
Published as a conference paper at ICLR 2024

SIMPLE MINIMAX OPTIMAL BYZANTINE ROBUST AL-
GORITHM FOR NONCONVEX OBJECTIVES WITH UNI-
FORM GRADIENT HETEROGENEITY

Tomoya Murata∗ Kenta Niwa† Takumi Fukami‡ Iifan Tyou§

ABSTRACT

In this study, we consider nonconvex federated learning problems with the existence
of Byzantine workers. We propose a new simple Byzantine robust algorithm called
Momentum Screening. The algorithm is adaptive to the Byzantine fraction, i.e., all
its hyperparameters do not depend on the number of Byzantine workers. We show
that our method achieves the best optimization error of O(δ2ζ2max) for nonconvex
smooth local objectives satisfying ζmax-uniform gradient heterogeneity condition
under δ-Byzantine fraction, which can be better than the best known error rate
of O(δζ2mean) for local objectives satisfying ζmean-mean heterogeneity condition
when δ ≤ (ζmean/ζmax)

2. Furthermore, we derive an algorithm independent
lower bound for local objectives satisfying ζmax-uniform gradient heterogeneity
condition and show the minimax optimality of our proposed method on this class.
In numerical experiments, we validate the superiority of our method over the
existing robust aggregation algorithms and verify our theoretical results.

1 INTRODUCTION

In distributed machine learning, some workers, called Byzantine workers (Lamport et al., 2019),
may behave abnormally, so using the naive average aggregation of the workers’ gradients to train
a single global model can catastrophically degrade the model’s accuracy. Examples of abnormal
behavior include hardware crashes, message corruption, as well as the presence of poisoned data and
the transmission of false information based on adversarial intent, and so on.

To tolerate the possibility of arbitrary malicious acts of Byzantine workers and to mitigate the
degradation of the model accuracy, many robust aggregation rules have been proposed and analyzed
in IID settings. Specifically each worker’s dataset is randomly sampled from a common population
(Blanchard et al., 2017; Yin et al., 2018; Alistarh et al., 2018; Guerraoui et al., 2018; Xie et al.,
2019; Allen-Zhu et al., 2021; Karimireddy et al., 2021). Blanchard et al. (2017) theoretically studied
Byzantine robustness for machine learning problems for the first time and analyzed KRUM, which
is a distance-based robust aggregation. Yin et al. (2018) analyzed Coordinate Median (CM) and
Trimmed Mean (TM) and derived statistically optimal rates with respect to the Byzantine fraction
and the sample size, but they still explicitly depend on the problem dimension. Alistarh et al. (2018)
developed a more sophisticated aggregation algorithm and derived an optimal error with a less
dependence on the problem dimension than CM and TM, for convex cases. The algorithm has been
further extended to nonconvex cases (Allen-Zhu et al., 2021). Karimireddy et al. (2021) theoretically
showed that the existing historyless aggregations including KRUM, CM, and TM do not converge
to the optimum for stochastic cases. In fact, they reported empirical failures of the historyless
aggregations against time coupled attacks such as Inner Product Manipulation (IPM) (Xie et al., 2020)
and A Little Is Enough (ALIE) (Baruch et al., 2019). To overcome this problem, they proposed a new
aggregation called Centered Clipping (CClip) combined with momentum stochastic gradient descent
(SGD) that exploits the history of the previous gradient information.

∗murata@msi.co.jp, NTT DATA Mathematical Systems Inc.
†kenta.niwa@ntt.com, NTT Communication Science Laboratories, NTT Corporation
‡takumi.fukami@ntt.com, NTT Social Information Laboratories, NTT Corporation
§iifan.tyou@ntt.com , NTT Social Information Laboratories, NTT Corporation

1

Published as a conference paper at ICLR 2024

In the progress of federated learning Konečnỳ et al. (2015); Shokri & Shmatikov (2015); McMahan
et al. (2017), much attention has been given to the development of Byzantine robust algorithms,
especially for non-IID cases, where the local datasets of the workers are heterogeneous. However,
as shown in Li et al. (2023), the standard aggregations such as KRUM, CM, and TM empirically
fail in non-IID cases due to the data heterogeneity. Many researchers have developed new robust
aggregations for non-IID settings (Li et al., 2019; Data & Diggavi, 2021; Pillutla et al., 2022;
Karimireddy et al., 2022; Allouah et al., 2023; Liu et al., 2023). Pillutla et al. (2022) proposed Robust
Federated Averaging (RFA) based on Geometric Median (GM) aggregation for Federated Averaging
(FedAvg), which is a standard optimizer in federated learning. In Data & Diggavi (2021), FedAvg is
combined with a robust mean estimation algorithm. Karimireddy et al. (2022); Allouah et al. (2023);
Liu et al. (2023) proposed a general robustness amplification technique for heterogeneous data.

Recent research on Byzantine robust algorithms can be categorized into three main directions: (i)
asymptotic optimization accuracy improvement in non-IID cases, (ii) computational and communica-
tion efficiency improvement, and (iii) extensions of problem settings. In direction (i), Karimireddy
et al. (2022) derived an algorithm independent optimization error lower bound and showed that no
robust algorithms can reach the optimum in non-IID cases. Thus, it is crucial to investigate the best
achievable optimization error of the robust algorithms in non-IID cases. Karimireddy et al. (2022) also
gave a unified analysis of momentum SGD with a class of robust aggregators including KRUM, CM,
and RFA wrapped by their proposed bucketing, and CClip and showed that these algorithms achieve
a minimax optimal asymptotic optimization error for nonconvex local objectives satisfying the mean
gradient heterogeneity condition introduced in Section 2 (Assumption 6). In direction (ii), many
studies have proposed efficient robust algorithms by combining with variance reduction, multiple
local updates, gradient compression and their combinations (Wu et al., 2020; Zhu & Ling, 2021; Data
& Diggavi, 2021; Pillutla et al., 2022; Gorbunov et al.). In direction (iii), several extensions of the
standard Byzantine robust optimization setting have been studied; learning on decentralized networks
(Guo et al., 2020; El-Mhamdi et al., 2021; He et al., 2022), personalized federated learning (Li et al.,
2021; Lin et al., 2022; Werner et al., 2023), combination with differential privacy (He et al., 2020;
Guerraoui et al., 2021; Zhu & Ling, 2022), and so on.

This study particularly focuses on (i) optimization accuracy improvement for a specific class of
nonconvex local objectives by developing a new simple robust algorithm in non-IID settings, because
of its fundamental importance.

Main Contributions. We propose a new Byzantine robust algorithm called Momentum Screening
(MS) for nonconvex federated learning. Its main features are as follows:

• (Algorithmic simplicity) MS uses a simple screening test to detect Byzantine workers and
combines it with the standard momentum SGD.

• (Adaptivity to Byzantine fractions) Theoretically, MS does not need to know the number of
Byzantine workers in advance, i.e., all hyperparameters of our algorithm are independent of
Byzantine fraction δ ∈ [0, 0.5), which is highly desirable in practice.

• (Minimax optimality for CUH(ζmax)) Thanks to the screening scheme, MS achieves the
minimax optimal optimization error of O(δ2ζ2max) for local objectives class CUH(ζmax),
that can be better than the previously known minimax optimal rate of O(δζ2mean) for class
CMH(ζmean)

1.

To show the minimax optimality of MS, we derive not only an upper bound of the optimization error
of MS, but also an algorithm independent lower bound for CUH(ζmax), and show that the obtained
upper and lower bounds match in order sense. To the best of our knowledge, no lower bounds have
been known for CUH(ζmax), and MS is the first minimax optimal algorithm for CUH(ζmax). The
obtained rate has a better dependence on Byzantine fraction δ than previous ones, and thus MS can
be more robust against Byzantine attacks for small δ on CUH(ζmax).

Related Work. Here, we discuss the connections between this study and the most relevant previous
studies. Our screening idea is inspired by the pioneering work of Alistarh et al. (2018). However, the

1Roughly speaking, CUH(ζmax) denotes the class of nonconvex smooth local objectives satisfying that the
maximum L2 distance of the local gradients from the global gradient is bounded by ζmax. Similarly, CMH(ζmean)
denotes the class of nonconvex smooth local objectives satisfying that the mean L2 distance of the local gradients
from the global gradient is bounded by ζmean. For their formal definitions, see Definition 1 in Section 2.

2

Published as a conference paper at ICLR 2024

algorithm presented in Alistarh et al. (2018) is more complex than ours because it does not rely on the
momentum technique and needs to aggregate three variables, and their problem setting is limited to
IID cases, which are not standard in federated learning. Although the objective functions considered
in Alistarh et al. (2018) are convex, the algorithm and the analysis have been extended to nonconvex
cases (Allen-Zhu et al., 2021). CClip was first proposed in the context of IID settings (Karimireddy
et al., 2021). After that, Karimireddy et al. (2022) gave a unified analysis of momentum SGD with
their so-called robust aggregators, which includes KRUM, CM, and RFA wrapped by bucketing and
CClip on non-IID settings. CClip clips the difference in each input from some guess of the true mean
and efficiently mitigates the Byzantine behavior even for heterogeneous local objectives. Bucketing
first makes a random partition of input variables, takes the average on each bucket, and then applies
traditional robust aggregations to the averaged results. Karimireddy et al. (2021) showed that these
algorithms achieve the minimax optimal rate O(δζ2mean) for local objectives satisfying ζmean-mean
gradient heterogeneity condition (Assumption 6). In contrast, this study focuses on another local
objectives class satisfying ζmax-uniform gradient heterogeneity condition (Assumption 5) and derives
the minimax optimal rate O(δ2ζ2max) of our method, which implies that our method achieves better
optimization accuracy than CClip and bucketing when δ ≤ (ζmean/ζmax)

2 holds2. Also, CClip
and bucketing are not adaptive to Byzantine fraction δ, which means that the theoretically justified
hyperparameters of the algorithms depend on the true δ. In contrast, our method is adaptive to δ.
Very recently, Allouah et al. (2023) proposed a general robustness amplification technique called
Nearest Neighbor Mixing (NNM), which first creates new input variables by mixing each input
point with its nearest neighbor and then feeds the results into standard robust aggregation algorithms.
This increases the aggregation accuracy, and NNM has been shown to achieve optimization error of
O(δζ2mean), which is the same as that of CClip and bucketing, for ζmean-mean gradient heterogeneous
local objectives. Also, very recently Liu et al. (2023) has proposed another general robustness
amplification called GrAdient Splitting (GAS), which first splits the coordinates into p subsets and
then applies standard robust aggregations to the input variables on each split coordinate. GAS with
splitting size p has been shown to achieve optimization error of O((δ2(1 + |G|/p)(ζ2max + σ2)) for
ζmax-uniform gradient heterogeneous local objectives, which is worse than our obtained rate due to
the additional dependence on the number of honest workers |G| and stochastic gradient variance σ2.
Also, neither NNM nor GAS is adaptive to δ.

2 NOTATION AND PROBLEM SETTINGS

In this section, some notations used in this paper are introduced. Then, our problem settings and
theoretical assumptions are given.

Notation. ∥ · ∥ denotes the Euclidean L2 norm ∥ · ∥2: ∥x∥ =
√∑

i x
2
i for vector x. For a matrix X ,

∥X∥ denotes the induced norm by the Euclidean L2 norm. For a natural number m, [m] denotes the
set {1, 2, . . . ,m}. For a finite set A, |A| denotes the number of elements. For any number a, b, a ∨ b
denotes max{a, b} and a ∧ b denotes min{a, b}.
Problem Settings. Let n be the number of workers. We assume that δn workers can be Byzantine
(δ ∈ [0, 0.5)) and can send arbitrary vectors to the central server in the training. Let G be the set
of non-Byzantine workers (|G| = (1 − δ)n). We want to minimize nonconvex objective f(x) :=
1
|G|
∑

i∈G fi(x), where fi(x) := Ez∼Di
[ℓ(x, z)]. Here, Di denotes the local data distribution of

worker i. Since the objective function is nonconvex, we set our goal to find approximate first-order
optimal points x, i.e., ∥∇f(x)∥2 ≤ ε given the desired optimization error ε > 0. It is not assumed
that Di = Dj for i ̸= j and thus the local data distributions can be heterogeneous. In this case, we
can no longer generally expect the asymptotic optimization error limt→∞∥∇f(xt)∥2 to be zero in
the presence of Byzantine workers, due to the bias from the data heterogeneity (Karimireddy et al.,
2022). Therefore, we focus on finding x that satisfies ∥∇f(x)∥2 ≤ ε for as small ε > 0 as possible.

2.1 ASSUMPTIONS

In this subsection, several assumptions used in Section 4 are introduced.

Assumption 1. fi is L-smooth for each i ∈ G.

2For the discussions of this condition, see Sections 2 and 7.

3

Published as a conference paper at ICLR 2024

Assumption 2. There exists a global minima x∗ of f .
Assumption 3. Minibatch stochastic gradient gi at x of fi, with E[gi] = ∇fi(x), satisfies the
following norm sub-Gaussian property with parameter σ2 for every x ∈ Rd and i ∈ G: Pz∼Di(∥gi−
∇fi(x)∥ ≥ s) ≤ 2 exp(−s2/(2σ2)) for any s ≥ 0.

Assumption 3 is necessary to obtain high probability bounds and is often assumed in the stochastic
optimization literature (Jin et al., 2021).
Assumption 4. ∥∇ℓ(x, z)∥ ≤ G holds for every x ∈ Rd a.s. with respect to z ∼ Di for each i ∈ G.

Assumption 4 is only used in the application of Azuma-Hoeffding’s inequality for norm-subGaussian
martingales (Jin et al., 2019). Very importantly, G depends only log log order on the iteration
complexity of our algorithm to achieve the best optimization error and G never depends on the final
optimization error in our theory (see Theorem 1 in Section 4). Hence, Assumption 4 is not so limited.
Assumption 5. {fi}i∈G satisfies the following ζmax-uniform gradient heterogeneity condition:

max
i∈G
∥∇fi(x)−∇f(x)∥2 ≤ ζ2max,∀x ∈ Rd.

Assumption 6. {fi}i∈G satisfies the following ζmean-mean gradient heterogeneity condition:

1

|G|
∑
i∈G
∥∇fi(x)−∇f(x)∥2 ≤ ζ2mean,∀x ∈ Rd.

Note that both Assumptions 5 and 6 measure some heterogeneity of the non-Byzantine local objectives
{fi}i∈G . Assumption 5 is stronger than Assumption 6, because ζmax ≥ ζmean always holds. In
general, the relationship between ζmean and ζmax depends on the structure of the local datasets. For
example, consider learning a model on CIFAR10 dataset with 20 workers in two scenarios. In the
first scenario, workers 1 through 19 have a local dataset randomly sampled from CIFAR10 in an IID
manner, and worker 20 has only a local dataset consisting of random samples with class label 0. Then
we expect that ζmax/ζmean ≫ 1 due to the presence of outlier worker 20. In the second scenario,
each worker has a local dataset consisting of random samples from two random classes in {0, . . . , 9}.
In this case, we expect ζmax/ζmean to be much smaller than in the first scenario, even though the
local datasets are still highly heterogeneous. Thus, the quantity ζmax/ζmean describes a property of
the heterogeneity rather than its strength. We empirically observed that for several neural networks,
including VGG11, ζmax/ζmean was not so large (roughly 1.0 ∼ 3.0) on MNIST and CIFAR10 with
heterogeneous allocation and even on a realistic federated learning dataset (see Section E).
Definition 1. CUH(ζmax) is defined as the set of local objectives {fi}i∈G that satisfies Assumptions
1, 2, 3, 4, and 5. Similarly, CMH(ζmean) is defined as the set of local objectives {fi}i∈G that satisfies
Assumptions 1, 2, 3, 4 and 6.

Observe that CUH(ζ) ⊂ CMH(ζ). Most previous work has essentially focused on CMH(ζmean). In our
theory, we focus on CUH(ζmax) to improve the asymptotic optimization error obtained so far.

3 APPROACH AND PROPOSED ALGORITHM

In this section, we illustrate our ideas and the proposed algorithm.

Review of Centered Clipping. The algorithm most closely related to this work is Centered
Clipping (CClip) Karimireddy et al. (2021; 2022), which is a state-of-the-art robust aggregation
algorithm that empirically works much better than the traditional ones like KRUM, CM, and RFA for
Byzantine robust federated learning. The simplest CClip takes independent random vectors {mt

i}ni=1
as input and returns v + (1/n)

∑n
i=1 min{1, τ/∥mt

i − v∥}(mt
i − v), where v is an initial guess of

the ideal aggregation (1/|G|)
∑

i∈G mt
i, and is often set to the previous aggregation result mt−1,

but we repeatedly apply CClip by replacing the initial guess with the current aggregation mt. The
clipping radius τ is derived theoretically as τ = Θ(ρ/

√
δ), where ρ := maxi,j∈G

√
E∥mt

i −mt
j∥2

and δ ≤ 0.1 is the Byzantine fraction. A key observation of CClip’s update rule is that even for the
theoretically determined τ , the individual component mt

i may be clipped and biased toward zero for
non-Byzantine worker i. This means that CClip is conservative in a sense: one can mitigate the effect

4

Published as a conference paper at ICLR 2024

Algorithm 1: Momentum Screening(x0, η, α, {τt}Tt=1)
1: for t = 1 to T do
2: for i ∈ [n] in parallel do
3: if i ∈ G then
4: Compute minibatch stochastic gradients gti at xt−1.
5: Send mt

i = (1− α)mt−1
i + αgti (m0

i = g1i) to the server.
6: else
7: Send arbitrary vector ∈ Rd to the server. # Worker i is Byzantine.
8: end if
9: end for

10: mt = Screen({mt
i}ni=1, τt).

11: xt = xt−1 − ηmt.
12: end for
13: Return: xt̂ (t̂ ∼ Unif[T]).

Algorithm 2: Screen({mi}ni=1, τ)

1: Ĝ = {i ∈ [n] : |{j ∈ [n] : ∥mi −mj∥ ≤ τ}| ≥ 0.5n}.
2: m := 1

|Ĝ|

∑
i∈Ĝ mi

3: Return: m.

of adversarial variables at the expense of the clipping bias for non-Byzantine workers. For the more
details of CClip, see Karimireddy et al. (2021; 2022).

Our Approach: Momentum Screening. One feature of CClip is to allow clipping bias for non-
Byzantine workers. Another possible approach is to use a safe detection test to remove adversarial
variables {mt

i}i∈[n]\G , where all the non-Byzantine workers must pass the detection test, and hope-
fully many more Byzantine workers will be detected by the test and their variables screened out (i.e.,
removed). If this type of detection test is available, the non-Byzantine variables will not be affected by
the aggregation. In this case, the aggregation error only comes from the bias of the adversarial vectors
that could not be detected by the test. To realize such a detection test, we consider a simple screening
approach: an input vector mt

i is screened out (i.e., removed) if the d-dimensional sphere with center
mt

i and radius τt does not contain at least half of the {mt
i}ni=1. A similar idea to screening already

appeared in Alistarh et al. (2018), but the paper only gave a theoretical analysis in the context of
homogeneous settings that are not standard in federated learning, and importantly the whole algorithm
is very complex because their algorithm aggregates three quantities (i) the current gradients; (ii) the
accumulated gradients; and (iii) the accumulated inner products between the previous gradients and
the updated differences, and screening is applied to both (i) and (ii). In contrast, we simply apply
screening to the momentum {mi}ni=1 only once per round.

Concrete Procedures. The concrete procedures of our proposed algorithm Momentum Screening
(MS) are described in Algorithm 1. For each iteration t, each worker computes a minibatch stochastic
gradient gti and updates the momentum mt

i in parallel. Then, the central server receives the updated
momentums {mt

i}ni=1 and aggregates them using Screen (Algorithm 2). The aggregated momentum
is then used to update the global model parameter. In Algorithm 2, we screen “malicious” momentum
mi by measuring the distance to the other momentums mj ; if the sphere with center mi and radius τt
contains only less than half of the other momentums, mi is judged to be anomalous and decided to be
rejected. Then, the output is the average of the momentums that pass this screen test. As shown in
Section 4, it is theoretically nice to set τt to Θ(ζmax)+Θ̃((1−Ω(α))t−1+α)0.5σ to avoid removing
the output of non-Byzantine workers, where α is the momentum parameter. In practice, we use some
decay scheduling for {τt}Tt=1. For our experimental settings of {τt}Tt=1, see Section 6 and D.2.
Remark 1 (Efficient implementation of Algorithm 2). A naive implementation of Algorithm 2
requires O(n2d) computational cost3, which is worse than Õ(nd) of CClip and sometimes forbidden.
However, we can efficiently implement Algorithm 2 with only Õ(nd) expected computational cost. The

3This is because we need to check ∥mi −mj∥ ≤ τ for every i, j ∈ [n].

5

Published as a conference paper at ICLR 2024

concrete procedure of the efficient implementation of Algorithm 2 is given in Algorithm 3 in Section C
due to space limitations. We can show that the aggregation error ∥mt− m̄t∥ with Algorithm 3 is only
nearly 1.5 times worse than that with Algorithm 2, where m̄t := (1/|G|)

∑
i∈G mt

i means the ideal
aggregation result. For more details, see Proposition 2 in Section 4. Also, we empirically observed
that the performance of Algorithm 1 with Algorithm 3 was similar to that with 2 (the empirical
comparison can be found in Section D.5).

4 CONVERGENCE ANALYSIS

In this section, we provide a theoretical analysis of Algorithm 1. Õ and Θ̃ abbreviate extra poly-
logarithmic factors depending on d, 1/q, T , log |G|, log(1/σ2), and logG for simple presentation,
where q ∈ (0, 1) is the confidence parameter of a high probability bound. All the proofs can be found
in Section A.

Overview of Analysis. Lemma 1 and Proposition 1 give the standard bounds for stochastic gradient
methods with momentum. These are very similar to Lemmas 9 and 10 in Karimireddy et al. (2022),
but our results give high probability bounds instead of the expectation bounds proved in Karimireddy
et al. (2022). This is important for the analysis of our screening algorithm because evaluating the
aggregation error ∥mt

i −mt
j∥2 in expectation is difficult since Algorithm 2 relies on the observed

value of diameter ∥mi−mj∥ without expectation. To derive high probability bounds, we use Azuma-
Hoeffding’s inequality for norm-subGaussian martingales (Jin et al., 2019). Proposition 2 gives
the aggregation error bound O(δ2ρ2max) for Algorithm 2 with appropriate τ = Θ(ρmax) under the
uniform diameter bound maxi,j∈G ∥mt

i−mt
j∥ ≤ ρmax, which is better than that of Karimireddy et al.

(2022) thanks to the screening scheme, and this part is the most important in our analysis. Proposition
3 gives a high probability bound for the diameter ∥mt

i −mt
j∥, which is required in Proposition 2 and

roughly we show that maxi,j∈G ∥mt
i−mt

j∥ ≤ O(ζmax)+Õ(((1−α)t−1+α)σ2) by essentially using
Assumption 5. This means that the theoretically justified τt is Θ(ζmax) + Θ̃(((1− α)t−1 + α)σ2)
and thus the setting of τt is adaptive to the Byzantine fraction δ. In Theorem 1, we combine all the
results and derive a convergence rate of Algorithm 1 and show an asymptotic optimization error of
(1/T)

∑T
t=1 ∥∇f(xt−1)∥2 ≤ O(δ2ζ2max), which can be better than that of O(δζ2mean) in the previous

studies.
Lemma 1 (Descent Lemma). Suppose that Assumption 1 holds. Let α ∈ (0, 1], η ≤ 1/L. Then, for
every t ≥ 1 it holds that f(xt) ≤ f(xt−1)− (η/2)∥∇f(xt−1)∥2 + η∥ēt∥2 + η∥mt − m̄t∥2. Here,
ēt := m̄t −∇f(xt−1) and m̄t := (1/|G|)

∑
i∈G mt

i.
Proposition 1. Suppose that Assumptions 1, 3 and 4 hold. Let q ∈ (0, 1/2), α ∈ (0, 1) and
η ≤

√
α/(48(1 + 1/α))(1/L) = Θ(α/L). Then, it holds that for fixed t ≥ 1

∥ēt∥2 ≤ A

t∑
τ=2

(
1− α

4

)t−τ

∥mτ−1 − m̄τ−1∥2 +B

t∑
τ=2

(
1− α

4

)t−τ

∥∇f(xτ−2)∥2 + Ct

with probability at least 1 − 2q. Here, A = O(η2L2/α), B := α(1/16 + 4cγ(1 − α)) and
Ct = Õ(((1 − α/4)t−1 + α/γ)σ2/|G|)), where γ := 1/(128c(1 − α)) and c is some universal
constant.
Proposition 2 (Aggregation Error Bound). Suppose that Assumption 5 holds. Let t ∈ [T]. If
∥mt

i−mt
j∥2 ≤ ρ2max for every i, j ∈ G, under τt ≥ ρmax, Algorithm 2 satisfies ∥mt−m̄t∥2 ≤ 4δ2τ2t

, and for q ∈ (0, 1), with probability at least 1−q, Algorithm 3 satisfies ∥mt−m̄t∥2 ≤ 4(1+s)2δ2τ2t ,
where s ≥ δ + 3

√
(log(2/q))/(2K) is a parameter of Algorithm 3.

Proposition 3 (Diameter Bound). Let q ∈ (0, 1/2) and α ∈ (0, 1/2]. Suppose that Assumptions 3, 4
and 5 hold. Then, it holds that for fixed t ≥ 1, with probability at least 1− 2q, for any i, j ∈ G,

∥mt
i −mt

j∥2 ≤ O(ζ2max) + Õ

(((
1− α

4

)t−1

+ α

)
σ2

)
.

Theorem 1. Suppose that Assumptions 1, 2, 3, 4 and 5 hold. Let η ≤ 1/(8
√
6L), α := 4

√
6ηL(≤

1/2) and τt = Θ(ζ2max) + Θ̃(((1− α)t−1 + α)σ2) be appropriately chosen. Algorithm 1 satisfies

1

T

T∑
t=1

∥∇f(xt−1)∥2 ≤ O

(
f(x0)− f(x∗)

ηT

)
+O

(
δ2ζ2max

)
+ Õ

((
1

ηLT
+ ηL

)(
δ2 +

1

|G|

)
σ2

)

6

Published as a conference paper at ICLR 2024

with probability at least 1 − 5q for any q ∈ (0, 1/5). In particular, if we set η := (1/(8
√
6L)) ∧

(1/(
√
TL)), for sufficiently large T we obtain (1/T)

∑T
t=1 ∥∇f(xt−1)∥2 ≤ O(δ2ζ2max).

Remark 2. The best achievable optimization error O(δ2ζ2max) can be better than the state-of-the-art
one O(δζ2mean) of CClip and bucketing (Karimireddy et al., 2022) when δ ≤ (ζmean/ζmax)

2.
Remark 3. From Theorem 1, we can confirm that the hyperparameters η, α and τ are independent
of δ. In this sense, our algorithm is adaptive to Byzantine fraction δ.

5 LOWER BOUND FOR CUH(ζmax)

In this section, we discuss a lower bound for CUH(ζmax) and the optimality of MS (Algorithm 1).

The basic approach is based on Karimireddy et al. (2022). However, for the construction of algorithm-
independent worst-case local objectives contained in CUH(ζmax), we need to carefully construct
quadratic functions on R and rely on their smoothed versions, which is not necessary for the analysis
of Karimireddy et al. (2022). The following theorem gives a lower bound Ω(δ2ζ2max) for CUH(ζmax)
and combining the lower bound with Theorem 1 implies the minimax optimality of Algorithm 1 in
terms of asymptotic optimization error.
Theorem 2. Let δ ∈ [0, 0.5). For any optimization algorithm A, there exists a sequence of local
objectives {fi}i∈[(1−δ)n] ∈ CUH(ζmax) such that for objective function f(x) := (1/|G|)

∑
i∈G fi(x)

with G := [(1 − δ)n] it holds that Eπ∥∇f(A({fπ(i)}ni=1)∥2 ≥ Ω(δ2ζ2max). Here, π is a random
permutation over [n] and the expectation is taken w.r.t. the randomness of π.
Remark 4. In Karimireddy et al. (2022), a lower bound O(δζ2mean) is essentially derived for function
class CMH(ζmean). Theorem 2 does not contradict this lower bound because Theorem 2 gives the
lower bound for CUH(ζmax) rather than CMH(ζmean).

6 NUMERICAL EXPERIMENTS

In this section, we provide the results of our numerical experiments to verify that our algorithm is
superior to the previous algorithms. 4

Data preparation. We used two standard 10-class classification datasets MNIST5 and CIFAR106.
In our experiments, we set the total number of workers to n = 20 and the number of non-Byzantine
workers to 20(1− δ) for Byzantine fraction δ. To construct 20(1− δ) heterogeneous local datasets,
we adopted the procedures used in Karimireddy et al. (2022). First, the training dataset was randomly
divided into 50%. Next, one 50% dataset was equally divided and distributed to each non-Byzantine
worker. Finally, the other 50% dataset was sorted by labels and divided sequentially into 20 equal
parts7and distributed to each non-Byzantine worker. This means that each non-Byzantine worker had
50% IID samples and 50% highly non-IID samples. These procedures were done independently for
MNIST and CIFAR10.

Models. Our experiments were conducted using three neural newtorks; (i) a one-hidden layer fully
connected neural network (FC), (ii) a convolutional neural network with two convolutional layers
and two fully connected layers (CNN), and (iii) VGG11 (Simonyan & Zisserman, 2014). The details
of the network architectures are found in Section D.1. Due to space limitations, we only report the
results on (i) FC and (iii) VGG11, and the results on (ii) CNN can be found in Section D.4.

Implemented aggregation algorithms. We implemented six aggregation algorithms: simple
averaging (Avg), Coordinate Median (CM), KRUM (Blanchard et al., 2017), RFA (Pillutla et al.,
2022), Centered Clipping (CClip) (Karimireddy et al., 2022) and our proposed Momentum Screening
(MS, Algorithm 1 with Algorithm 2). The details of them are found in Section D.2. We fixed learning
rate η to 0.01, minibatch size to 32. We set the number of epochs to 20 for FC and CNN, and 100 for
VGG11. Also, we decided to apply a momentum technique with α = 0.1 for every algorithm because

4The source code of our experiment will be publicly available after the paper is published.
5http://yann.lecun.com/exdb/mnist/.
6https://www.cs.toronto.edu/~kriz/cifar.html.
7From the construction procedures, we can expect that ζmax/ζmean will not be so large, because each local

dataset was treated approximately equally in a sense, and there were no outlier local datasets.

7

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html

Published as a conference paper at ICLR 2024

Model/Data AGG BF LF Mimic IPM ALIE Worst

FC/
MNIST

Avg 95.1± 0.2 95.5± 0.3 95.5± 0.3 94.8± 0.1 89.3± 0.7 89.3± 0.7
CM 93.1± 0.6 93.3± 0.2 94.1± 0.6 91.4± 0.6 88.2± 3.2 88.2± 3.2

KRUM 93.0± 0.3 94.0± 0.4 94.5± 1.0 92.8± 0.4 95.1± 0.1 92.8± 0.3
RFA 94.7± 0.2 95.3± 0.3 95.3± 0.4 93.7± 0.2 90.2± 0.5 90.2± 0.5

CClip 94.8± 0.2 95.2± 0.3 95.4± 0.3 93.7± 0.2 93.2± 0.4 93.2± 0.4
MS (ours) 95.2± 0.2 95.4± 0.3 95.5± 0.3 94.5± 0.1 94.9± 0.2 94.5± 0.1

VGG11/
MNIST

Avg 99.3± 0.1 99.3± 0.1 99.4± 0.1 99.3± 0.1 30.8± 15.1 30.8± 15.1
CM 99.2± 0.1 99.1± 0.1 99.3± 0.1 99.1± 0.0 67.0± 10.5 67.0± 10.5

KRUM 98.9± 0.1 99.2± 0.1 99.0± 0.1 98.7± 0.1 99.2± 0.1 98.7± 0.1
RFA 99.3± 0.1 99.3± 0.1 99.3± 0.1 99.3± 0.1 72.8± 34.7 72.8± 34.7

CClip 99.3± 0.1 99.3± 0.1 99.3± 0.1 99.3± 0.1 95.3± 2.8 95.3± 2.8
MS (ours) 99.3± 0.1 99.3± 0.0 99.3± 0.1 99.0± 0.3 99.3± 0.0 99.0± 0.3

FC/
CIFAR10

Avg 46.7± 1.3 46.9± 1.4 46.1± 1.2 46.7± 1.3 25.2± 3.3 25.2± 3.3
CM 39.6± 2.2 39.6± 0.9 40.2± 1.6 37.6± 1.3 27.4± 1.7 27.4± 1.7

KRUM 35.6± 1.9 38.6± 1.2 38.2± 3.4 33.3± 1.4 37.7± 2.5 33.7± 2.1
RFA 46.2± 0.7 46.7± 0.8 45.9± 2.0 45.8± 1.0 29.0± 3.7 29.0± 3.7

CClip 44.5± 1.2 45.7± 0.6 44.0± 3.5 40.9± 1.0 35.4± 0.8 35.4± 0.8
MS (ours) 46.3± 1.1 46.2± 1.3 45.2± 1.6 45.8± 1.9 45.0± 2.5 44.6± 2.0

VGG11/
CIFAR10

Avg 84.3± 0.9 85.0± 0.4 85.1± 0.8 84.5± 0.3 19.2± 1.3 19.2± 1.3
CM 45.6± 2.5 43.7± 4.3 57.2± 9.2 34.9± 3.7 19.1± 1.9 19.1± 1.9

KRUM 55.8± 2.5 64.2± 1.8 70.3± 2.2 40.6± 4.8 71.9± 8.3 40.6± 4.8
RFA 82.7± 0.3 83.9± 0.2 84.2± 0.4 81.5± 0.6 20.3± 1.3 20.3± 1.3

CClip 77.9± 0.7 81.3± 0.6 81.3± 0.6 64.2± 18.3 22.7± 2.3 22.7± 2.3
MS (ours) 84.2± 0.4 84.6± 0.6 84.8± 0.9 83.5± 0.8 83.3± 3.4 82.8± 2.5

Table 1: Comparison of 95% confidence intervals of the best test accuracy (%) against five attacks
(δ = 3/20) for each model and dataset (“Worst” shows the confidence interval of the worst best test
accuracy among five attacks). Bucketing technique was combined with CM, KRUM, and RFA.

it consistently improved the optimization accuracy in our experiments8. For CM, KRUM, and RFA,
we tested the aggregation with the bucketing technique. In contrast, the bucketing technique was not
applied to CClip and MS9. The bucketing parameter s was set to 2 in accordance with Karimireddy
et al. (2022). For the clipping parameter of CClip, we followed the suggested parameter described in
Karimireddy et al. (2022). For MS, we set the screening parameter τt as (τ2∞+(1−α/4)t−11002)0.5,
where τ∞ was chosen for each model and dataset, but was fixed for each Byzantine fraction δ and
each random trial. The details of the settings of τ∞ can be found in Section D.2.

Implemented attack algorithms. We implemented standard five different types of attacks: Bit
Flipping Attack (BF), Label Flipping Attack (LF), Mimic Attack (mimic) (Karimireddy et al., 2022),
Inner Product Manipulation (IPM) Attack (Xie et al., 2020), and A Little Is Enough (ALIE) Attack
(Baruch et al., 2019). The details of these algorithms are found in Section D.3.

Evaluation. We compare the test accuracy of the implemented aggregation algorithms. The results
of other metrics (train loss, train accuracy, and test loss) can be found in Section D.4. We ran five
experimental trials independently and report their 95% confidence intervals.

Experiment 1: Comparison of the six aggregations for a fixed Byzantine fraction. Here, we
compare the test accuracy of the six aggregations against the five attacks for the case of δ = 3/20.
Table 1 shows the best test accuracy comparison of the six aggregations against five attacks. From the
“Worst” column, MS outperformed the other methods, including the state-of-the-art CClip and the
standard robust aggregations with bucketing, in terms of the worst best test accuracy against the five
attacks for each model and dataset. This strongly suggests the remarkable robustness of MS. Note that
the performances of Avg were severely degraded against ALIE, although Avg worked well against
the other attacks, probably because of the relatively small size of the Byzantine fraction δ = 3/20. In
the experiments, ALIE seemed to be the strongest attacker, but MS was still robust against it.

Experiment 2: Comparison of MS with CClip for varied Byzantine fractions. To further
investigate the superiority of our proposed method over the state-of-the-art existing algorithm CClip,

8Our decision is supported by the empirical effectivity of momentum reported in Karimireddy et al. (2022).
9This is because it was reported in Karimireddy et al. (2022) that CClip performed similarly with and without

bucketing (probably because CClip without bucketing was already minimax optimal in their settings), and MS
with bucketing is not analyzed theoretically, although the analysis will be similar.

8

Published as a conference paper at ICLR 2024

(a) FC on MNIST (b) VGG11 on MNIST (c) FC on CIFAR10 (d) VGG11 on CIFAR10

Figure 1: Comparison of the worst relative test accuracy to AVG without Byzantine workers of
CClip and MS against the Byzantine fractions δ ∈ {1/20, 2/20, 3/20, 4/20, 5/20, 7/20, 9/20} for
five attacks (BF, LF, mimic, IPM, and ALIE) for each model and dataset (lower is better). The x-axis
shows 1/δ (i.e., the further to the right on the x-axis, the smaller δ), and both axes are plotted on
logarithmic scales.

which is a natural comparator of our method, in particular for relatively small δ, we compare
the worst value of the best test accuracy against the five attacks for each Byzantine fraction δ ∈
{1/20, 2/20, 3/20, 4/20, 5/20, 7/20, 9/20}. Figure 1 compares the worst value of the best test
accuracy relative to the best test accuracy of Avg aggregation without Byzantine workers, i.e., the
difference between the ideal best test accuracy and the worst best test accuracy against five attacks,
for each Byzantine fraction. We plotted both axes as logarithmic scales. The results show that
MS consistently outperformed CClip by a large margin, particularly for small δ. This matches our
theoretical findings because the optimization error of CClip has a factor of δ but that of MS has a
factor of δ2. We can also see that our method with the fixed clipping radius scheduling performed
well for different δ on each model and dataset thanks to its adaptivity to δ (Remark 3).

In summary, we conclude that MS outperformed the existing robust algorithms in our experimental
settings and the numerical results support our theoretical findings.

7 LIMITATIONS AND FUTURE WORK

Here, we briefly discuss some limitations and future directions of this study. First, from a theoretical
point of view, our method has no minimax optimal guarantees for CMH(ζmean), although the minimax
optimality for CUH(ζmax) has been shown. Thus, if ζmax/ζmean ≫ 1 (e.g., due to the presence of an
outlier worker) or δ = Ω(1), our method may perform worse than CClip. In general, which of MS
and CClip performs better depends on the type of heterogeneity of the local datasets and Byzantine
fraction δ. It is important to construct an algorithm that is minimax optimal for both CUH(ζmax) and
CMH(ζmean) without naively combining MS with CClip or standard aggregations with bucketing.
Second, MS requires a communication per model update, which imposes a large communication
cost. Therefore, for practical federated learning, our algorithm needs to be extended to allow multiple
local updates to reduce the communication cost. In general, multiple local updates may increase
the aggregation error because the outputs of honest workers may be very different compared with
the case of a single local update when the local datasets are heterogeneous. Thus, it is important to
investigate the effect of multiple local updates and the possibility of reducing the communication cost
without harming the best optimization error O(δ2ζ2max) of the single local update case.

8 CONCLUSION

In this study, we have considered nonconvex federated learning problems with the existence of
Byzantine workers. We have proposed a new simple Byzantine robust algorithm called Momentum
Screening (MS), which is adaptive to Byzantine fraction δ < 0.5, and shown that it achieves the best
optimization error of O(δ2ζ2max) for function class CUH(ζmax), which can be better than the best
known error rate of O(δζ2mean) for function class CMH(ζmean) when Byzantine fraction δ satisfies
δ ≤ (ζmean/ζmax)

2. Furthermore, we have also derived a lower bound for CUH(ζmax) and shown
the minimax optimality of our proposed method for CUH(ζmax). In numerical experiments, MS
outperformed the existing robust aggregations and the results verified our theoretical findings. Finally,
we discussed some limitations of this study and future directions.

9

Published as a conference paper at ICLR 2024

REFERENCES

Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. Byzantine stochastic gradient descent. Advances in
Neural Information Processing Systems, 31, 2018.

Zeyuan Allen-Zhu, Faeze Ebrahimianghazani, Jerry Li, and Dan Alistarh. Byzantine-resilient non-
convex stochastic gradient descent. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=PbEHqvFtcS.

Youssef Allouah, Sadegh Farhadkhani, Rachid Guerraoui, Nirupam Gupta, Rafaël Pinot, and John
Stephan. Fixing by mixing: A recipe for optimal byzantine ml under heterogeneity. In International
Conference on Artificial Intelligence and Statistics, pp. 1232–1300. PMLR, 2023.

Gilad Baruch, Moran Baruch, and Yoav Goldberg. A little is enough: Circumventing defenses for
distributed learning. Advances in Neural Information Processing Systems, 32, 2019.

Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine learning
with adversaries: Byzantine tolerant gradient descent. Advances in neural information processing
systems, 30, 2017.

Deepesh Data and Suhas Diggavi. Byzantine-resilient high-dimensional sgd with local iterations on
heterogeneous data. In International Conference on Machine Learning, pp. 2478–2488. PMLR,
2021.

El Mahdi El-Mhamdi, Sadegh Farhadkhani, Rachid Guerraoui, Arsany Guirguis, Lê-Nguyên Hoang,
and Sébastien Rouault. Collaborative learning in the jungle (decentralized, byzantine, hetero-
geneous, asynchronous and nonconvex learning). Advances in Neural Information Processing
Systems, 34:25044–25057, 2021.

Eduard Gorbunov, Samuel Horváth, Peter Richtárik, and Gauthier Gidel. Variance reduction is an
antidote to byzantine workers: Better rates, weaker assumptions and communication compression
as a cherry on the top.

Rachid Guerraoui, Sébastien Rouault, et al. The hidden vulnerability of distributed learning in
byzantium. In International Conference on Machine Learning, pp. 3521–3530. PMLR, 2018.

Rachid Guerraoui, Nirupam Gupta, Rafaël Pinot, Sébastien Rouault, and John Stephan. Differential
privacy and byzantine resilience in sgd: Do they add up? In Proceedings of the 2021 ACM
Symposium on Principles of Distributed Computing, pp. 391–401, 2021.

Shangwei Guo, Tianwei Zhang, Xiaofei Xie, Lei Ma, Tao Xiang, and Yang Liu. Towards byzantine-
resilient learning in decentralized systems. arXiv preprint arXiv:2002.08569, 2020.

Lie He, Sai Praneeth Karimireddy, and Martin Jaggi. Secure byzantine-robust machine learning.
arXiv preprint arXiv:2006.04747, 2020.

Lie He, Sai Praneeth Karimireddy, and Martin Jaggi. Byzantine-robust decentralized learning via
clippedgossip. arXiv preprint arXiv:2202.01545, 2022.

Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I Jordan. A short note on concen-
tration inequalities for random vectors with subgaussian norm. arXiv preprint arXiv:1902.03736,
2019.

Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I Jordan. On nonconvex
optimization for machine learning: Gradients, stochasticity, and saddle points. Journal of the ACM
(JACM), 68(2):1–29, 2021.

Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Learning from history for byzantine robust
optimization. In International Conference on Machine Learning, pp. 5311–5319. PMLR, 2021.

Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Byzantine-robust learning on heterogeneous
datasets via bucketing. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=jXKKDEi5vJt.

10

https://openreview.net/forum?id=PbEHqvFtcS
https://openreview.net/forum?id=jXKKDEi5vJt

Published as a conference paper at ICLR 2024

Jakub Konečnỳ, Brendan McMahan, and Daniel Ramage. Federated optimization: Distributed
optimization beyond the datacenter. arXiv preprint arXiv:1511.03575, 2015.

Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. In Concur-
rency: the works of leslie lamport, pp. 203–226. 2019.

Liping Li, Wei Xu, Tianyi Chen, Georgios B Giannakis, and Qing Ling. Rsa: Byzantine-robust
stochastic aggregation methods for distributed learning from heterogeneous datasets. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 1544–1551, 2019.

Shenghui Li, Edith C-H Ngai, and Thiemo Voigt. An experimental study of byzantine-robust
aggregation schemes in federated learning. IEEE Transactions on Big Data, 2023.

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated learning
through personalization. In International Conference on Machine Learning, pp. 6357–6368. PMLR,
2021.

Shiyun Lin, Yuze Han, Xiang Li, and Zhihua Zhang. Personalized federated learning towards
communication efficiency, robustness and fairness. Advances in Neural Information Processing
Systems, 35:30471–30485, 2022.

Yuchen Liu, Chen Chen, Lingjuan Lyu, Fangzhao Wu, Sai Wu, and Gang Chen. Byzantine-robust
learning on heterogeneous data via gradient splitting. 2023.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017.

Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. Robust aggregation for federated learning.
IEEE Transactions on Signal Processing, 70:1142–1154, 2022.

Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In Proceedings of the 22nd
ACM SIGSAC conference on computer and communications security, pp. 1310–1321, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Mariel Werner, Lie He, Sai Praneeth Karimireddy, Michael Jordan, and Martin Jaggi. Provably
personalized and robust federated learning. arXiv preprint arXiv:2306.08393, 2023.

Zhaoxian Wu, Qing Ling, Tianyi Chen, and Georgios B Giannakis. Federated variance-reduced
stochastic gradient descent with robustness to byzantine attacks. IEEE Transactions on Signal
Processing, 68:4583–4596, 2020.

Cong Xie, Sanmi Koyejo, and Indranil Gupta. Zeno: Distributed stochastic gradient descent with
suspicion-based fault-tolerance. In International Conference on Machine Learning, pp. 6893–6901.
PMLR, 2019.

Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Fall of empires: Breaking byzantine-tolerant
sgd by inner product manipulation. In Uncertainty in Artificial Intelligence, pp. 261–270. PMLR,
2020.

Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust distributed
learning: Towards optimal statistical rates. In International Conference on Machine Learning, pp.
5650–5659. PMLR, 2018.

Heng Zhu and Qing Ling. Broadcast: Reducing both stochastic and compression noise to robustify
communication-efficient federated learning. arXiv preprint arXiv:2104.06685, 2021.

Heng Zhu and Qing Ling. Bridging differential privacy and byzantine-robustness via model aggrega-
tion. arXiv preprint arXiv:2205.00107, 2022.

11

Published as a conference paper at ICLR 2024

A CONVERGENCE ANALYSIS

In this section, convergence analysis of Algorithm 1 is given. Õ and Θ̃ abbreviate extra poly-
logarithmic factors depending on d, 1/q, T , log |G|, log(1/σ2), logG, log(1/α), where q ∈ (0, 1) is
the confidence parameter of high probability bound. From the definition of α and η in Theorem 1, we
can see that log(1/α) = O(log T).

Lemma 2 (Azume-Hoeffding’s inequality for norm-subGaussian (Jin et al., 2019)). Let X1, . . . , Xn

be random vectors in Rd. Suppose that {Xi}ni=1 satisfies the following conditions:

E[Xi] = 0 and P(∥Xi∥ ≥ s) ≤ 2e
− s2

2σ2
i ,∀s ∈ R,∀i ∈ [n]

for {σi}ni=1 Then, for any q ∈ (0, 1), with probability at least 1− q it holds that∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥ ≤ c

√√√√ n∑
i=1

σ2
i log

2d

q

for some universal constant c > 0.

Lemma 3 (Martingle version of Azume-Hoeffding’s inequality for norm-subGaussian (Jin et al.,
2019)). Let X1, . . . , Xn be random vectors in Rd. Suppose that {Xi}ni=1 and corresponding filtra-
tions {Fi}ni=1 satisfy the following conditions:

E[Xi | Fi−1] = 0 and P(∥Xi∥ ≥ s | Fi−1) ≤ 2e
− s2

2σ2
i ,∀s ∈ R,∀i ∈ [n]

for random variables {σi}ni=1 with σi ∈ Fi−1(i ∈ [n]). Then, for any q ∈ (0, 1) and A > a > 0,
with probability at least 1− q it holds that

n∑
i=1

σ2
i ≥ A or

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥ ≤ c

√√√√max

{
n∑

i=1

σ2
i , a

}(
log

2d

q
+ loglog

A

a

)
for some universal constant c > 0.

A.1 PROOF OF LEMMA 1

Let t ≥ 1. From L-smoothness of f , we have

f(xt) ≤ f(xt−1) + ⟨∇f(xt−1), xt − xt−1⟩+ L

2
∥xt − xt−1∥2

= f(xt−1)− η⟨∇f(xt−1),mt⟩+ η2L

2
∥mt∥2

≤ f(xt−1)− η⟨∇f(xt−1),mt⟩+ η

2
∥mt∥2

= f(xt−1)− η

2
∥∇f(xt−1)∥2 + η

2
∥mt −∇f(xt−1)∥2

≤ f(xt−1)− η

2
∥∇f(xt−1)∥2 + η∥ēt∥2 + η∥mt − m̄t∥2.

Here, the second inequality used η ≤ 1/L. This finishes the proof of Lemma 1.

Lemma 4. For every t ≥ 1, it holds that ∥mt
i∥ ≤ 2G almost surely.

Proof. When t = 1, Assumption 4 immediately implies the desired result because m1
i = g1i .

Let t ≥ 2. Observe that ∥mt
i∥ = ∥(1−α)m

t−1
i +αgti∥ ≤ (1−α)∥mt−1

i ∥+αG ≤ (1−α)t−1∥m1
i ∥+∑t

t′=2 α(1− α)t−t′G ≤ (1− α)t−1G+G ≤ 2G.

12

Published as a conference paper at ICLR 2024

A.2 PROOF OF PROPOSITION 1

First observe that ∥ē1∥2 = ∥ḡ1 −∇f(x0)∥2.

Let t ≥ 2. Observe that

∥ēt∥2 = ∥m̄t −∇f(xt−1)∥2

= ∥(1− α)m̄t−1 + αḡt −∇f(xt−1)∥2

= (1− α)2∥m̄t−1 −∇f(xt−1)∥2 + 2α(1− α)⟨m̄t−1, ḡt −∇f(xt−1)⟩
+ α2∥ḡt −∇f(xt−1)∥2

≤ (1− α)∥ēt−1∥2 +
(
1 +

1

α

)
∥∇f(xt−1)−∇f(xt−2)∥2

+ 2α(1− α)⟨m̄t−1, ḡt −∇f(xt−1)⟩+ α2∥ḡt −∇f(xt−1)∥2

≤ (1− α)∥ēt−1∥2 + η2L2

(
1 +

1

α

)
∥mt−1∥2

+ 2α(1− α)⟨m̄t−1, ḡt −∇f(xt−1)⟩+ α2∥ḡt −∇f(xt−1)∥2

≤
(
1− α+ 3η2L2

(
1 +

1

α

))
∥ēt−1∥2 + 3η2L2

(
1 +

1

α

)
∥mt−1 − m̄t−1∥2

+ 3η2L2

(
1 +

1

α

)
∥∇f(xt−2)∥2 + 2α(1− α)⟨m̄t−1, ḡt −∇f(xt−1)⟩

+ α2∥ḡt −∇f(xt−1)∥2.

Here, for the first inequality, we used Young’s inequality. The second inequality holds from L-
smoothness of f .

Now, we set η to be 3η2L2(1 + 1/α) ≤ α/16 (≤ α/2). In this case, note that η = O(α/L). Then,
we have

∥ēt∥2 = ∥m̄t −∇f(xt−1)∥2

≤
(
1− α

2

)
∥ēt−1∥2 + 3η2L2

(
1 +

1

α

)
∥mt−1 − m̄t−1∥2

+ 3η2L2

(
1 +

1

α

)
∥∇f(xt−2)∥2 + 2α(1− α)⟨m̄t−1, ḡt −∇f(xt−1)⟩

+ α2∥ḡt −∇f(xt−1)∥2

=
(
1− α

4

)
∥ēt−1∥2 − α

4
∥ēt−1∥2 + 3η2L2

(
1 +

1

α

)
∥mt−1 − m̄t−1∥2

+ 3η2L2

(
1 +

1

α

)
∥∇f(xt−2)∥2 + 2α(1− α)⟨m̄t−1, ḡt −∇f(xt−1)⟩

+ α2∥ḡt −∇f(xt−1)∥2.

13

Published as a conference paper at ICLR 2024

Recursively using this inequality, we obtain
∥ēt∥2 = ∥m̄t −∇f(xt−1)∥2

≤
(
1− α

4

)t−1

∥ē1∥2 − α

4

t∑
τ=2

(
1− α

4

)t−τ

∥ēτ−1∥2

+ 3η2L2

(
1 +

1

α

) t∑
τ=2

(
1− α

4

)t−τ

∥mτ−1 − m̄τ−1∥2

+ 3η2L2

(
1 +

1

α

) t∑
τ=2

(
1− α

4

)t−τ

∥∇f(xτ−2)∥2 (1)

+ 2α(1− α)

t∑
τ=2

(
1− α

4

)t−τ

⟨m̄τ−1, ḡτ −∇f(xτ−1)⟩

+

t∑
τ=2

(
1− α

4

)t−τ

α2∥ḡτ −∇f(xτ−1)∥2.

To further bound the right hand of (1), we apply concentration inequalities.

Bounding the first and the last term of the r.h.s. of (1) Since gti is independent norm sub-Gaussian
with parameter σ2 for every i ∈ G, applying Lemma 2 gives

∥ḡt −∇f(xt−1)∥2 ≤
c2σ2 log 2d

q

|G|
with probability at least 1− q. Using union bound for t ∈ [T], we obtain

∀t ∈ [T] : ∥ḡt −∇f(xt−1)∥2 ≤
c2σ2 log 2Td

q

|G|
with probability at least 1− q.

Bounding the 5th term of the r.h.s. of (1) Let Xi
τ :=

(
1− α

4

)t−τ ⟨m̄τ−1, gτi −∇fi(xτ−1)⟩ and
X̄τ := (1/|G|)

∑
i∈G Xi

τ . We apply Lemma 3 to {Xi
τ}τ∈[T],i∈G . To do so, we check the assumptions

of Lemma 3. At first, it is easy to see that E[Xi
τ |Fτ−1] = 0 because E[gτi |Fτ−1] = ∇fi(xτ−1).

Also, from the norm sub-Gaussian properties of gτi , we have

P(Xi
τ ≥ s|Fτ−1) ≤ P

(
∥gτi −∇fi(xτ−1)∥ ≥ s

(1− α/4)t−τ∥m̄τ−1∥
|Fτ−1

)
≤2 exp

(
− s2

2σ2(1− α/4)2(t−τ)∥m̄τ−1∥2

)
.

Thus, the assumptions of Lemma 3 are satisfied with στ ← σ(1− α/4)t−τ∥m̄τ−1∥.

Observe that |G|
∑t

τ=2 σ
2
τ ≤ 16|G|σ2G2/α almost surely from Lemma 4. Apply Lemma 3 with

A← 32|G|σ2G2/α and a← ε yields∣∣∣∣∣
t∑

τ=2

X̄τ

∣∣∣∣∣ ≤ c√
|G|

√√√√(t∑
τ=2

σ2
τ + ε

)(
log

2d

q
+ loglog

A

ε

)

≤ c√
|G|

√√√√σ2

t∑
τ=2

(1− α/4)2(t−τ)∥m̄τ−1∥2
(
log

2d

q
+ loglog

A

ε

)
+ Õ

(√
ε
)

≤ cσ2

γ|G|

(
log

2d

q
+ loglog

A

ε

)
+ cγ

t∑
τ=2

(1− α/4)t−τ∥m̄τ−1∥2 + Õ
(√

ε
)

≤ cσ2

γ|G|

(
log

2d

q
+ loglog

A

ε

)
+ 2cγ

t∑
τ=2

(1− α/4)t−τ (∥ēτ−1∥2 + ∥∇f(xτ−1)∥2) + Õ
(√

ε
)
.

14

Published as a conference paper at ICLR 2024

Here, for the third inequality, we used
√
ab ≤

√
a2/(2γ2) + γ2b2/2 ≤ a/γ + γb for any γ > 0. We

choose γ such that 4α(1− α)cγ ≤ α/4 to cancel out the second term of the r.h.s. of |
∑t

τ=2 X̄τ | by
the second term of the r.h.s. of (1).

Combining these bounds, we obtain

∥ēt∥2 ≤ O

(
η2L2

α

) t∑
τ=2

(
1− α

4

)t−τ

∥mτ−1 − m̄τ−1∥2

+ α

(
1

16
+ 4cγ(1− α)

) t∑
τ=2

(
1− α

4

)t−τ

∥∇f(xτ−2)∥2

+ Õ

(((
1− α

4

)t−1

+
α

γ

)
σ2

|G|

)
+ Õ

(√
ε
)
.

Finally, taking ε← (α2/γ2)(σ2/|G|) and substituting γ := 1/(128c(1− α)) finishes the proof of
Proposition 1.

A.3 PROOF OF PROPOSITION 2

In the following proof, we fix t ∈ [T] and omit index t as long as it does not cause confusion for
simple presentation.

First we show that G ⊂ Ĝ for Algorithm 2. To do so, we fix any i ∈ G and show that i ∈ Ĝ. First note
that G ⊂ {j ∈ [n] : ∥mi −mj∥ ≤ ρmax} ⊂ {j ∈ [n] : ∥mi −mj∥ ≤ τ} since τ ≥ ρmax. Then,
since δ < 0.5, we know that |G| ≥ n/2. Thus, |{j ∈ [n] : ∥mi −mj∥ ≤ τ}| ≥ n/2. Hence, from
the definition of Ĝ, i ∈ Ĝ.

Next, we show that G ⊂ Ĝ for Algorithm 3. Note that Algorithm 4 always terminates in a finite number
of iterations because τ ≥ ρmax is assumed. Let i ∈ G be fixed. Let p := P(jkref ∈ B). Observe that
random variable Xk := Ijkref∈B independently follows Bernoulli distribution with parameter p for

k ∈ K. Then, from Hoeffding’s inequality, we have |
∑K

k=1(Xk − p)| ≤
√
(K/2) log(2/δ) with

probability at least 1− q. Observe that

∥mi −mref∥ ≤

∥∥∥∥∥∥ 1

|J |
∑

k:jkref∈J∩G

(mi −mjkref
)

∥∥∥∥∥∥+
∥∥∥∥∥∥ 1

|J |
∑

k:jkref∈J∩B

(mi −mjkref
)

∥∥∥∥∥∥
≤ |J ∩ G|ρmax + |J ∩ B|(ρmax + τ)

K

≤ |J ∩ G|+ 2|J ∩ B|
K

τ.

Here, for the second inequalities, we used the fact that for jkref ∈ B, ∥mi −mjkref
∥ ≤ ∥mi −mj′∥+

∥mj′ −mjref∥ ≤ ρmax + τ , where j′ ∈ G is some worker index such that ∥mj′ −mjref∥ ≤ τ and
its existence can be guaranteed from the procedures of Algorithm 4. Then, from the high probability
bound, we have |J ∩ G| ≤ (1− p)K +

√
(K/2) log(2/δ) and |J ∩ B| ≤ pK +

√
(K/2) log(2/δ).

Using these results and p ≤ δ, we obtain

∥mi −mref∥ ≤

(
1 + δ + 3

√
log(2/δ)

2K

)
τ ≤ (1 + s)τ

with probability at least 1− δ when

s ≥ δ + 3

√
log(2/δ)

2K
.

Hence, for both Algorithms 2 and 3, we have i ∈ Ĝ and thus G ⊂ Ĝ.

15

Published as a conference paper at ICLR 2024

Now, we analyze the aggregation error. Let B be the set of all the Byzantine workers.

∥m− m̄∥2 =

∥∥∥∥∥∥ 1

|Ĝ|

∑
i∈Ĝ

mi −
1

|G|
∑
i∈G

mi

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1

|Ĝ|

∑
i∈Ĝ

mi − (1− |G|
|Ĝ|

)m̄− 1

|Ĝ|

∑
i∈G

mi

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1

|Ĝ|

∑
i∈Ĝ

mi −
|Ĝ ∩ B|
|Ĝ|

m̄− 1

|Ĝ|

∑
i∈G

mi

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1

|Ĝ|

∑
i∈Ĝ∩B

(mi − m̄)

∥∥∥∥∥∥
2

≤

 1

|Ĝ|

∑
i∈Ĝ∩B

∥mi − m̄∥

2

.

Here, for the third and fourth equality, we used the fact that Ĝ \ G = Ĝ ∩ B and thus |Ĝ| − |G| =
|Ĝ \ G| = |Ĝ ∩ B|.
Thus, for Algorithm 2, we have

∥m− m̄∥2 ≤

 1

|Ĝ|

∑
i∈Ĝ∩B

(∥mi −mji∥+ ∥mji − m̄∥)

2

≤ 4δ2τ2.

Here, in the first inequality, ji is some index satisfying ji ∈ G and ∥mi−mji∥ ≤ τ . Note that for each
i ∈ Ĝ, such ji always exists because |{j ∈ [n] : ∥mi −mj∥ ≤ τ}| ≥ 0.5n and |B| < 0.5n. The last
inequality holds from ∥mi −mji∥ ≤ τ and ∥mji − m̄∥ = (1/|G|)

∑
k∈G ∥mji −mk∥ ≤ ρmax ≤ τ

and |Ĝ ∩ B|/|Ĝ| = 1− |G|/|Ĝ| ≤ 1− |G|/n ≤ δ.

Similarly, for Algorithm 3, we have

∥m− m̄∥2 ≤

 1

|Ĝ|

∑
i∈Ĝ∩B

(∥mi −mref∥+ ∥mref − m̄∥)

2

≤ 4 (1 + s)
2
δ2τ2

with probability at least 1− q.

Here, in the last inequality, we used ∥mi −mref∥ ≤ (1 + s)τ for i ∈ Ĝ (note that G ⊂ G), and
|Ĝ ∩ B|/|Ĝ| = 1− |G|/|Ĝ| ≤ 1− |G|/n ≤ δ.

This completes all the proofs of Proposition 2.

A.4 PROOF OF PROPOSITION 3

Observe that
∥mt

i −mt
j∥2 = ∥(1− α)(mt−1

i −mt−1
j) + α(gti − gtj)∥2

= (1− α)2∥mt−1
i −mt−1

j ∥2 + 2α(1− α)⟨mt−1
i −mt−1

j , gti − gtj⟩+ α2∥gti − gtj∥2

≤ ((1− α)2 + γ′α(1− α))∥mt−1
i −mt−1

j ∥2 +
(
α(1− α)

γ′ + 2α2

)
ζ2max

+ 4α2(∥gti −∇fi(xt−1)∥2 + ∥gtj −∇fj(xt−1)∥2)
+ 2α(1− α)⟨mt−1

i −mt−1
j , gti −∇fi(xt−1) + gtj −∇fj(xt−1)⟩.

16

Published as a conference paper at ICLR 2024

Here, we set γ′ := 1/2. Then, the coefficient of the first term is bounded by 1− α/2. We decompose
this as (1− α/4)− α/4 and then recursively use the inequality:

∥mt
i −mt

j∥2 ≤ ((1− α)2 + γα(1− α))∥mt−1
i −mt−1

j ∥2 +
(
2α(1− α) + 2α2

)
ζ2max

+ 2α(1− α)⟨mt−1
i −mt−1

j , gti −∇fi(xt−1) + gtj −∇fj(xt−1)⟩
+ 4α2(∥gti −∇fi(xt−1)∥2 + ∥gtj −∇fj(xt−1)∥2)

≤ (1− α/4)∥mt−1
i −mt−1

j ∥2 − α

4
∥mt−1

i −mt−1
j ∥2 +

(
2α(1− α) + 2α2

)
ζ2max + 4α2σ2

+ 2α(1− α)⟨mt−1
i −mt−1

j , gti −∇fi(xt−1) + gtj −∇fj(xt−1)⟩
+ 4α2(∥gti −∇fi(xt−1)∥2 + ∥gtj −∇fj(xt−1)∥2)

≤(1− α/4)t−1∥m1
i −m1

j∥2 −
α

4

t∑
τ=2

(1− α/4)t−τ∥mτ−1
i −mτ−1

j ∥2 + 12ζ2max

+ 2α(1− α)

t∑
τ=2

(1− α/4)t−τ ⟨mτ−1
i −mτ−1

j , gτi −∇fi(xτ−1) + gτj −∇fj(xτ−1)⟩

+ 4α2
t∑

τ=2

(1− α/4)t−τ (∥gτi −∇fi(xτ−1)∥2 + ∥gτj −∇fj(xτ−1)∥2).

(2)

To bound the first term, last term, and the fourth term, we again apply Lemma 2 and Lemma 3.
Similar to the arguments of the proof of Lemma 1, we have

∀t ∈ [T] : ∥gti −∇f(xt−1)∥2 ≤ c2σ2 log
2Td

q

with probability at least 1−q. Also, defining Xi,j
τ :=

(
1− α

4

)t−τ ⟨mτ−1
i −mτ−1

j , gτi −∇fi(xτ−1)⟩,
with A← 64σ2G2/α and a← ε we have∣∣∣∣∣

t∑
τ=2

Xi,j
τ

∣∣∣∣∣ ≤ cσ2

γ

(
log

2d

q
+ loglog

A

ε

)
+ cγ

t∑
τ=2

(1− α/4)t−τ∥mτ−1
i −mτ−1

j ∥2 + Õ
(√

ε
)
,

where γ′′ > 0 is arbitrary. Similar arguments for X̌i,j
τ :=

(
1− α

4

)t−τ ⟨mτ−1
i − mτ−1

j , gτj −
∇fj(xτ−1)⟩ gives the same bound as |

∑t
τ=2 X̌

i,j
τ |. We choose γ′′ = Θ(1) such that 4α(1−α)cγ′′ ≤

α/4 to cancel out the second terms of the r.h.s. of |
∑t

τ=2 X
i,j
τ | and |

∑t
τ=2 X̌

i,j
τ | by the second term

the r.h.s. of (2). Note that such γ′′ can be Θ(1) since we assume α ≤ 1/2. Finally, we take union
bounds for i, j ∈ G and set ε← α2σ4. Then, we obtain the desired result.

A.5 PROOF OF THEOREM 1

First, observe that η ≤
√
α/(48(1 + 1/α))/L = Θ(α/L) from the definitions of η and α.

Combining Proposition 2 with Proposition 3 results in

∥mt − m̄t∥2 ≤ O(δ2ζ2max) + Õ(((1− Ω(α))t−1 + α)δ2σ2)

and thus
T∑

t=1

∥mt − m̄t∥2 ≤ O

(
Tδ2ζ2max + Õ

(
1

α
+ αT

)
δ2σ2

)
with probability at least 1− 3q.

From Lemma 1, we have

0 ≤ f(x0)−f(xT)−η

2

T∑
t=1

∥∇f(xt−1)∥2+η

T∑
t=1

∥ēt∥2+O(ηTδ2ζ2max)+Õ

(
η

(
1

α
+

αT

γ

)
δ2σ2

)
.

17

Published as a conference paper at ICLR 2024

Then, from Proposition 1, with probability at least 1− 2q we have

T∑
t=1

∥ēt∥2 ≤ O

(
η2L2

α2

) T∑
t=1

∥mt−1 − m̄t−1∥2

+

(
1

4
+ 16cγ(1− α)

) T∑
t=1

∥∇f(xt−1)∥2

+ Õ

((
1

α
+

αT

γ

)
σ2

|G|

)
.

Let γ := 1/(128c(1− α)). Note that γ = Ω(1) since α ≤ 1/2. Then, since

1

4
+ 16cγ(1− α) ≤ 3

8
,

we obtain

1

T

T∑
t=1

∥∇f(xt−1)∥2 ≤ O

(
f(x0)− f(xT)

ηT

)
+O

((
η2L2

α2
+ 1

)
δ2ζ2max

)
+ Õ

((
η2L2

α2
+ 1

)
δ2
(

1

αT
+ α

)
σ2 +

(
1

αT
+ α

)
σ2

n

)
with probability at least 1− 5q. Substituting the definition of α gives the desired results.

B LOWER BOUND FOR CUH(ζmax)

Lemma 5. Let x0 > 0 and h : R→ R be L-smooth, and G-Lipschitz on |x| ≤ x0. If we define h̃ as

h̃(x) :=


h(x) (|x| ≤ x0)

h′(x0)(x− x0) + h(x0) (x > x0)

h′(−x0)(x+ x0) + h(x0) (x < −x0)

,

h̃ is L-smooth and G-Lipschitz on R.

Proof. It is obvious that h̃ is G-Lipchitzness because h̃ is linear on |x| ≥ x0 and
|h′(x0)|, |h′(−x0)| ≤ G.

We show L-smoothness of h̃. To show this, we pick any x, y ∈ R and show that |h̃′(x)− h̃′(y)| ≤
L|x− y|.
If x, y ∈ {x ∈ R : |x| ≤ x0} or x, y ∈ {x ∈ R : x > x0} or x, y ∈ {x ∈ [r] : x < −x0},
L-smoothness is trivial because of the L-smoothness of h and linearity of h̃ on |x| ≥ x0. Without
loss of generality, we assume x < y. Then, we only need to consider the following three cases:

• |x| ≤ x0 and y > x0: In this case, we have |h̃′(x) − h̃′(y)| = |h′(x) − h′(x0)| ≤
L|x− x0| ≤ L|x− y|.

• x < −x0 and |y| ≤ x0: In this case, we have |h̃′(x) − h̃′(y)| = |h′(−x0) − h′(y)| ≤
L|y + x0|. Observe that |y + x0|+ |x+ x0| = y + x0 − (x+ x0) = y − x = |x− y| and
thus |y + x0| ≤ |x− y|.

• x < −x0 and y > x0: In this case, we have |h̃′(x) − h̃′(y)| = |h′(x0) − h′(−x0)| ≤
2L|x0| ≤ L|x− y|.

This finishes the proof of Lemma 5.

18

Published as a conference paper at ICLR 2024

B.1 PROOF OF THEOREM 2

Let d = 1 and G ≥ 2ζmax. We define the following two local objectives {f1
i }ni=1 and {f2

i }ni=1:

f1
i (x) :=

{
h̃a(x) (i ∈ {1, . . . , δn}),
h̃b(x) (otherwise)

and

f2
i (x) :=

{
h̃b(x) (i ∈ {1, . . . , (1− δ)n}),
h̃a(x) (otherwise)

.

Here, h̃a is defined as the smoothed function of ha(x) :=
L
2 x

2 − ζmaxx by Lemma 5 with x0 :=

G/(2L). Similarly, h̃b is defined as the smoothed function of hb(x) := L
2 x

2 by Lemma 5 with
x0 := G/(2L). Note that ha and hb is L-smooth on R and G-Lipschitz on |x| ≤ x0.

Then, the objective functions become

f1(x) =
1

(1− δ)n

(1−δ)n∑
i=1

f1
i (x) =


L
2 x

2 − δ
1−δ ζmaxx (|x| ≤ x0)

(Lx0 − δ
1−δ ζmax)(x− x0) +

L
2 x

2
0 − δ

1−δ ζmaxx0 (x > x0)

(−Lx0 − δ
1−δ ζmax)(x+ x0) +

L
2 x

2
0 +

δ
1−δ ζmaxx0 (x < −x0)

and

f2(x) =
1

(1− δ)n

(1−δ)n∑
i=1

f2
i (x) =


L
2 x

2 (|x| ≤ x0)

Lx0(x− x0) +
L
2 x

2
0 (x > x0)

−Lx0(x+ x0) +
L
2 x

2
0 (x > x0)

.

Moreover, we assume that stochastic gradient gi of fk
i matches fk

i itself, i.e., the deterministic oracle
is considered for each k = 1, 2.

Now, we check {f1
i }i∈G , {f2

i }i∈G ∈ CUH(ζmax).

• (Assumption 1) L-smoothness is immediately satisfied from Lemma 5 since ha and bb are
L-smooth.

• (Assumption 2) Observe that f1 attains minimum −δ2ζ2max/(2L(1 − δ)2) at x =
δζmax/((1− δ)L) ≤ x0, and f2 attains minimum 0 at x = 0.

• (Assumption 3) Since gi matches fk
i for each k = 1, 2, arbitrary σ2 > 0 satisfies the

sub-Gaussian property.
• (Assumption 4) We check G-Lipschitzness of ha and hb on |x| ≤ x0. |h′

a(x)| = |Lx −
ζmax| ≤ L|x|+ ζmax ≤ G/2 +G/2 = G for |x| ≤ x0 from the definition x0 := G/(2L)
and G ≥ 2ζmax. Similarly, we can see that |h′

b(x)| = L|x| ≤ G/2 ≤ G. Hence, Lemma 5
gives the G-Lipschitzness of h̃a and h̃b.

• (Assumption 5) First we show that {f1
i }i∈G satisfies ζmax-uniform gradient heterogeneity

condition. For i ∈ {1, . . . , δn}, |∇f1
i (x)−∇f1(x)| = (1− 2δ)/(1− δ) · ζmax ≤ ζmax for

any x ∈ R. Also, for i ∈ {δn+1, . . . , (1−δ)n}, |∇f1
i (x)−∇f1(x)| = δ/(1−δ) ·ζmax ≤

ζmax for any x ∈ R. Thus, {f1
i }i∈G is ζmax-uniform gradient heterogeneous. ζmax-uniform

gradient heterogeneity of {f2
i }i∈G is immediately obtained because f2

i = f2 for every
i ∈ G = {1, . . . , (1− δ)n}, i.e., |∇f1

i (x)−∇f2(x)| = 0 ≤ ζmax.

Hence, we have shown that {f1
i }i∈G , {f2

i }i∈G ∈ CUH(ζmax).

Now, we show that

1

2

2∑
k=1

Eπ|∇fk(A({fk
π(i)}

n
i=1))|2 ≥

δ2ζ2max

4(1− δ)
(3)

If (3) is shown, we immediately have

max
k∈{1,2}

Eπ|∇fk(A({fk
π(i)}

n
i=1))|2 ≥

1

2

2∑
k=1

Eπ|∇fk(A({fk
π(i)}

n
i=1))|2

≥ δ2ζ2max

4(1− δ)
= Ω(δ2ζ2max).

19

Published as a conference paper at ICLR 2024

Proof of (3) Let x̂k
∗ be A({fk

π(i)}
n
i=1) for each k ∈ {1, 2}. Then, observe that

Eπ|∇f1(x̂1
∗)|2 = Eπ[|Lx̂1

∗ − δζmax/(1− δ)|2||x̂1
∗| ≤ x0]P (|x̂1

∗| ≤ x0)

+ Eπ[|L(1x̂1
∗>x0

x0 + 1x̂1
∗<−x0

(−x0))− δζmax/(1− δ)|2||x̂1
∗| > x0]P (|x̂1

∗| > x0)

≥
(
L2Eπ[|x̂1

∗|2||x̂1
∗| ≤ x0]−

2Lδ

1− δ
ζmaxEπ[x̂

1
∗||x̂1

∗| ≤ x0]

)
P (|x̂1

∗| ≤ x0)

+

(
L2|x0|2 −

2Lδ

1− δ
ζmaxx0

)
P (|x̂1

∗| > x0) +
δ2

(1− δ)2
ζ2max

≥
(
L2|Eπ[x̂

1
∗||x̂1

∗| ≤ x0]|2 −
2Lδ

1− δ
ζmaxEπ[x̂

1
∗||x̂1

∗| ≤ x0]

)
P (|x̂1

∗| ≤ x0)

+

(
L2|x0|2 −

2Lδ

1− δ
ζmaxx0

)
P (|x̂1

∗| > x0) +
δ2

(1− δ)2
ζ2max.

For the last inequality, we used Jensen’s inequality.

Also, we observe that

Eπ|∇f2(x̂2
∗)|2 = L2Eπ[|x̂2

∗|2||x̂2
∗| ≤ x0]P (|x̂2

∗| ≤ x0) + L2|x0|2P (|x̂2
∗| > x0)

≥ L2|Eπ[x̂
2
∗|x̂2

∗| ≤ x0]|2P (|x̂2
∗| ≤ x0) + L2|x0|2P (|x̂2

∗| > x0).

Sn denotes the set of all the permutation on [n]. Now, let π1→2 ∈ Sn be the permutation(
1 . . . δn δn+ 1 . . . n

(1− δ)n+ 1 . . . n 1 . . . (1− δ)n

)
.

Then, we can see that {f1
π(π1→2(i))

}ni=1 = {f2
π(i)}

2
i=1 for any random permutation π ∈ Sn. Since

π◦π1→2 and π follow the same distribution, we have Eπ[q(x̂
1
∗)] = Eπ[q(x̂

2
∗)] for any function q. Then,

by setting x̃ := Eπ[x̂
1
∗||x̂1

∗| ≤ x0] = Eπ[x̂
2
∗||x̂2

∗| ≤ x0] and p := P (|x̂1
∗| ≤ x0) = P (|x̂2

∗| ≤ x0), it
holds that

Eπ|∇f1(x̂1
∗)|2 ≥

(
L2x̃2 − 2Lδ

1− δ
ζmaxx̃

)
p+

(
L2|x0|2 −

2Lδ

1− δ
ζmaxx0

)
(1− p) +

δ2

(1− δ)2
ζ2max

and

Eπ|∇f2(x̂2
∗)|2 ≥ L2x̃2p+ L2|x0|2(1− p).

Combining these results, we obtain

1

2

2∑
k=1

Eπ|∇fk(x̂k
∗)|2 ≥

(
L2x̃2 − Lδ

1− δ
ζmaxx̃

)
p+

(
L2x2

0 −
Lδ

1− δ
ζmaxx0

)
(1− p) +

δ2

2(1− δ)2
ζ2max

≥ min
x̃∈R

(
L2x̃2 − Lδ

1− δ
ζmaxx̃

)
+

δ2

2(1− δ)2
ζ2max.

Finally, since L2x̃2 − Lδ
1−δ ζmaxx̃ attains the minimum −δ2ζmax/(4(1− δ)2) at x̃ = δζmax/(2L(1−

δ)), we obtain (3). This finishes the proof of Theorem 2.

20

Published as a conference paper at ICLR 2024

C EFFICIENT IMPLEMENTATION OF SCREEN

Here, we provide an efficient implementation of Screen 2 introduced in Section 3. The concrete
procedures are given by Algorithm 3. Observe that the expected running time is Õ(nd) rather than
O(n2d) when K = Õ(1). Theoretically, K = Õ(1) is sufficient to guarantee the best optimization
error of O(δ2ζ2max). In our experiments in Section D.5, we used s = 1.5 and K = 10.

Algorithm 3: Efficient Implementation of Screen({mi}ni=1, τ , s, K)
1: # Server conservatively estimates the set of non-Byzantine workers.
2: # The expected runtime is only Õ(nd) when K is Õ(1).
3: Set J = ∅.
4: for k = 1 to K do
5: jkref = Search Reference Worker({mi}ni=1, τ).
6: Append jkref to J .
7: end for
8: Set mref =

1
K

∑K
k=1 mjkref

.

9: Ĝ = {i ∈ [n] : |∥mi −mref∥ ≤ (1 + s) τ}.
10: m := 1

|Ĝ|

∑
i∈Ĝ mi

11: Return: m.

Algorithm 4: Search Reference Worker({mi}ni=1, τ)

1: # Serch worker ĵ such that |{i ∈ [n] : ∥mi −mĵ∥ ≤ τ}| > n/2.
2: # The expected runtime is only O(nd).
3: repeat
4: Randomly pick ĵ from [n].
5: until |{i ∈ [n] : ∥mi −mĵ∥ ≤ τ}| ≤ n/2

6: Return: ĵ.

21

Published as a conference paper at ICLR 2024

D SUPPLEMENTARY OF NUMERICAL EXPERIMENTS

D.1 DETAILS OF THE MODEL ARCHITECTURES

The architectures of FC and CNN were as follows:

• FC: Linear (output size: 100)→ Softplus→ Linear (output size: 10)
• CNN: Conv2d (# filters: 32, kernel size: 3)→ ReLU→ Conv2d (# filters: 64, kernel size:
3)→MaxPool2d (kernel size: 2)→ Linear (output size: 128)→ ReLU→ Linear (output
size: 10)

• VGG11: We used the official pytorch implementation of VGG11.10

We used the default initialization implemented in pytorch.

D.2 DETAILS OF THE IMPLEMENTED ROBUST ALGORITHMS

Here, we provide the details of the implemented robust aggregations and their hyperparameter
settings.

• Avg: The aggregation rule is defined as Avg({mi}ni=1) := (1/n)
∑n

i=1 mi.

• CM({mi}ni=1) := {Med({mi|j}ni=1)}dj=1, where Med returns the one dimensional median
of the input.

• KRUM (Blanchard et al., 2017): The aggregation rule is defined as KRUM({mi}ni=1) :=
argminm∈{mi}n

i=1
minS⊂[n],|S|=(1−δmax)n

∑
j∈S ∥m − mj∥2, where δmax, which is an

upper bound of δ, was set to 1/411.
• RFA (Pillutla et al., 2022): The aggregation rule is defined as RFA({mi}ni=1) :=
SmoothedWeiszfeld({mi}ni=1, T, ν), where the Smoothed Weiszfeld algorithm returns
an approximate solution of the geometric median argminm∈Rd

∑n
i=1 ∥m−mi∥. T and ν

are the hyperparameters of Smoothed Weiszfeld and were set to 8 and 0.1 respectively.
• CClip Karimireddy et al. (2022): The aggregation rule is defined as CClip({mi}ni=1) :=
v + (1/n)

∑n
i=1 min{1, τ/∥mi − v∥}(mi − v), where v is initialized as the previous

aggregation result and this process is recursively executed for 3 iterations, where τ was set
to 10. These hyperparameters were taken from the public source code of the authors of
Karimireddy et al. (2022).

• MS (proposed): The aggregation rule is provided in Algorithm 1. We adopted Algorithm
2 rather than Algorithm 3 for simple implementations. Screening radius τt was set to
(τ∞ + (1− α/4)t−11002)0.5, where τ∞ was set to 20 for FC and VGG11 on MNIST, 30
for CNN on MNIST, 75 for FC and CNN on CIFAR10, and 100 for VGG11 on CIFAR10.
For each iteration, τt was increased by 1.5 times from the original τt as long as |Ĝ| < n/2
in order to stabilize the performance.

D.3 DETAILS OF THE IMPLEMENTED ATTACK ALGORITHMS

Here, we give the details of the five implemented attacks. In the following, gti denotes a stochastic
gradient of worker i used at iteration t.

• Bit Flipping (BF) attack: Byzantine worker i sends −gti instead of gti .
• Label Flipping (LF) attack: Label y of the local datasets of Byzantine workers is flipped by
9− y for every y ∈ {0, . . . , 9}.

• Mimic attack (Karimireddy et al., 2022): Each Byzantine worker picks an honest worker
i∗ ∈ G and copies its output gti∗ as gti .

10https://pytorch.org/vision/main/models/generated/torchvision.models.
vgg11.html.

11Note that this conservative choice of δmax is justified when KRUM is combined with bucketing (see Section
C.2 of (Karimireddy et al., 2022)).

22

https://pytorch.org/vision/main/models/generated/torchvision.models.vgg11.html
https://pytorch.org/vision/main/models/generated/torchvision.models.vgg11.html

Published as a conference paper at ICLR 2024

Model/Data AGG BF LF Mimic IPM ALIE Worst

CNN/
MNIST

Avg 98.6± 0.2 98.6± 0.2 98.7± 0.1 98.5± 0.1 57.6± 66.0 57.6± 66.0
CM 98.0± 0.4 97.8± 0.3 98.1± 0.4 97.6± 0.5 76.4± 73.0 76.4± 73.0

KRUM 97.6± 0.1 98.4± 0.1 98.0± 0.3 97.4± 0.3 98.5± 0.2 97.4± 0.3
RFA 98.6± 0.1 98.6± 0.1 98.6± 0.1 98.3± 0.2 83.7± 41.9 83.7± 41.9

CClip 98.6± 0.3 98.6± 0.1 98.8± 0.2 98.3± 0.3 49.6± 86.3 49.6± 86.3
MS (ours) 98.7± 0.2 98.7± 0.2 98.7± 0.2 98.4± 0.1 98.4± 0.2 98.4± 0.1

CNN/
CIFAR10

Avg 68.7± 0.9 69.6± 0.6 69.1± 0.8 68.6± 1.0 16.0± 12.4 16.0± 12.4
CM 51.6± 1.0 52.1± 2.0 55.0± 1.7 46.8± 3.3 19.9± 11.3 19.9± 11.3

KRUM 49.0± 0.9 52.3± 2.0 52.7± 4.4 42.9± 1.4 53.4± 2.0 42.9± 1.4
RFA 66.7± 1.0 67.8± 0.5 67.9± 1.6 65.3± 0.8 18.6± 11.4 18.6± 11.4

CClip 62.4± 2.3 64.0± 0.7 65.5± 1.6 51.7± 1.1 18.0± 14.6 18.0± 14.6
MS (ours) 67.7± 1.1 67.4± 1.8 67.6± 1.6 65.6± 1.7 67.6± 1.1 65.6± 1.7

Table 2: Comparison of 95% confidence intervals of the best test accuracy (%) against five attacks
(δ = 3/20) for CNN on each dataset (“Worst” shows the worst test accuracy among five attacks).

• Inner Product Manipulation (IPM) attack (Xie et al., 2020): Byzantine workers send
−(ε/|G|)

∑
i∈G gti , where ε was set to 1.0 in our experiment.

• A Little Is Enough (ALIE) attack (Baruch et al., 2019): Byzantine workers compute the
mean µG and the standard deviation σG of {gti}i∈G and send µG − zσG , where z was set to
2.0 in our experiment.

D.4 ADDITIONAL NUMERICAL RESULTS

Here, we provide additional numerical results not shown in the main paper due to space limitations.

D.4.1 ADDITIONAL NUMERICAL RESULTS OF EXPERIMENT 1

First, we provide the best accuracy comparison results on CNN (Table 2). From these results, we
confirm that MS still outperformed the other methods for CNN.

Next, we report the learning curve of four metrics; train loss (Figures 2 and 5), train accuracy (Figures
4 and 5), test loss (Figures 6 and 7), and test accuracy (Figures 8 and 9) to complement the results of
Experiment 1 in the main paper. The experimental settings were the same as in the main paper except
that we added CM, KRUM, and RFA without bucketing.

D.4.2 ADDITIONAL NUMERICAL RESULTS OF EXPERIMENT 2

Here, we show the results of four metrics under the same setting as in the main paper: train loss, train
acc, test loss, and test acc (Figures 10 and 11 to complement the results of Experiment 2.

D.5 COMPARISON OF ALGORITHM 2 AND ALGORITHM 3

Here, we compare the performances of Algorithm 1 with Algorithm 3 to that with Algorithm 2.

The general settings of MS were the same as described in Section D.2 except for the settings of τ∞;
we used 15 for FC, CNN and VGG11 on MNIST, 50 for FC and CNN on CIFAR10, and 70 for
VGG11 on CIFAR10. In Algorithm 3, we set s = 1.5 and K = 10. In the until loop, τt was increased
by 1.1 times from the original τt if the termination condition is not satisfied for five randomly picked
ĵ. After computing mref by applying Algorithm 3 for K times, we reset τt to the original value.
Then, τt was increased by 1.1 times from the original τt as long as |Ĝ| < n/2 in order to stabilize the
performance.

We ran MS_EFF (Algorithm 1 with Algorithm 3) in the settings of Experiment 1. The performance
comparison is shown in Figures 12 and 13. From these results, we can see that MS_EFF still achieved
the similar test accuracy to MS.

23

Published as a conference paper at ICLR 2024

(a) FC on MNIST (b) CNN on MNIST (c) VGG11 on MNIST

Figure 2: Comparison of the train loss of the implemented algorithms against the number of iterations
for five attacks for three models on MNIST: BF, LF, mimic, IPM, and ALIE. s denotes the bucketing
size, and bucketing was not applied when s = 0.

24

Published as a conference paper at ICLR 2024

(a) FC on CIFAR10 (b) CNN on CIFAR10 (c) VGG11 on CIFAR10

Figure 3: Comparison of the train loss of the implemented algorithms against the number of iterations
for five attacks for three models on CIFAR10: BF, LF, mimic, IPM, and ALIE. s denotes the bucketing
size, and bucketing was not applied when s = 0.

25

Published as a conference paper at ICLR 2024

(a) FC on MNIST (b) CNN on MNIST (c) VGG11 on MNIST

Figure 4: Comparison of the train accuracy of the implemented algorithms against the number of
iterations for five attacks for three models on MNIST: BF, LF, mimic, IPM, and ALIE. s denotes the
bucketing size, and bucketing was not applied when s = 0.

26

Published as a conference paper at ICLR 2024

(a) FC on CIFAR10 (b) CNN on CIFAR10 (c) VGG11 on CIFAR10

Figure 5: Comparison of the train accuracy of the implemented algorithms against the number of
iterations for five attacks for three models on CIFAR10: BF, LF, mimic, IPM, and ALIE. s denotes
the bucketing size, and bucketing was not applied when s = 0.

27

Published as a conference paper at ICLR 2024

(a) FC on MNIST (b) CNN on MNIST (c) VGG11 on MNIST

Figure 6: Comparison of the test loss of the implemented algorithms against the number of iterations
for five attacks for three models on MNIST: BF, LF, mimic, IPM, and ALIE. s denotes the bucketing
size, and bucketing was not applied when s = 0.

28

Published as a conference paper at ICLR 2024

(a) FC on CIFAR10 (b) CNN on CIFAR10 (c) VGG11 on CIFAR10

Figure 7: Comparison of the test loss of the implemented algorithms against the number of iterations
for five attacks for three models on CIFAR10: BF, LF, mimic, IPM, and ALIE. s denotes the bucketing
size, and bucketing was not applied when s = 0.

29

Published as a conference paper at ICLR 2024

(a) FC on MNIST (b) CNN on MNIST (c) VGG11 on MNIST

Figure 8: Comparison of the test accuracy of the implemented algorithms against the number of
iterations for five attacks for three models on MNIST: BF, LF, mimic, IPM, and ALIE. s denotes the
bucketing size, and bucketing was not applied when s = 0.

30

Published as a conference paper at ICLR 2024

(a) FC on CIFAR10 (b) CNN on CIFAR10 (c) VGG11 on CIFAR10

Figure 9: Comparison of the test accuracy of the implemented algorithms against the number of
iterations for five attacks for three models on CIFAR10: BF, LF, mimic, IPM, and ALIE. s denotes
the bucketing size, and bucketing was not applied when s = 0.

31

Published as a conference paper at ICLR 2024

(a) FC on MNIST (b) CNN on MNIST (c) VGG11 on MNIST

(e) FC on MNIST (f) CNN on MNIST (g) VGG11 on MNIST

(i) FC on MNIST (j) CNN on MNIST (k) VGG11 on MNIST

(m) FC on MNIST (n) CNN on MNIST (o) VGG11 on MNIST

Figure 10: Comparison of the worst relative metrics to AVG without Byzantine
workers (lower is better) of CClip and MS against the Byzantine fractions δ ∈
{1/20, 2/20, 3/20, 4/20, 5/20, 7/20, 9/20} for five attacks for three models on MNIST: BF, LF,
mimic, IPM, and ALIE. (a)-(c) correspond to relative train loss, (e)-(g) to relative train accuracy,
(i)-(k) to relative test loss, and (m)-(o) to relative test accuracy. The x-axis shows 1/δ (i.e., the further
to the right on the x-axis, the smaller δ), and both axes are plotted on logarithmic scales.

32

Published as a conference paper at ICLR 2024

(a) FC on CIFAR10 (b) CNN on CIFAR10 (c) VGG11 on CIFAR10

(e) FC on CIFAR10 (f) CNN on CIFAR10 (g) VGG11 on CIFAR10

(i) FC on CIFAR10 (j) CNN on CIFAR10 (k) VGG11 on CIFAR10

(m) FC on CIFAR10 (n) CNN on CIFAR10 (o) VGG11 on CIFAR10

Figure 11: Comparison of the worst relative metrics to AVG without Byzantine
workers (lower is better) of CClip and MS against the Byzantine fractions δ ∈
{1/20, 2/20, 3/20, 4/20, 5/20, 7/20, 9/20} for five attacks for three models on CIFAR10: BF, LF,
mimic, IPM, and ALIE. (a)-(c) corresponds to relative train loss, (e)-(g) to relative train accuracy,
(i)-(k) to relative test loss, and (m)-(o) to relative test accuracy. The x-axis shows 1/δ (i.e., the further
to the right on the x-axis, the smaller δ), and both axes are plotted on logarithmic scales.

33

Published as a conference paper at ICLR 2024

(a) FC on MNIST (b) CNN on MNIST (c) VGG11 on MNIST

Figure 12: Comparison of the test accuracy of MS_EFF (Algorithm 1 with Algorithm 3) to MS
(Algorithm 1 with Algorithm 2) against the number of iterations for five attacks for three models on
MNIST: BF, LF, mimic, IPM, and ALIE.

34

Published as a conference paper at ICLR 2024

(a) FC on CIFAR10 (b) CNN on CIFAR10 (c) VGG11 on CIFAR10

Figure 13: Comparison of the test accuracy of MS_EFF (Algorithm 1 with Algorithm 3) to MS
(Algorithm 1 with Algorithm 2) against the number of iterations for five attacks for three models on
CIFAR10: BF, LF, mimic, IPM, and ALIE.

35

Published as a conference paper at ICLR 2024

(a) MNIST (b) CIFAR10 (c) Fed-EMNIST

Figure 14: Empirical values of ζmean/ζmax along the trajectories of momentum SGD without
Byzantine workers for each model and dataset. On MNIST and CIFAR10, we ran 20 epochs (1, 200
iterations) for FC and CNN, and 100 epochs (6, 000 iterations) for VGG11. On Fed-EMNIST, we ran
200 epochs (12, 000 iterations) for every model. Momentum parameter α = 0.1, and learning rate
η = 0.01 were commonly used. Minibatch size b was fixed as 32 except for VGG11 on Fed-EMNIST.
For VGG11 on Fed-EMNIST, we used a smaller batch size b = 8. 13

E EMPIRICAL VALIDATIONS OF δ ≤ (ζmean/ζmax)
2

Here, we give empirical validations of the condition δ ≤ (ζmean/ζmax)
2, which is implicitly assumed

in the main paper for the theoretical superiority of MS over the other existing methods, including
CClip.

Observations of ζmean/ζmax in the Scenarios of Section 6 We report the observed values of
ζmean/ζmax of local objectives {fi}i∈[P] on MNIST and CIFAR10 in the settings of Section 6 using
momentum SGD without Byzantine workers. We observed that ζmean/ζmax were not too small
(about 0.50 ∼ 0.93) and δ ≤ (ζmean/ζmax)

2 was satisfied for δ ≤ 1/4. These results support the
empirical superiority of our method over the other methods described in Section 6.

Observations of ζmean/ζmax in a Real Federated Learning Dataset We further investigate the
behavior of ζmean/ζmax of local objectives {fi}i∈[P] on Fed-EMNIST 14, which is a real federated
learning dataset. Due to memory constraints, we sampled 50 clients for training. We found that
ζmean/ζmax was ranged in 0.34 ∼ 0.70 even with these settings, and these results suggest that the
condition δ ≤ (ζmean/ζmax)

2 would not be so restrictive even in practical federated learning.

In summary, the condition δ ≤ (ζmean/ζmax)
2 is not so restrictive from an empirical point of view.

11https://github.com/TalwalkarLab/leaf
13When minibatch size b = 32 was used, we observed that SGD tended to approach a bad stationary point

for VGG11 on Fed-EMNIST, which made the convergence quite slow. To avoid this phenomenon, we used a
smaller batch size b = 8.

36

https://github.com/TalwalkarLab/leaf

Published as a conference paper at ICLR 2024

Model/Data AGG BF LF Mimic IPM ALIE Worst

FC/
Fed-MNIST

Avg 66.5± 0.8 66.0± 0.8 66.0± 0.6 65.8± 0.7 38.7± 5.0 38.7± 5.0
CM 41.8± 6.2 62.4± 1.4 60.4± 2.3 59.1± 0.9 38.4± 12.8 37.3± 10.8

KRUM 16.2± 2.7 27.5± 5.0 19.4± 2.3 18.7± 5.4 17.2± 3.0 15.7± 2.4
RFA 59.4± 4.0 65.7± 1.1 65.8± 1.7 64.6± 0.8 52.1± 7.2 52.1± 7.2

CClip 22.4± 4.1 41.7± 6.9 27.4± 3.5 37.5± 3.2 21.8± 3.0 21.0± 3.1
MS (ours) 65.4± 1.7 62.1± 1.8 64.5± 1.5 61.6± 1.5 65.0± 0.9 61.6± 1.5

CNN/
Fed-EMNIST

Avg 79.4± 0.3 79.0± 0.7 79.8± 1.4 79.7± 1.2 33.3± 29.8 33.3± 29.8
CM 78.2± 0.9 77.7± 0.5 78.5± 1.3 77.5± 0.6 66.7± 9.7 66.7± 9.7

KRUM 66.6± 2.3 67.6± 1.3 68.0± 0.7 69.2± 1.6 72.3± 2.3 66.4± 1.3
RFA 79.5± 0.9 79.2± 1.1 79.8± 0.4 79.6± 1.4 65.5± 22.5 65.5± 22.5

CClip 79.3± 1.2 79.6± 0.8 79.7± 1.0 71.3± 30.0 79.9± 1.3 71.3± 30.0
MS (ours) 78.8± 0.6 76.8± 1.1 78.3± 2.0 74.5± 5.1 78.9± 1.7 74.3± 4.6

VGG11 /
Fed-MNIST

Avg 80.6± 1.8 81.0± 1.3 81.4± 1.3 82.0± 2.1 15.5± 9.5 15.5± 9.5
CM 80.4± 1.2 80.6± 2.0 80.7± 1.3 81.0± 1.9 28.2± 9.1 28.2± 9.1

KRUM 68.4± 2.4 71.5± 0.5 72.9± 1.2 71.2± 1.5 76.4± 1.1 68.4± 2.4
RFA 80.7± 1.7 82.0± 1.9 81.8± 1.4 81.9± 0.8 42.2± 7.9 42.2± 7.9

CClip 81.7± 1.1 82.5± 1.5 81.5± 1.0 80.6± 1.6 64.9± 3.5 64.9± 3.5
MS (ours) 79.4± 2.9 81.7± 1.8 80.8± 2.2 78.3± 1.7 80.7± 1.7 78.2± 1.4

Table 3: Comparison of 95% confidence intervals of the best test accuracy (%) against five attacks
(δ = 5/50) for FC, CNN, and VGG11 on Fed-EMNIST (“Worst” shows the worst test accuracy
among five attacks).

F ACCURACY COMPARISON ON FED-EMNIST

In this section, we provide empirical comparison of our method with the existing methods on
Fed-EMNIST, which is a 62-class classification dataset for a realistic federated learning scenario.

F.1 EXPERIMENTAL SETTINGS

Due to the memory constraints, we sampled 50 clients for training, and 10 clients for testing. We ran
200 epochs (12, 000 iterations) for every model. Momentum parameter α = 0.1, and learning rate
η = 0.01 were commonly used. Minibatch size b was fixed as 32 for FC and CNN, and was fixed as
8 for VGG11. For MS, we used τ∞ = 75 for FC and CNN, and τ∞ = 50 for VGG11. The number
of Byzantine workers was set to 5, i.e., δ = 5/50 = 0.1. The other experimental settings were the
same as in Section 6.

F.2 EXPERIMENTAL RESULTS

Table 3 shows the best accuracy comparison results on Fed-EMNIST. From Table 3, we can see that
MS consistently outperformed the other methods in terms of the worst best test accurary against the
five attacks.

37

	Introduction
	Notation and Problem Settings
	Assumptions

	Approach and Proposed Algorithm
	Convergence Analysis
	Lower Bound for CUH(max)
	Numerical Experiments
	Limitations and Future Work
	Conclusion
	Convergence Analysis
	Proof of Lemma 1
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Theorem 1

	Lower Bound for CUH(max)
	Proof of Theorem 2

	Efficient Implementation of Screen
	Supplementary of Numerical Experiments
	Details of the Model Architectures
	Details of the Implemented Robust Algorithms
	Details of the Implemented Attack Algorithms
	Additional Numerical Results
	Additional Numerical Results of Experiment 1
	Additional Numerical Results of Experiment 2

	Comparison of Algorithm 2 and Algorithm 3

	Empirical Validations of (mean/max)2
	Accuracy Comparison on Fed-EMNIST
	Experimental Settings
	Experimental Results

