.

« Statistically-based Entropy + BPE: Our method from
Section 3.1 that introduces a pre-tokenization step
based on statistical informational cues. Character se-
quences are first segmented using a score that combines
PMI and left/right entropy. The resulting boundaries
constrain BPE merges to occur only within identified
spans.

¢ Auto-regressive LLM-based Entropy + BPE: Our
method from Section 3.2 that applies pre-tokenization
using next-character predictive entropy estimated from
a pretrained autoregressive language model. Local
entropy maxima are used as indicators of segmentation
boundaries. These boundaries are inserted into the
sequence prior to BPE training.

4.3. Qualitative Segmentation Analysis

To better understand the behavior of entropy-guided pre-
tokenization, we present a qualitative visualization of token
boundary selection under different methods. This analysis
provides insight into how statistical and model-based en-
tropy signals influence segmentation decisions prior to BPE
application.

Figure 4 illustrates the token boundaries selected by multi-
ple pre-tokenization strategies for a representative Chinese
sentence. Each row corresponds to a different method: the
gold-standard segmentation from the PKU dataset, segmen-
tation based solely on predictive entropy from GPT-2, seg-
mentation using left/right entropy alone (entropy-only), and
the statistical method with varying values of the weighting
parameter A (from top to bottom). We explored )\ values
using a standard grid search. Vertical lines denote the iden-
tified segmentation boundaries.

This visualization highlights several key trends. First, the
predictive entropy method identifies boundaries that align
closely with semantic units, often matching human annota-
tions. Second, the statistical method demonstrates flexible
boundary control via the A parameter; smaller values re-
sult in shorter, more fragmented tokens, while larger values
emphasize contextual diversity, yielding longer and more
coherent spans. Notably, the entropy-only method achieves
reasonable alignment with the gold standard, suggesting
that information-theoretic signals alone carry substantial lin-
guistic relevance even without subsequent BPE processing.

These observations support the hypothesis that entropy-
informed pre-tokenization can act as a lightweight yet effec-
tive proxy for unsupervised word segmentation, offering a
principled mechanism to introduce structure into the BPE
pipeline for unsegmented scripts.
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Figure 4. Comparison of pre-tokenization methods on a sample
Chinese sentence. Observing the vertical lines from top to bottom,
the method with A = 4 yields token boundaries that align most
closely with the gold standard in the top row. It segments nearly
perfectly compared to the ground truth in the top row, with only
one extra boundary inserted after the 10th character.

4.4. Intrinsic Evaluation

We assess segmentation quality using precision, recall, and
F1 score by comparing predicted subword boundaries to
gold-standard word segmentation in the PKU corpus. Pre-
cision reflects the proportion of predicted boundaries that
align with true word boundaries, while recall measures the
proportion of true boundaries that are correctly predicted.
The F1 score is computed following the official SIGHAN
bake-off evaluation script (Emerson, 2005), which defines a
word-level match as a segment whose start and end positions
exactly align with a gold-standard word. We split our corpus
into 70% training and 30% testing for model development
and evaluation.

Our experimental procedure consists of four main steps:

1. Pre-tokenization: We apply various pre-tokenization
strategies to the training data. These include entropy-
based methods, GPT-2 uncertainty, and a no-pre-
tokenization baseline.

2. BPE Training: A Byte-Pair Encoding (BPE) tokenizer
is trained on the pre-tokenized training set. All meth-
ods use the same algorithm and trainer configuration.

3. Segmentation: The trained tokenizer is then used to
segment the test set at inference time. The resulting
tokens are treated as predicted word boundaries.

4. Evaluation: We compute precision, recall, and F1
score by comparing the predicted word boundaries to
the PKU gold-standard segmentation.

Our results in Table 4.4 demonstrate that entropy-based
pre-tokenization methods outperform the baseline BPE ap-
proach. The best performance is achieved when using an
entropy-regularized approach with A = 4, which yields the
highest F1 score of 58.73, significantly surpassing the base-
line’s 49.30 by 9.43 percentage points. This setting also
achieves the best precision (54.21) and the second-highest

recall (64.06), indicating its effectiveness in correctly iden-
tifying subword boundaries with fewer false positives.

Method Precision Recall F1

Baseline 46.89 51.96 49.30
GPT-2 52.07 64.69 57.70
A=0 28.69 42,92  34.39
A=1 41.24 5591 47.47
A=4 54.21 64.06 58.73
A=15 52.83 62.17 57.12
Entropy Only 51.28 60.98 55.71

Table 1. Segmentation results on the PKU dataset. All scores are
computed on the test split containing 30% of 2,255 sentences using
character-level boundary comparison.

The GPT-2 method, which leverages language model un-
certainty for boundary detection, performs competitively,
achieving an F1 score of 57.70 and the highest recall (64.69),
though its precision (52.07) is slightly below that of A = 4.
These results highlight the strong predictive signal of token-
level entropy derived from pretrained LLMs, even without
additional regularization.

The entropy-only method also shows strong performance
(F1 =55.71), suggesting that raw entropy is a useful heuris-
tic for segmentation. However, it is outperformed by the
regularized variants, indicating that combining entropy with
structural constraints improves segmentation accuracy.

Varying the regularization strength A provides insight into
the trade-off between precision and recall. A low value
like A = 0 yields poor overall performance (F1 = 34.39),
primarily due to low precision (28.69). In contrast, moderate
values such as A = 1 and A = 15 show solid gains (F1 =
47.47 and 57.12, respectively), with A = 15 emphasizing
recall (62.17) more than precision.

Overall, these results show that entropy-based pre-
tokenization with tuned parameters provides the most ac-
curate and balanced subword boundary predictions, outper-
forming both frequency-based baselines and entropy bound-
aries derived from auto-regressive language models.

5. Conclusion

This paper introduces two entropy-driven pre-tokenization
methods to address the limitations of Byte-Pair Encoding
in unsegmented languages such as Chinese. By incorpo-
rating information-theoretic signals, specifically statistical
co-occurrence metrics and predictive entropy from a pre-
trained autoregressive language model, we effectively bias
BPE toward more linguistically coherent token boundaries.
Experimental results on the PKU segmentation benchmark
confirm that both approaches significantly outperform stan-
dard frequency-based BPE, with the statistical method ca-
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pable of yielding the highest F1 score with proper hyper-
parameter tuning. Our methods preserve the modularity
and efficiency of existing BPE frameworks while improving
token granularity and interpretability.

While this work focuses on tokenizer accuracy within an
annotated dataset, an important direction for future research
is to integrate these pre-tokenization methods into large lan-
guage model (LLM) training and evaluate their impact on
downstream tasks such as machine translation and named
entity recognition. Our findings suggest that these strategies
could be particularly beneficial for modeling low-resource
or unsegmented languages within standard transformer-
based frameworks. Another promising avenue is adapting
these methods for byte-level tokenization, which has gained
popularity in multilingual settings for its robustness and
language independence. Embedding structural cues into
byte-level token streams may enable models to retain the
generality of byte-based representations while incorporating
morphological awareness.
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to enhance the performance of NLP systems across diverse
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A. Additional Entropy Visualizations of GPT-2 Outputs

To further illustrate character-level entropy, Figure 5 presents entropy distributions for additional sample sentences from the
PKU dataset. Each subplot corresponds to a single sentence, with segmentation boundaries, indicated by dotted vertical
lines, aligned to local entropy maxima computed with the GPT-2 model. For instance, the segmentation of the first sentence
yields the token sequence: [*% A H), i, *B15, BEEM, Uik, " HKE, S, 8, A5, THT, RRE
Note that entropy plots of this kind are not applicable to the statistically-based pre-tokenization method (Section 3.1), as its
segmentation relies on iterative n-gram merging rather than character-level entropy.
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Figure 5. Next-character entropy scores for additional sample sentences from the PKU dataset.



