
Under review as a conference paper at ICLR 2024

A APPENDIX: PSEUDOCODE FOR THE ALPHASYMBOL

Algorithm 1 presents an overview of the AlphaSymbol framework. Prior to selecting a sym-
bol, the UseConstraint(τ, s, π) function is applied to enforce constraints. The counter is up-
dated after each symbol selection, and we check whether the counter is zero. If the counter is
zero, the reward value of the obtained expression is computed and backpropagation is performed.
If the current symbol is a leaf node but not a terminal node, we expand and evaluate the node.

Algorithm 1: AlphaSymbol
Data: X = [x1, x2, ..., xn] ;y = [y1, y2, ..., yn];S=[+,−,×,÷, ...]
Result: Find an expression such that y = f(X)

1 initialization;
2 while Reward ̸= 1 do
3 ▷ A threshold can also be set, for example, Reward >= 0.9999.
4 repeat
5 Self-Search :
6 UseConstraint(τ, s, π)3
7 symbol = arg max(π) ▷ Choosing the symbol with the highest probability
8 τ .append(symbol)
9 counter = counter + Arity(symbol)4 - 1 ▷ Whether or not the expression is complete

10 if counter=0 then
11 z = 1

1+SNRMSE
▷ Calculating rewards

12 if z > T then
13 ▷ T represents the termination threshold of the algorithm
14 break; ▷ Terminate the program upon achieving expected rewards
15 end
16 Backpropagate : z ▷ Backpropagate the final reward
17 Storing data : [s, π, z]
18 Train Neural Network : Nθ −→ NθNEW ▷ Further training of LSTM
19 end
20 MCTS:
21 Expand and evaluate:
22 parent||sibling = ParentSibling(τt) 2 ▷ Get the neural network input
23 (p,v) =Nθ(parent||sibling) ▷ Calculating probability distribution p and evaluat value v

with LSTM
24 for j ← 2 to nevaluate do
25 if current node = leafnode & counter ̸= 0 then
26 Expend(p) ▷ Expanding leaf nodes with probability p
27 else
28 Select: at+1 = arg max(UCT (st, at)) ▷ Selecting the symbol with the largest

UCT value as the next symbol
29 end
30 Backpropagate(v) ▷ Backpropagate the evaluate value v

31 end
32 until Find the target epxression;
33 end

Algorithm 2 describes the function ParentSibling(τ) used in Algorithm 1 to find the parent and
sibling nodes of the next symbol to the sample. This algorithm uses the following logic: If the last
symbol in the partial traversal is a unary or binary operator and has no siblings, it is the parent node
and its sibling is set to empty. Otherwise, the algorithm iterates forward in the traversal until it finds a

12

Under review as a conference paper at ICLR 2024

node with unselected children. This node is the parent and the subsequent node is the sibling.

Algorithm 2: ParentSibling(τ) (To retrieve the father and sibling nodes as inputs for an LSTM)
1 Input : Partially sampled traversal τ
2 Output : Concatenated parent and sibling nodes of the next nodes to be generated
3 T ← len(τ) ▷ Length of partial traversal
4 counter ← 0 ▷ Initializes a counter with no selected number of nodes
5 if Arity(τT) > 0 then
6 parent← τT
7 sibling ← empty
8 end
9 for i← T to 1 do

10 counter = counter +Arity(τi)− 1
11 ▷ Update counter of unselected nodes
12 if counter = 0 then
13 parent← τi
14 sibling ← τi+1

15 end
16 end

Algorithm 3 demonstrates the application of a series of constraints during the symbol generation
process. The specific steps are as follows: we first obtain the types of symbols in our symbol library,
and then based on the current state, we sequentially determine whether each function in the symbol
library should be "restricted". If a symbol is restricted, we set the probability of selecting that symbol
to zero and finally normalize the probabilities of all symbols.

Algorithm 3: UseConstraints(τ, Si, π)
1 Input : The simulated probability π; partially sampled traversal τ ; Used symbol library S
2 Output : The probability distribution π adjusted according to the constraints
3 L← len(S) ▷ Length of S
4 for i← 1 to L do
5 if Constraint(τ, Si) then
6 πi ← 0 ▷ Sets the restricted symbol probability to zero
7 end
8 π ← π∑L

i=0 πi
▷ The probability is normalized

9 end

Algorithm 4 describes the Arity(s) function used in Algorithm 1, which obtains the arity of an
operator. Specifically, for a variable [x1] and a constant [c], Arity(s)=0. For a unary operator
[sin, cos, exp, ln, sqrt], Arity(s)=1. Similarly, for a binary operator, Arity(s)=2, and so on for other
operators.

Algorithm 4: Arity(s)
1 Input : Newly selected operator symbol s;
2 Output : The arity of an operator
3 s← select(S) ▷ Selecting new symbols.
4 if s ∈ [x1, x2, ..., xn, c] then
5 return 0 ▷ If the symbol is a variable or a constant, the arity would be 0
6 end
7 if s ∈ [sin, cos, exp, log, sqrt] then
8 return 1 ▷ If the operator is unary, the arity would be 1.
9 end

10 if s ∈ [+,−, ∗, /] then
11 return 2 ▷ If the operator is a binary operator, it returns 2.
12 end

13

Under review as a conference paper at ICLR 2024

B APPENDIX: REWARD VARIATION CURVE (ON DATASET NGUYEN).

(a) Nguyen-1 (b) Nguyen-2 (c) Nguyen-3

(d) Nguyen-4 (e) Nguyen-5 (f) Nguyen-6

(g) Nguyen-7 (h) Nguyen-8 (i) Nguyen-9

(j) Nguyen-10 (k) Nguyen-11 (l) Nguyen-12

Figure B.1: The series of figures above presents line graphs depicting the reward values of AlphaSym-
bol on the Nguyen dataset over time. As observed from the figures, throughout the search process,
the reward values for all expressions demonstrate an oscillatory ascent with the increase in training
iterations. Notably, Expression 8 is an exception due to its comparatively simple structure, achieving
its best result within just one epoch.

14

Under review as a conference paper at ICLR 2024

C APPENDIX: EXPERIMENTAL DETAILS FOR EACH EXPRESSION

Table B.1−B.3 shows some specific details of different expressions when tested. The benchmark
problem specifications for symbolic regression are as follows:

• Input variables are represented as [x1, x2, ..., xn]

• U(a, b, c)signifies c random points uniformly sampled between a and b for each input
variable. Different random seeds are used for training and testing datasets.

• E(a, b, c) indicates c points evenly spaced between a and b for each input variable.

• To simplify the notation, libraries are defined relative to a base library
[+,−,×,÷, sin, cos, ln, exp, sqrt, x1].

• Any unassigned operand is represented by , for instance, 2 corresponds to the square operator.

Table C.1: Symbol library and value range of the three data sets Nguyen, Korns, and Jin.

Name Expression Dataset Library
Nguyen-1 x3

1 + x2
1 + x1 U(−1, 1, 20)

Nguyen-2 x4
1 + x3

1 + x2
1 + x1 U(−1, 1, 20)

Nguyen-3 x5
1 + x4

1 + x3
1 + x2

1 + x1 U(−1, 1, 20)
Nguyen-4 x6

1 + x5
1 + x4

1 + x3
1 + x2

1 + x1 U(−1, 1, 20)
Nguyen-5 sin(x2

1) cos(x) − 1 U(−1, 1, 20)
Nguyen-6 sin(x1) + sin(x1 + x2

1) U(−1, 1, 20)
Nguyen-7 log(x1 + 1) + log(x2

1 + 1) U(0, 2, 20)
Nguyen-8

√
x U(0, 4, 20)

Nguyen-9 sin(x) + sin(x2
2) U(0, 1, 20)

Nguyen-10 2 sin(x) cos(x2) U(0, 1, 20)
Nguyen-11 x

x2
1 U(0, 1, 20)

Nguyen-12 x4
1 − x3

1 + 1
2x

2
2 − x2 U(0, 1, 20)

Nguyen-2′ 4x4
1 + 3x3

1 + 2x2
1 + x U(−1, 1, 20)

Nguyen-5′ sin(x2
1) cos(x) − 2 U(−1, 1, 20)

Nguyen-8′ 3
√
x U(0, 4, 20)

Nguyen-8′′ 3
√

x2
1 U(0, 4, 20)

Nguyen-1c 3.39x3
1 + 2.12x2

1 + 1.78x U(−1, 1, 20)
Nguyen-5c sin(x2

1) cos(x) − 0.75 U(−1, 1, 20)
Nguyen-7c log(x + 1.4) + log(x2

1 + 1.3) U(0, 2, 20)

Nguyen-8c √
1.23x U(0, 4, 20)

Nguyen-10c sin(1.5x) cos(0.5x2) U(0, 1, 20)

Korns-1 1.57 + 24.3 ∗ x4
1 U(−1, 1, 20)

Korns-2 0.23 + 14.2
(x4+x1)

(3x2)
U(−1, 1, 20)

Korns-3 4.9
(x2−x1+

x1
x3

(3x3))
− 5.41 U(−1, 1, 20)

Korns-4 0.13sin(x1) − 2.3 U(−1, 1, 20)
Korns-5 3 + 2.13log(|x5|) U(−1, 1, 20)

Korns-6 1.3 + 0.13
√

|x1| U(−1, 1, 20)

Korns-7 2.1(1 − e−0.55x1) U(−1, 1, 20)

Korns-8 6.87 + 11
√

|7.23x1x4x5| U(−1, 1, 20)

Korns-9 12
√

|4.2x1x2x2| U(−1, 1, 20)

Korns-10 0.81 + 24.3
2x1+3x2

2
4x3

3+5x4
4

U(−1, 1, 20)

Korns-11 6.87 + 11cos(7.23x3
1) U(−1, 1, 20)

Korns-12 2 − 2.1cos(9.8x3
1)sin(1.3x5) U(−1, 1, 20)

Korns-13 32.0 − 3.0
tan(x1)

tan(x2)

tan(x3)

tan(x4)
U(−1, 1, 20)

Korns-14 22.0 − (4.2cos(x1) − tan(x2))
tanh(x3)

sin(x4)
U(−1, 1, 20)

Korns-15 12.0 − 6.0tan(x1)

ex2 (log(x3) − tan(x4)))) U(−1, 1, 20)

Jin-1 2.5x4
1 − 1.3x3

1 + 0.5x2
2 − 1.7x2 U(−3, 3, 100)

Jin-2 8.0x2
1 + 8.0x3

2 − 15.0 U(−3, 3, 100)
Jin-3 0.2x3

1 + 0.5x3
2 − 1.2x2 − 0.5x1 U(−3, 3, 100)

Jin-4 1.5 exp x + 5.0cos(x2) U(−3, 3, 100)
Jin-5 6.0sin(x1)cos(x2) U(−3, 3, 100)
Jin-6 1.35x1x2 + 5.5sin((x1 − 1.0)(x2 − 1.0)) U(−3, 3, 100)

15

Under review as a conference paper at ICLR 2024

Table C.2: Symbol library and value range of the three data sets neat, Keijzer and Livermore.

Name Expression Dataset Library
Neat-1 x4

1 + x3
1 + x2

1 + x U(−1, 1, 20)
Neat-2 x5

1 + x4
1 + x3

1 + x2
1 + x U(−1, 1, 20)

Neat-3 sin(x2
1) cos(x) − 1 U(−1, 1, 20)

Neat-4 log(x + 1) + log(x2
1 + 1) U(0, 2, 20)

Neat-5 2 sin(x) cos(x2) U(−1, 1, 100)
Neat-6

∑x
k=1

1
k E(1, 50, 50)

Neat-7 2 − 2.1 cos(9.8x1) sin(1.3x2) E(−50, 50, 105)

Neat-8 e−(x1)2

1.2+(x2−2.5)2
U(0.3, 4, 100)

Neat-9 1

1+x
−4
1

+ 1

1+x
−4
2

E(−5, 5, 21)

Keijzer-1 0.3x1sin(2πx1) U(−1, 1, 20)
Keijzer-2 2.0x1sin(0.5πx1) U(−1, 1, 20)
Keijzer-3 0.92x1sin(2.41πx1) U(−1, 1, 20)

Keijzer-4 x3
1e

−x1cos(x1)sin(x1)sin(x1)
2cos(x1) − 1 U(−1, 1, 20)

Keijzer-5 3 + 2.13log(|x5|) U(−1, 1, 20)

Keijzer-6 x1(x1+1)
2 U(−1, 1, 20)

Keijzer-7 log(x1) U(0, 1, 20)

Keijzer-8
√

(x1) U(0, 1, 20)

Keijzer-9 log(x1 +
√

x2
1 + 1) U(−1, 1, 20)

Keijzer-10 x
x2
1 U(−1, 1, 20)

Keijzer-11 x1x2 + sin((x1 − 1)(x2 − 1)) U(−1, 1, 20)

Keijzer-12 x4
1 − x3

1 +
x2
2
2 − x2 U(−1, 1, 20)

Keijzer-13 6sin(x1)cos(x2) U(−1, 1, 20)
Keijzer-14 8

2+x2
1+x2

2
U(−1, 1, 20)

Keijzer-15
x3
1
5 +

x3
2
2 − x2 − x1 U(−1, 1, 20)

Livermore-1 1
3 + x1 + sin(x2

1)) U(−3, 3, 100)
Livermore-2 sin(x2

1) ∗ cos(x1) − 2 U(−3, 3, 100)
Livermore-3 sin(x3

1) ∗ cos(x2
1)) − 1 U(−3, 3, 100)

Livermore-4 log(x1 + 1) + log(x2
1 + 1) + log(x1) U(−3, 3, 100)

Livermore-5 x4
1 − x3

1 + x2
2 − x2 U(−3, 3, 100)

Livermore-6 4x4
1 + 3x3

1 + 2x2
1 + x1 U(−3, 3, 100)

Livermore-7 (exp(x1)−exp(−x1)
2) U(−1, 1, 100)

Livermore-8 (exp(x1)+exp(−x1)
3 U(−3, 3, 100)

Livermore-9 x9
1 + x8

1 + x7
1 + x6

1 + x5
1 + x4

1 + x3
1 + x2

1 + x1 U(−1, 1, 100)
Livermore-10 6 ∗ sin(x1)cos(x2) U(−3, 3, 100)

Livermore-11
x2
1x2

2
(x1+x2)

U(−3, 3, 100)

Livermore-12
x5
1

x3
2

U(−3, 3, 100)

Livermore-13 x
1
3
1 U(−3, 3, 100)

Livermore-14 x3
1 + x2

1 + x1 + sin(x1) + sin(x2
2) U(−1, 1, 100)

Livermore-15 x
1
5
1 U(−3, 3, 100)

Livermore-16 x
2
3
1 U(−3, 3, 100)

Livermore-17 4sin(x1)cos(x2) U(−3, 3, 100)
Livermore-18 sin(x2

1) ∗ cos(x1) − 5 U(−3, 3, 100)
Livermore-19 x5

1 + x4
1 + x2

1 + x1 U(−3, 3, 100)

Livermore-20 e(−x2
1) U(−3, 3, 100)

Livermore-21 x8
1 + x7

1 + x6
1 + x5

1 + x4
1 + x3

1 + x2
1 + x1 U(−1, 1, 20)

Livermore-22 e(−0.5x2
1) U(−3, 3, 100)

16

Under review as a conference paper at ICLR 2024

Table C.3: Symbol library and value range of the three data sets Vladislavleva and others.

Name Expression Dataset Library

Vladislavleva-1 (e−(x1−1)2)

(1.2+(x2−2.5)2))
U(−1, 1, 20)

Vladislavleva-2 e−x1x3
1cos(x1)sin(x1)(cos(x1)sin(x1)

2 − 1) U(−1, 1, 20)

Vladislavleva-3 e−x1x3
1cos(x1)sin(x1)(cos(x1)sin(x1)

2 − 1)(x2 − 5) U(−1, 1, 20)
Vladislavleva-4 10

5+(x1−3)2+(x2−3)2+(x3−3)2+(x4−3)2+(x5−3)2
U(0, 2, 20)

Vladislavleva-5 30(x1 − 1)
x3−1

(x1−10)
x2
2 U(−1, 1, 100)

Vladislavleva-6 6sin(x1)cos(x2) E(1, 50, 50)
Vladislavleva-7 2 − 2.1 cos(9.8x) sin(1.3x2) E(−50, 50, 105)

Vladislavleva-8 e−(x−1)2

1.2+(x2−2.5)2
U(0.3, 4, 100)

Test-2 3.14 ∗ x1 ∗ x1 U(−1, 1, 20)
Const-Test-1 5 ∗ x1 ∗ x1 U(−1, 1, 20)

GrammarVAE-1 1./3 + x1 + sin(x2
1)) U(−1, 1, 20)

Sine sin(x1) + sin(x1 + x2
1)) U(−1, 1, 20)

Nonic x9
1 + x8

1 + x7
1 + x6

1 + x5
1 + x4

1 + x3
1 + x2

1 + x1 U(−1, 1, 100)
Pagie-1 1

1+x
−4
1 + 1

1+x2−4

E(1, 50, 50)

Meier-3
x2
1x2

2
(x1+x2)

E(−50, 50, 105)

Meier-4
x5
1

x3
2

U(0.3, 4, 100)

Poly-10 x1x2 + x3x4 + x5x6 + x1x7x9 + x3x6x10 E(−1, 1, 100)

D APPENDIX: AVERAGE COEFFICIENT OF DETERMINATION (R2) ON VARIOUS
DATASETS

To assess the goodness of fit of AlphaSymbol on the datasets, we also recorded the average R2 of
AlphaSymbol on various testing datasets. From the table, it can be observed that AlphaSymbol
achieved an average R2 exceeding 0.99 on the majority of the datasets. This suggests that while
AlphaSymbol may not be able to fully recover the original formula of certain expressions, it can still
find an equivalent expression that fits the observed data well.

Table D.1: Average Coefficient of Determination (R2) on Various Datasets

Benchmark R2

Nguyen 0.9999
Keijzer 0.9991
Korns 0.9982
Constant 0.9991
Livermore 0.9998
Vladislavlev 0.9831
R 0.9702
Jin 0.9888
Neat 0.9763
AI Feynman 0.9960
Others 0.9982
Average 0.9917

E APPENDIX: R2 OF ALPHASYMBOL ON THE AI FEYNMAN DATASET.

We tested the performance of our proposed symbol regression algorithm, AlphaSymbol, on the AI
Feynman dataset. This dataset contains problems from physics and mathematics across multiple
subfields, such as mechanics, thermodynamics, and electromagnetism. The authors provided 100,000
sampled data points in the AI Feynman dataset, however, to better test the performance of AlphaSym-
bol, we randomly selected only 100 data points from the 100,000 provided as our experimental data.
We applied AlphaSymbol to perform symbol regression on each data in the dataset. and recorded
the R2 between the predicted results and the correct answers. The experimental results indicate that

17

Under review as a conference paper at ICLR 2024

AlphaSymbol can accurately fit the corresponding expressions from a small number of sample points.
For the majority of the formulas, the R2 exceeds 0.99. This indicates that the model performs well
on problems in fields such as physics and mathematics, and has great potential for wide application.
The experimental results are shown in Table E.1 and Table E.2.

x_1 x_2 x_3 x_4 x_5 y

x_
1

x_
2

x_
3

x_
4

x_
5

y

1 -0.28 -0.082 0.093 0.082 0.5

-0.28 1 0.11 0.043 -0.044 0.13

-0.082 0.11 1 -0.66 0.28 -0.29

0.093 0.043 -0.66 1 -0.19 0.37

0.082 -0.044 0.28 -0.19 1 0.33

0.5 0.13 -0.29 0.37 0.33 1
0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure E.1: This is a heatmap of the correlation coefficients between each variable x and y. From the
image, we can see that y has a positive correlation with x1, x2, x4, and x5 to varying degrees, and
has a negative correlation with x3.

F APPENDIX: HYPERPARAMETER SETTINGS

- min_length (int): minimum number of operators to allow in expression
- max_length (int): maximum number of operators to allow in expression
- type (‘rnn’, ‘lstm’, or ‘gru’): type of architecture to use
- num_layers (int): number of layers in RNN architecture
- dropout (float): dropout (if any) for RNN architecture
- lr (float): learning rate for RNN
- optimizer (‘adam’ or ‘rmsprop’): optimizer for RNN
- inner_optimizer (‘lbfgs’, ‘adam’, or ‘rmsprop’): optimizer for expressions
- inner_lr (float): learning rate for constant optimization
- inner_num_epochs (int): number of epochs for constant optimization
-batch_size (int): batch size for training the RNN
- λ (float): The weight assigned to the X part of the loss, ranges from 0 to 1.

when training the RNN.
- batch_size (int): batch size for training the RNN
- num_batches (int): number of batches (will stop early if found)
- hidden_size (int): hidden dimension size for RNN

18

Under review as a conference paper at ICLR 2024

Table E.1: Tested Feynman Equations, part 1.

Feynman Equation R2

I.6.20a f = e−θ2/2/
√
2π 0.9992

I.6.20 f = e
− θ2

2σ2 /
√
2πσ2 0.9988

I.6.20b f = e
− (θ−θ1)2

2σ2 /
√
2πσ2 0.9923

I.8.14 d =
√

(x2 − x1)2 + (y2 − y1)2 0.8929
I.9.18 F = Gm1m2

(x2−x1)2+(y2−y1)2+(z2−z1)2
0.9944

I.10.7 F = Gm1m2
(x2−x1)2+(y2−y1)2+(z2−z1)2

0.9906
I.11.19 A = x1y1 + x2y2 + x3y3 1.0
I.12.1 F = µNn 1.0
I.12.2 F = q1q2

4πϵr2
1.0

I.12.4 Ef = q1
4πϵr2

0.9994
I.12.5 F = q2Ef 1.0
I.12.11 F = Q(Ef +Bv sin θ) 0.9999
I.13.4 K = 1

2
m(v2 + u2 + w2) 0.9969

I.13.12 U = Gm1m2(
1
r2

− 1
r1
) 1.0

I.14.3 U = mgz 1.0

I.14.4 U =
kspringx

2

2
0.9999

I.15.3x x1 = x−ut√
1−u2/c2

0.9993

I.15.3t t1 = t−ux/c2√
1−u2/c2

0.9844

I.15.10 p = m0v√
1−v2/c2

0.9978

I.16.6 v1 = u+v
1+uv/c2

0.9873
I.18.4 r = m1r1+m2r2

m1+m2
0.9894

I.18.12 τ = rF sin θ 0.9999
I.18.16 L = mrv sin θ 0.9999
I.24.6 E = 1

4
m(ω2 + ω2

0)x
2 0.9986

I.25.13 Ve = q
C

1.0
I.26.2 θ1 = arcsin(n sin θ2) 0.9991
I.27.6 ff = 1

1
d1

+ n
d2

0.9995

I.29.4 k = ω
c

1.0
I.29.16 x =

√
x2
1 + x2

2 − 2x1x2 cos(θ1 − θ2) 0.9942
I.30.3 I∗ = I∗0

sin2(nθ/2)

sin2(θ/2)
0.9912

I.30.5 θ = arcsin(λ
nd

) 0.9994
I.32.5 P = q2a2

6πϵc3
0.9857

I.32.17 P = (1
2
ϵcE2

f)(8πr
2/3)(ω4/(ω2 − ω2

0)
2) 0.9788

I.34.8 ω = qvB
p

1.0
I.34.10 ω = ω0

1−v/c
0.9928

I.34.14 ω = 1+v/c√
1−v2/c2

ω0 0.9992

I.34.27 E = ℏω 1.0
I.37.4 I∗ = I1 + I2 + 2

√
I1I2 cos δ 0.9927

I.38.12 r = 4πϵℏ2
mq2

0.9999
I.39.10 E = 3

2
pFV 1.0

I.39.11 E = 1
γ−1

pFV 0.9998
I.39.22 PF = nkbT

V
0.9999

I.40.1 n = n0e
−mgx

kbT 0.9947
I.41.16 Lrad = ℏω3

π2c2(e
ℏω
kbT −1)

0.8462

I.43.16 v =
µdriftqVe

d
1.0

I.43.31 D = µekbT 1.0
I.43.43 κ = 1

γ−1
kbv
A

0.9428
I.44.4 E = nkbT ln(V2

V1
) 0.8322

I.47.23 c =
√

γpr
ρ

0.9926

I.48.20 E = mc2√
1−v2/c2

0.8859

I.50.26 x = x1[cos(ωt) + α cos(ωt)2] 0.9999

19

Under review as a conference paper at ICLR 2024

Table E.2: Tested Feynman Equations, part 2.

Feynman Equation R2

II.2.42 P = κ(T2−T1)A
d

0.7842
II.3.24 FE = P

4πr2
0.9976

II.4.23 Ve = q
4πϵr

0.9997
II.6.11 Ve = 1

4πϵ
pd cos θ

r2
1.0

II.6.15a Ef = 3
4πϵ

pdz
r5

√
x2 + y2 0.9466

II.6.15b Ef = 3
4πϵ

pd
r3

cos θ sin θ 0.9943
II.8.7 E = 3

5
q2

4πϵd
0.9955

II.8.31 Eden =
ϵE2

f

2
1.0

II.10.9 Ef = σden
ϵ

1
1+χ

0.9999
II.11.3 x =

qEf

m(ω2
0−ω2)

0.9901

II.11.7 n = n0(1 +
pdEf cos θ

kbT
) 0.8826

II.11.20 P∗ =
nρp

2
dEf

3kbT
0.7783

II.11.27 P∗ = nα
1−nα/3

ϵEf 0.9859
II.11.28 θ = 1 + nα

1−(nα/3)
0.9947

II.13.17 B = 1
4πϵc2

2I
r

0.9997
II.13.23 ρc =

ρc0√
1−v2/c2

0.9807

II.13.34 j =
ρc0v√
1−v2/c2

0.9938

II.15.4 E = −µMB cos θ 1.0
II.15.5 E = −pdEf cos θ 1.0
II.21.32 Ve = q

4πϵr(1−v/c)
0.9954

II.24.17 k =
√

ω2

c2
− π2

d2
0.9872

II.27.16 FE = ϵcE2
f 1.0

II.27.18 Eden = ϵE2
f 1.0

II.34.2a I = qv
2πr

0.9982
II.34.2 µM = qvr

2
0.9918

II.34.11 ω = g_qB
2m

0.9937
II.34.29a µM = qh

4πm
1.0

II.34.29b E = g_µMBJz

ℏ 0.8882
II.35.18 n = n0

exp(µmB/(kbT))+exp(−µmB/(kbT))
0.9466

II.35.21 M = nρµM tanh(µMB
kbT

) 0.8722
II.36.38 f = µmB

kbT
+ µmαM

ϵc2kbT
0.9244

II.37.1 E = µM (1 + χ)B 0.9999
II.38.3 F = Y Ax

d
1.0

II.38.14 µS = Y
2(1+σ)

0.9999
III.4.32 n = 1

e
ℏω
kbT −1

0.9877

III.4.33 E = ℏω

e
ℏω
kbT −1

0.9998

III.7.38 ω = 2µMB
ℏ 0.9914

III.8.54 pγ = sin(Et
ℏ)2 0.9943

III.9.52 pγ =
pdEf t

ℏ
sin((ω−ω0)t/2)

2

((ω−ω0)t/2)2
0.7266

III.10.19 E = µM

√
B2

x +B2
y +B2

z 0.9928
III.12.43 L = nℏ 1.0
III.13.18 v = 2Ed2k

ℏ 0.9999

III.14.14 I = I0(e
qVe
kbT − 1) 0.9982

III.15.12 E = 2U(1− cos(kd)) 0.9999
III.15.14 m = ℏ2

2Ed2
0.9983

III.15.27 k = 2πα
nd

0.9998
III.17.37 f = β(1 + α cos θ) 1.0
III.19.51 E = −mq4

2(4πϵ)2ℏ2
1
n2 0.9894

III.21.20 j =
−ρc0qAvec

m
0.7489

20

Under review as a conference paper at ICLR 2024

- use_gpu (bool): whether or not to train with GPU

Table F.1: Tuned hyperparameters for AlphaSymbol.

Parameter Value
min_length 2
max_length -

type LSTM
Num_layers for LSTM 2

hidden_size 250
dropout 0.0

optimizer for LSTM adam
Learn rate 0.0005
batch_size 1000
Use_gpu False

inner_optimizer lbfgs
inner_lr 0.1

inner_num_epochs 5
num_batches 10000

λ 0.1

G APPENDIX: RELATED WORK SUPPLEMENT

Self-Learning_Gene_Expression_Programming (SL-GEP)(Zhong et al., 2015), The SL-GEP
method utilizes Gene Expression Programming (GEP) to represent each chromosome, which consists
of a main program and a set of Automatically Defined Functions (ADFs). Each ADF is a sub-function
used to solve sub-problems and is combined with the main program to address the target problem of
interest. In the initialization step, all encoded ADFs in each chromosome are randomly generated.
Then, during the evolutionary search process, SL-GEP employs a self-learning mechanism to improve
the search outcomes. Specifically, SL-GEP utilizes an adaptive learning algorithm to dynamically
evolve the ADFs online and integrate them with the main program to construct more complex and
higher-order sub-functions, thereby enhancing search accuracy and efficiency.
semantic genetic programming (SGD)(Huang et al., 2022), Traditional genetic programming
approaches often rely on random search to find optimal solutions, but this method is inefficient
and prone to getting stuck in local optima. Therefore, SGD utilizes program behavior to guide the
search, aiming to improve the efficiency and accuracy of symbolic regression problems. Specifically,
this method starts by transforming input data into vector form and uses it as a constraint in a linear
programming model. Then, semantic information is employed to evaluate each program and classify
them based on their behavioral characteristics. Subsequently, the best programs are selected within
each category and used to generate a new generation of programs. This approach effectively reduces
the search space and accelerates convergence speed.
shape-constrained symbolic regression (SCSR) (Haider et al., 2023), The main idea of SCSR is
a shape-constrained symbolic regression algorithm. This method leverages prior knowledge about
the shape of the regression function to improve the accuracy of the regression model. Specifically,
the article introduces both single-objective and multi-objective algorithms. The single-objective
algorithm utilizes genetic programming techniques to generate the best-fitting curve. On the other
hand, the multi-objective algorithm considers multiple optimization objectives and employs Pareto
front techniques to search for a set of non-dominated solutions.

H APPENDIX: COMPUTING RESOURCES

The server we use is equipped with an Intel(R) Xeon(R) Gold 5218R CPU, which has a base
frequency of 2.10 GHz. It has a total of 20 CPU cores, allowing for parallel processing and improved

21

Under review as a conference paper at ICLR 2024

computational performance. The high core count and efficient architecture of the Intel Xeon Gold
5218R make it suitable for handling demanding computational tasks and workloads.

I APPENDIX: MCTS

In order to clearly show the MCTS search process, we assume that there are only two basic symbols
[sin,x]. The target expression is y = sin(x). The search process is as follows.

Initialization: Initially there is a root node S0, and each node in the tree has two values, the reward
Q of the node and the number of visits to that node N.

Figure I.1

First iteration: Node S0 is the root and leaf node, and is not the terminating node, so it is extended.
Assume that S0 has two actions (the basic symbol [sin,x]) after it , which are transferred to S1 and S2

respectively.

Figure I.2

You can then use the UCT formula to choose whether to extend S1or S2. Here N1and N2are both
0, so the UCT value of both nodes is infinite, so any node can be selected, here S1is selected for
extension and simulation (random selection of symbols). After simulation, it was found that the final
reward value was 0.2, so it was updated retrospectively. Q1 = 0.2,N1= 1,Q0=0.2,N0= 1.

22

Under review as a conference paper at ICLR 2024

Figure I.3

The second iteration: Starting from S0, calculate the UCT values of S1 and S2, and select the larger
one for expansion. (assuming S1 > S2 after calculation)
Then according to the UCT value, S1 is selected for expansion. After reaching S1, it is found that
it is a leaf node and has been explored, then enumerate all possible states of the current node (each
action corresponds to a state), and add them to the tree.

Figure I.4

Then we can select either S3 or S4 at random as before. Keep iterating. (In this example, S4 has
successfully found the target expression)

23

	Introduction
	Related Work
	Modeling
	Results
	Disscusion
	Appendix: Pseudocode for the AlphaSymbol
	Appendix: Reward variation curve (On Dataset Nguyen).
	Appendix: Experimental details for each expression
	Appendix: Average Coefficient of Determination (R2) on Various Datasets
	Appendix: R2 of AlphaSymbol on the AI Feynman dataset.
	Appendix: Hyperparameter Settings
	Appendix: Related work supplement
	Appendix: Computing resources
	Appendix: MCTS

