
A Appendix / supplemental material

A.1 Experimental setup

Data. We use the CIFAR-10 and CIFAR-10C datasets. CIFAR-10C is used to evaluate model
robustness, and extends CIFAR-10 by algorithmically applying 15 types of common corruptions at 5
levels of severity (1-5), resulting in 75 distinct test sets. Each type of corruption belongs to one of
four categories: noise patterns, blurs, weather effects and digital transformations [29].

Model. Throughout this work, all our DNN experiments use ResNet [30]. Specifically, we
use a publicly-available pretrained ResNet18 obtained from the Huggingface model repository
[31] which was trained on CIFAR-10 [32] for 300 epochs using SGD optimizer implemented
as torch.optim.SGD(lr=0.1, momentum=0.9, weight_decay=0.0005, nesterov=True)
and a ReduceLROnPlateau scheduler.

Fine-tuning. When fine-tuning ResNet18 + AnchorBlock, we train the combined model
on the CIFAR-10 training set for 50 epochs using an SGD optimizer implemented as
torch.optim.SGD(lr=0.01, momentum=0.5, weight_decay=0.01). Every 5 epochs, we up-
date the weights of the class covariance heads by re-computing the effective class covariance matrices
using the latest training representations.

Computing task-relevant class covariance. To compute task-relevant class covariance, we first
run the model on the entire CIFAR-10 training set to obtain representations, which we extract from
the last linear layer (dimensionality 512). These representations are in the form Htrain 2 RP⇥M⇥N ,
where P is the number of classes, M is the number of points (or samples) per class, and N is the
dimensionality. Then we follow the standard procedure for computing anchor points described in
[6]. This process involves Gaussian sampling of K normal vectors and calculating the corresponding
anchor points for each sample by solving a quadratic programming problem. In our experiments,
we set K = 200. The process returns K anchor points for each manifold, S 2 RP⇥K⇥N . Per Eq.
(3), then for each class we compute the task-relevant class covariance matrix and stack them, which
returns the task-relevant class covariance tensor Ceff

2 RP⇥N⇥N .

Robustness metrics. Per the convention in [33], for each corruption type we track the Corruption
Error (CE), which is the classification error rate, 1�accuracy. To assess overall corruption robustness,
we use Mean Corruption Error(mCE) which averages corruption error over all 75 corruption types.
We also report Clean Error, which is the classification error rate on the original CIFAR-10 test set.

A.2 Augmentation details

This section provides the detailed implementation on the augmentation used in Section 3.1, where we
perform a controlled representation manipulation on the model’s CIFAR-10C representations to test
our intuitions about effective geometry. Let Hi

µ 2 RN be the representation of the i-th sample of the
µ-th class. We run the pretrained model on CIFAR-10C and extract activations H 2 RP⇥M⇥N . Then,
we scale each H

i
µ along the eigenspace of the µ-th effective class covariance matrix (see Algorithm

1). For our control, we scale each H
i
µ along the eigenspace of the µ-th point-cloud covariance matrix

(see Algorithm 2)

Algorithm 1: Representation augmentation using task-relevant class covariance
Data: H 2 RP⇥M⇥N , S 2 RP⇥K⇥N

Result: HAug
2 RP⇥M⇥N ; /* Augmented representation */

for µ 1 to P do
Cµ Cov(Sµ) ; /* Covariance matrix of task-relevant class manifold */
H

Aug
µ HµCµ ; /* Scale Hµ along eigenvectors of covariance */

H
Aug
µ

kHµkF

kH
Aug
µ kF

H
Aug
µ ; /* Normalize to Frobenius norm of Hµ */

9

Algorithm 2: Representation augmentation using point-cloud class covariance
Data: H 2 RP⇥Mtest⇥N , Htrain

µ 2 RP⇥Mtrain⇥N

Result: HAug
2 RP⇥M⇥N ; /* Augmented representation */

for µ 1 to P do
Cµ Cov(Htrain

µ) ; /* Covariance matrix of point-cloud class manifold */
H

Aug
µ HµCµ ; /* Scale Hµ along eigenvectors of covariance */

H
Aug
µ

kHµkF

kH
Aug
µ kF

H
Aug
µ ; /* Normalize to Frobenius norm of Hµ */

A.3 AnchorBlock architecture details

In our setup, AnchorBlock replaces the final readout layer of a deep classifier. For a P -class
classification problem, AnchorBlock consists of P parallel "class covariance" heads followed by
a shared linear readout layer. Each head is represented by a function fi : RN

! RN for i = [P].
In the forward pass, the representation vector h 2 RN is simultaneously processed by all heads.
The resulting augmented representation vectors h̃1, h̃2, ..., h̃P are simultaneously passed through the
shared readout layer parameterized by W 2 RN⇥P to each produce vectors: zi = W

T
h̃i, zi 2 RP .

The P vectors are then concatenated to form matrix Z = [z1, z2, ..., zP], Z 2 RP⇥P . Finally, the
diagonal elements of Z are extracted to form the final prediction vector ŷ = softmax(diag(Z)) 2 RP .

A.4 Additional AnchorBlock results

Figure 4: Comparison of mean corruption error between ResNet18+AnchorBlock and ResNet18.

10

	Introduction
	Methods
	Manifold capacity theory and anchor geometry
	Task-relevant covariance
	Experimental setup

	Results
	Representation Augmentation Experiment
	AnchorBlock

	Conclusion
	Appendix / supplemental material
	Experimental setup
	Augmentation details
	AnchorBlock architecture details
	Additional AnchorBlock results

