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A Adversarially Robust and Differentially Private
Algorithms

A.1 DP-Adv in details

We first give a high-level framework for our DP-Adv. For one iteration

1. Subsample a batch Bt;

2. Generate 1 adversarial example for each benign example in Bt;

3. Differentially privately train on adversarial examples.

Now we give a complete DP-Adv algorithm using FGSM for inner maximization and DP-SGD
for outer minimization.

Algorithm 3 Differentially Private Adversarial Training [FGSM + DP-SGD]

Parameters: initial weights θ0, learning rate ηt, subsampling probability p, number of
iterations T , perturbation bound γ, noise scale σ, gradient norm bound R.

1: for t = 0, . . . , T − 1 do
2: Subsample a batch Bt ⊆ {1, . . . , n} with subsampling probability p
3: for i ∈ Bt do
4: xi ← xi + γ · sign (∇xi

L(f(xi, θt), yi) . Generate adversarial example
5: gi ← ∇θL(f(xi, θt), yi)
6: gi ← gi ·min

{
1, R/‖gi‖2

}
. Clip the per-sample gradient

7: gt ←
∑
i∈Bt

gi
8: gt ← gt + σR · N (0, I) . Apply Gaussian mechanism
9: θt+1 ← θt − ηt

|Bt|gt

To see that DP-Adv is flexible in the choices of DP optimizers and attackers, we write another
DP-Adv using PGD (10 iterations, with learning rate 0.1) as attacker for inner maximization
and DP-Adam for outer minimization. Here Pγ is the projection in PGD. For l∞ attack,
the projection is pixel-wise clipping with bound γ; for l2 attack, the projection is onto a ball
with radius γ.

Algorithm 4 Differentially Private Adversarial Training [PGD + DP-Adam]

Parameters: initial weights θ0,m0, u0, learning rate ηt, subsampling probability p, number
of iterations T , perturbation bound γ, noise scale σ, gradient norm bound R, momentums
β1, β2.

1: for t = 0, . . . , T − 1 do
2: Subsample a batch Bt ⊆ {1, . . . , n} with subsampling probability p
3: for i ∈ Bt do
4: for j =1,...10 do
5: ∆i ← Pγ (∆i + 0.1 · ∇∆L(f(xi + ∆i, θt), yi) . Generate adversarial example

6: xi ← xi + ∆i

7: gi ← ∇θL(f(xi, θt), yi)
8: gi ← gi ·min

{
1, R/‖gi‖2

}
. Clip the per-sample gradient

9: gt ←
∑
i∈Bt

gi
10: gt ← 1

|Bt| (gt + σR · N (0, I)) . Apply Gaussian mechanism

11: mt ← β1mt−1 + (1− β1) gt
12: ut ← β2ut−1 + (1− β2) (gt � gt)
13: θt+1 ← θt − ηtmt/

(√
ut
)

B Omitted Experimental Details

B.1 MNIST

For MNIST, we use the standard CNN in Privacy and Opacus libraries. I.e. we use a
convolutional layer with 16 channels, kernel size 8, stride 2 and padding 3, followed by ReLU
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and max-pooling with kernel size 2 and stride 1. Then we apply another convolutional layer
with 32 channels, kernel size 4 and stride 2, followed by ReLU and the same max-pooling.
The hidden representation is flattened and fed into fully-connected layer with 256 units.
After ReLU activation, the result is fed into another fully-connected layer with 32 units
before the output layer.

For both DP training and DP-Adv training, we train with DP-SGD and the same hyperpa-
rameters (i.e. batch size, noise level σ, clipping norm R, learning rate η):

• for ε = 0.2, we use σ = 2.5, R = 1.5, η = 0.25, |Bt| = 300.

• for ε ≥ 1, we use σ = 1.3, R = 1.5, η = 0.25, |Bt| = 300.6

B.2 CIFAR10

For CIFAR10, we use the same 2-layer CNN as in Abadi et al. (2016). We pre-train on
CIFAR100 with batch size 128, SGD with learning rate 0.01 and momentum 0.9 for 10
epochs. Then we fix the hidden representation. We only alter and train the last layer on
CIFAR10 with batch size 250, DP-SGD with η = 0.1, σ = 1, R = 2.

B.3 CelebA

We use the CNN architecture in https://github.com/vatsalsaglani/
MultiLabelClassifier I.e. we use a convolutional layer with 32 channels, kernel
size 3, followed by ReLU and max-pooling with kernel size 2. Then we apply another
convolutional layer with 64 channels, kernel size 3, followed by ReLU and the same
max-pooling. The hidden representation is flattened and fed into fully-connected layer with
16128 units and then another fully-connected layer with 256 units before the output layer.

C Additional Experiments

C.1 MNIST

C.1.1 Transferability
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Figure 8: Training against FGSM l∞(0.2) attack (upper panel) and PGD l2(1) attack (lower
panel) on MNIST, with ε = 1.

6These hyperparameters are the same as reported in https://github.com/pytorch/opacus/
blob/main/examples/mnist_README.md for 95.0% accuracy.
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C.1.2 Calibration

Defense/Attack Clean PGD2 APGD2 AutoAttack2

SGD 99.1% 63.1% 61.6% 60.1%
DP-SGD 97.2% 52.7% 51.8% 49.8%

Adv+FGSM 99.2% 90.1% 90.2% 90.0%
DP-Adv+FGSM 97.3% 82.2% 82.0% 81.6%

Adv+PGD∞ 99.2% 90.5% 90.4% 89.8%
DP-Adv+PGD∞ 97.4% 82.3% 82.2% 82.0%

Adv+PGD2 99.3% 91.2% 90.9% 90.7%
DP-Adv+PGD2 97.3% 82.5% 82.4% 82.4%

Table 7: Accuracy from different defense and l2(1) attack methods on MNIST, with ε = 1.

C.2 CIFAR10
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Figure 9: Training against FGSM l∞(4/255) attack (upper panel) and PGD l2(100/255)
attack (lower panel) on CIFAR10, with ε = 1.

C.2.1 Transferability

Defense/Attack Clean FGSM PGD∞ BIM APGD∞ AutoAttack∞
SGD 69.0% 17.7% 9.9% 13.4% 9.5% 9.2%

DP-SGD 64.0% 18.1% 12.8% 14.7% 11.6% 11.5%
Adv+FGSM 64.3% 41.5% 39.5% 40.7% 39.6% 37.1%

DP-Adv+FGSM 51.4% 32.7% 30.9% 31.2% 30.3% 27.5%
Adv+PGD∞ 66.9% 42.6% 40.0% 41.8% 39.8% 38.0%

DP-Adv+PGD∞ 55.7% 31.9% 30.0% 30.5% 29.9% 28.0%
Adv+PGD2 63.3% 37.6% 34.0% 35.4% 33.8% 31.9%

DP-Adv+PGD2 54.3% 31.1% 27.8% 29.5% 27.7% 25.6%

Table 8: Accuracy from different defense and l∞(4/255) attacks on CIFAR10, with ε = 2.

C.2.2 Calibration
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Defense/Attack Clean PGD2 APGD2 AutoAttack2

SGD 69.0% 21.4% 21.2% 21.1%
DP-SGD 64.0% 22.9% 22.9% 22.3%

Adv+FGSM 64.3% 46.2% 46.2% 44.2%
DP-Adv+FGSM 51.4% 36.2% 35.9% 34.1%

Adv+PGD∞ 66.9% 48.6% 48.3% 46.5%
DP-Adv+PGD∞ 55.7% 37.3% 37.2% 35.1%

Adv+PGD2 63.3% 44.5% 44.5% 42.9%
DP-Adv+PGD2 54.3% 37.6% 37.3% 35.1%

Table 9: Accuracy from different defense and l2(100/255) attacks on CIFAR10, with ε = 1.
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Figure 10: Reliability diagrams on CIFAR10. [Top panel] Left: non-DP SGD. Mid: non-DP
Adv by PGD∞. Right: non-DP Adv by PGD2. [Bottom panel]: DP variants of top panel.
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