
Appendix1

Note to Reviewers: Minor Bug in Figure 32

In the original submission, there was a minor bug in the plotting code that incorrectly categorized3

the objects in Fig. 3. We emphasize that the quantitative results both in Fig. 4 of the main text4

and in the full results table of this Appendix are correct and consistent with each other.5

The only changes after fixing the plotting code are as follows:6

• the redbox and lunchbox objects are in the medium difficulty and not easy, and7

• the minion and dino objects are in the hard difficulty and not medium.8

To see the rationale behind the object categorization, see Appendix E.2. The old figure and new9

figure are shown here for clarity.10

Robot Easy Medium Hard

Successes Failures

Figure 5: Original figure.

Robot Easy Medium Hard

Successes Failures

Figure 6: Fixed figure.
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A Additional Insights and Discussion of Results11

In this section, we provide further discussion that may aid the interpretation of our results.12

How “fair” is the diffusion sampler? To ensure reasonable performance, we train our generative13

model exclusively on high-quality grasps with a probability of grasp success 𝑦PGS = 1.0. This is14

approximately 300K grasps (8.45% of the training data), roughly 10 times the amount used to train15

existing models [1, 2]. Figure 23 shows real-world grasps generated by the diffusion sampler, and16

shows that many failed grasps are reasonably “close” to a successful grasp.17

In general, grasp evaluators have superior data efficiency in the sense that they can train on “bad”18

grasps (in our case, there are ∼3M) which are byproducts of generating “good” ones. We stress19

that we do not claim that grasp evaluation is superior to grasp generation as a paradigm - only that20

evaluators can achieve robust sim-to-real transfer by leveraging a large volume of negative examples.21

We emphasize that there are no suitable datasets for dexterous grasping larger than ours on which we22

can train our diffusion sampler. To our knowledge, the only large dataset with visual observations23

is closed-source [3]. Further, no existing datasets parameterize the grasp execution motion, few24

consider a tabletop setting, and many of their grasps intersect with objects in a non-physical way.25

Are the simulation results “reasonable”? Our simulation success rates at first appear much lower26

than our hardware success rates and simulation results of similar studies [1, 2]. This discrepancy27

arises from subtleties in labeling. In the real world, we only consider collision-free grasps, and28

thus report the empirically estimated conditional probability 𝑝(success | no collisions). However,29

in simulation we evaluate all planned grasps, including those in collision (which count as failures),30

and instead report 𝑝(success). In other words, the real-world experiments answer the question “how31

many collision-free generated grasps succeed?”, while the simulations answer the question “how32

many generated grasps succeed?”33

Figure 7 shows histograms for all simulated evaluator-based methods, which compares unconditional34

success rates and those conditioned on 𝑦coll ≥ 0.8. The median success rates are 37% and 80%35

respectively. Note the similarity between this 80% mark and our evaluator-based hardware results,36

which achieve 76-81% across all objects (see Table 4). Lastly, other works differ from ours in three37

major ways: they often do not consider tabletop settings (allowing non-physical fully-caging grasps),38

they have less object diversity, and they plan power grasps while we plan precision grasps. These39

factors make our learning problem more challenging than those in other studies.40

Figure 7: Success rates for all simulated evaluator-based methods. When only considering grasps
with 𝑦coll ≥ 0.8, the median success rate increases from 37% to 80%. 2100/4240 grasps satisfied
𝑦coll ≥ 0.8. On the right, the unconditioned distribution is plotted with dashed lines for comparison.
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B Grasp Dataset41

B.1 Grasp Generation42

Parameter Value
n_c_per_finger 5
w_fc 0.5
w_dis 500
w_pen 300.0
w_spen 100.0
w_joints 1.0
w_ff 3.0
w_fp 0.0
w_tpen 100.0

Parameter Value
switch_prob 0.5
mu 0.98
step_size 0.005
stepsize_period 50
starting_temp 18
annealing_period 30
tempdecay 0.95

Parameter Value
jitter 0.1
dist_lower 0.2
dist_upper 0.3
theta_lower -𝜋 / 6
theta_upper 𝜋 / 6

Table 3: Grasp generation parameters. Variables names taken from DexGraspNet [4]. Left: Energy
function parameters. Middle: Optimization parameters. Right: Initialization parameters.

Our grasp generation pipeline is inspired by Wang et al. [4], but required key modifications. Further43

details about these modifications not discussed in the main text are described here.44

• As mentioned, our data generation pipeline yields pre-grasp poses with the fingertips 1.5cm45

off of the surface of the object, while DexGraspNet places the fingers on or very near the46

surface. Due to this, when planning a grasp trajectory, we compute a new configuration47

corresponding to fingertip locations 3.5cm below the object surface, which we call the48

post-grasp pose.49

• We choose to generate precision grasps rather than power grasps, since this synergizes with50

the grasp motion parameterization described in the main text. To implement this, we only51

specify contact candidates on the fingertip of the hand, which function as attractors to the52

object surface during grasp generation. However, the surface points used to penalize hand-53

object or hand-table collision still cover the whole hand. See Figure 8 for a visualization.54

We now describe the dataset augmentation procedure in detail. Recall that first, a large set of55

nominal grasps are generated using the modified DexGraspNet pipeline. In this step, the fingertip56

grasp directions d𝑖 are generated by computing the direction of each fingertip to the closest point on57

the mesh. Because there are a large proportion of failures after this step, we augment the dataset58

with more positive examples by taking all nominal grasps satisfying 𝑦PGS ≥ 0.9, perturbing them59

slightly, re-evaluating them, and adding them to the dataset.60

These perturbations are sampled using Halton sequence sampling [5], which generates quasi-random,61

low-discrepancy sequences that sample more uniformly across the input space compared to standard62

random sampling and reducing clustering. We sample perturbations from the following ranges:63

• wrist translation: each spatial coordinate draws a perturbation from [-5mm, 5mm];64

• wrist orientation: each of roll, pitch, and yaw draw a perturbation from [-2.5◦, 2.5◦];65

• finger joints: each angle draws a perturbation from [-0.05rad, 0.05rad];66

• fingertip grasp directions: each of two axes orthogonal to the nominal direction draw67

perturbations from [-10◦, 10◦].68

Each high-success grasp is perturbed five times and re-evaluated on the same object. Additionally,69

these grasps are perturbed two more times and evaluated on different, randomly sampled objects from70

the dataset. These additional perturbations typically yield unsuccessful grasps, but we believe this71

protects the model from overfitting and provides useful training signal regarding object geometry.72

The dataset took about 1 day to generate using 4 Nvidia A100 GPUs. Table 3 summarizes all73

parameters used for grasp generation.74
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Contact Candidates

Surface Points

Figure 8: Visualization of the Allegro hand contact candidates and 500 surface points. Contact
candidates are used to compute 𝐸dis, encouraging hand-object proximity. Surface points are used to
compute 𝐸tpen, which penalizes hand-table penetration to keep the grasps above the table.

B.2 Grasp Label Generation in Simulation75

To generate the labels for the grasps in the dataset as well as corresponding rendered visual data,76

we use Isaac Gym [6]. Our simulated evaluation proceeds as follows. We spawn the hand in the77

pre-grasp pose, execute the grasp motion parameterized by fingertip directions, then lift the object78

20cm off of the table (with gravity enabled).79

A pick is considered a simulation success (𝑦pick = 1) only if the following conditions are met: (1)80

the hand contacts the object on at least 3 links; (2) the palm and proximal links of the hand do81

not touch the object; (3) the change in the object’s position relative to the hand does not exceed82

10cm throughout the lift; (4) the change in the object’s orientation relative to the hand does not83

exceed 45 degrees about each Euler angle throughout the lift. A pick is considered collision-free84

(𝑦coll = 1) only if the hand does not contact the table or object during the pre-grasp pose. Recall that85

𝑦PGS = 𝑦pick ∧ 𝑦coll.86

To generate non-binary labels, each grasp is corrupted with small noise and re-simulated 5 times.87

Note that this is a different perturbation than the one used for dataset augmention described in88

Appendix B.1. Only the wrist pose is perturbed. The wrist translations are corrupted with uniform89

noise drawn from [-5mm, 5mm] along each axis, and the wrist orientation is corrupted about the90

roll, pitch, and yaw axes with uniform noise drawn from [-2.5◦, 2.5◦].91

The simulation timestep is set to 1/60 seconds, but the integrator solves at a rate of 1/120 seconds for92

numerical stability using the Truncated Gauss-Seidel (TGS) solver. The TGS solver runs 8 position93

and 8 velocity iterations per simulation timestep. “Force at a distance” (i.e., the contact offset94

parameter) is applied starting from 1mm of separation between collision geometries, substantially95

lower than the 1cm distance used by [4] in DexGraspNet. This helps reduce unwanted non-physical96

collisions. Geometries are processed by a convex decomposition using the default settings in Isaac97

Gym. Each object is spawned 2cm above the table and dropped. The simulation starts when the98

object settles. The simulation pipeline is visualized in Figure 9.99

The entire dataset can be evaluated in about one day using 4 Nvidia A100 GPUs. We note that this100

can only occur after the dataset has been generated using the procedure outline in Appendix B.1.101

B.3 Simulated Label Distribution102

Figure 10 shows the distribution of grasp labels across the dataset of 3.5M grasps. The median and103

IQR of each label is as follows:104

• 𝑦PGS: 0.0 (0.0, 0.48)105

• 𝑦pick: 0.2 (0.0, 0.8)106
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Figure 9: Visualization of grasp evaluation in simulation on a snowman object (top) and a figurine
object (bottom). After the object settles on the table (𝑡settle), the Allegro hand is moved to the
pre-grasp position (𝑡pregrasp), executes the grasp (𝑡grasp), and lifts the object (𝑡lift). At 𝑡pregrasp, we
compute 𝑦coll by checking for hand collisions with the object and table. At 𝑡lift, we compute 𝑦pick by
checking if the object pose relative to the hand significantly changed from 𝑡pregrasp.
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Figure 10: Dataset label distribution across 3.5M grasps.

• 𝑦coll: 0.08 (0.6, 1.0)107

B.4 Object Dataset and Generation108

The objects considered in this work are a strict subset of those in DexGraspNet [4]. DexGraspNet109

contains 5.3K unique objects, while we only consider 4.3K of them. The main reason for this is110

that we assume a tabletop setting while DexGraspNet does not, which necessitates a canonical “up”111
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Figure 11: Visualization of a random subset of 100 objects out of the 212 test objects, with the
Allegro hand shown at the bottom for scale. The object dataset is a subset of the DexGraspNet
dataset’s meshes [4]. See their work for more details.

direction. Thus, many objects were manually processed to be oriented in a reasonable manner.112

We only use an object if after this reorientation, the object successfully settles when dropped from113

a height of 2cm. If the object tips over or does not settle after 200 timesteps in the Isaac Gym114

simulation, then it is excluded. We consider an object to have remained upright if the real part of115

its relative quaternion remains greater than 0.95 throughout the simulation. We consider it to have116

settled if the translational components stay within 1mm along each axis and roll, pitch, and yaw stay117

with 1e-2 radians for 15 consecutive timesteps. Figure 11 visualizes a subset of our object dataset. To118

introduce more scale diversity while retaining a dataset size under 2.5TB, a subset of approximately119

1.7K of the objects is duplicated at three distinct scales, while the remaining objects are used at one120

scale each, resulting in approximately 7.7K objects. The large dataset storage requirement comes121

from the storage of multiple 3D NeRF density grids used to represent each grasp for the NeRF122

evaluator (more details about the NeRF density grid representation in Appendix D.3.2).123

B.5 Train, Validation, and Test Split124

We create our train, validation, and test splits of the datasets very carefully. We make sure that each125

unique object mesh only exists in one of these three sets.126

We split the 4305 unique object meshes into 3981 (92.5%) train objects, 216 (5%) validation objects,127

and 108 (2.5%) test objects. Each object may appear at more than one scale, so this results in128

7695 different objects after all scaling operations, split into 7108 (92.5%) train objects, 375 (5%)129

validation objects, and 212 (2.5%) test objects. This results in a total of 3,531,098 grasps, with130

3,261,228 (92.5%) for training, 170,128 (5%) for validation, and 99,742 (2.5%) for testing.131

C Object Representations132

C.1 Neural Radiance Fields133

We train NeRFs using both simulated data and real-world data and compare them here.134

For NeRFs trained on simulated data, the object is first spawned and allowed to settle on the table.135

Then, we uniformly sample 100 images over a spherical cap above the object with a radius of 0.45m136

and a polar angle sampled from𝑈 (0, 𝜋
4 ), and then train for 400 iterations with nerfstudio [7, 8].137
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Simulated Snowman Real-World Dragon

Figure 12: Comparison between NeRFs trained on simulated snowman data and real-world dragon
data, which demonstrates the qualitative similarity between the two NeRFs. First row: two of the
RGB images used for NeRF training. Second row: Camera poses used for NeRF training. Third
row: NeRF-rendered RGB image and accumulation image.

For NeRFs trained on real-world data, we first collect 100 images while moving the wrist-mounted138

camera along a hard-coded trajectory encircling the object and then train for 400 iterations with139

nerfstudio [7, 8]. This trajectory consists of 3 spirals around the object, with the object placed140

roughly in the center of the spirals.141

Figure 12 shows a qualitative comparison between the RGB images and NeRFs trained on simulated142

data versus real-world data. Both types of NeRFs exhibit floater artifacts [9], which must either be143

processed away or ignored by downstream models.144

We train without scene contraction, auto-scaling poses, centering method, or orientation method,145

and use a scale factor of 1.0, which ensures that the coordinate space in the NeRF is not modified146

from the given data. The remainder of the parameters follow the default nerfacto settings in147

nerfstudio.148

C.2 Basis Point Sets149

Methods that represent the object as basis point sets (BPSs) use the following procedure.150

1. Train a NeRF following the procedure described in Appendix C.1.151

2. Sample a point cloud with 5000 points using nerfstudio [8] by rendering out depth152

images with opacity exceeding 0.5 in the axis-aligned bounding box parameterized by153

the lower and upper bounds [−0.2𝑚,−0.2𝑚, 0.0𝑚] × [0.2𝑚, 0.2𝑚, 0.3𝑚] using a z-up154

convention.155
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Basis Point
Distances

Simulated Snowman Real-World Dragon

Figure 13: Visualization of a point cloud (5000 black points) and a basis point set (4096 points
colored by distance to the point cloud) generated by a NeRF for both a simulated snowman object
(left) and a real-world dragon object (right).

Simulated Snowman

NeRF-Generated Mesh NeRF-Generated Mesh

Real-World Dragon

Ground-Truth Mesh RGB Image

Figure 14: We use NeRFs to generate meshes for two purposes: analytic grasp planning methods
(FRoGGeR) and collision-free motion planning from the start pose to the pre-grasp pose (all meth-
ods). Left: Comparison between the ground-truth mesh and NeRF-generated mesh of a simulated
snowman object, where the extra vertices at the bottom are due to artifacts from shadows/lighting
effects. Right: Comparison between an RGB image and the NeRF-generated mesh of a real-world
dragon object. We do not have a ground-truth mesh for the real-world dragon object.

3. Preprocess the point cloud to remove most outliers and floaters. First, we use open3d [10]156

to remove statistical outliers (nb_neighbors=20, std_ratio=2.0) and radius out-157

liers (nb_points=16, radius=0.05). Next, we construct an undirected graph of the158

remaining points, where points are nodes and an edge exists between two nodes if the points159

are within 1mm. Floaters are removed by keeping the largest connected component.160

4. Generate a random set of 4096 basis points within a sphere of radius 0.3m, centered 0.15m161

above the table. This set of basis points remains fixed for all experiments. We utilize162

bps [11] for basis point set operations.163

5. Compute basis point set values by calculating the distance from each basis point to its164

closest point in the point cloud.165

Figure 13 shows an example of a point cloud and BPS for both a simulated and real-world object.166

C.3 Meshes167

We use triangle meshes for two purposes: the analytic grasp planning method (FRoGGeR) that we168

use as a baseline and collision-free motion planning from the start pose to the pre-grasp pose (all169

methods).170
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Figure 15: Our grasp planners consist of a sampler and an evaluator. First, the sampler generates
a batch of grasp candidates. The evaluator ranks them, and the top 𝐾 grasps are refined using
sampling-based optimization, where the objective is given by the evaluator.

For both applications, the mesh is generated by the following procedure.171

1. Training a NeRF following the procedure described in Appendix C.1.172

2. Using scikit-image [12] to perform marching cubes, which extracts a 2D surface173

mesh from a 3D volume with a NeRF density level set of 15 within a bounding box of174

[−0.2𝑚,−0.2𝑚, 0.0𝑚] × [0.2𝑚, 0.2𝑚, 0.3𝑚] (with z being the up-direction).175

3. Using trimesh [13] to remove floaters. This is done by only keeping connected compo-176

nents with at least 31 edges.177

Figure 14 shows examples of NeRF-generated meshes. We found the parameters above to be178

reasonable for all test objects.179

D Grasp Planning180

As explained in the main text, during grasp planning, a batch of candidate grasps is sampled, and181

only the top 𝐾 of these are retained for the refinement phase. In our simulation experiments, we182

let 𝐾 = 5, which are all refined and executed in simulation. In our real-world experiments, we let183

𝐾 = 40, which are all refined and the best is executed on hardware. See Figure 15 for a schematic of184

the sample/refine process.185

Recall that our refinement is sampling-based, where the previous iterate is perturbed by some number186

of samples and the best one is chosen to be the next iterate. For all perturbations, we use zero-mean187

Gaussian noise as follows.188

• Wrist translation: standard deviation of 5mm per spatial coordinate.189

• Wrist and grasp orientations: the noises are sampled using a standard deviation of 0.05m190

from 𝔰𝔬(3), which are then converted to elements of 𝑆𝑂 (3) via the exponential map.191

• Joint angles: standard deviation of 0.01 radians.192

The refinement is run for 50 iterations. Other refinement strategies could work as well, such as193

gradient-based methods or other sampling-based methods.194
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Figure 16: Diffusion Sampler architecture. Our model takes in a basis point set, a noised grasp,
and a diffusion timestep. The noised grasp and the diffusion timestep are processed into a query using
a self-attention block. The basis point set is processed into a key-value pair. These are embedded
together using a cross-attention block and used to compute the predicted noise. This is a similar
architecture to the one used by Weng et al. [1].
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Figure 17: Train and validation loss curves for the diffusion sampler.

To allow grasp parameters to be represented as vector inputs or outputs, we parameterize them195

as g = (x, r, 𝜃, d1, ..., d𝑛 𝑓
) ∈ R9+𝑛 𝑗+3𝑛 𝑓 , where x ∈ R3 is the wrist position, r ∈ R6 is the wrist196

orientation represented by a continuous 6-D rotation vector [14], 𝜃 ∈ R𝑛 𝑗 is the pre-grasp joint197

configuration, and d𝑖 ∈ R3 is the direction in which the 𝑖th fingertip moves during the grasp.198

D.1 Diffusion Sampler199

Figure 16 shows the diffusion sampler architecture inspired by Weng et al. [1]. As their implemen-200

tation is not publicly available, we re-implemented their architecture to the best of our ability via201

the textual description. We use an embedding dimension of 128 and a sequence length of 4 for all202

attention modules. The sequence length is created by reshaping the outputs of the fully-connected203

layers (to (4, 128)). We use Denoising Diffusion Implicit Models (DDIM) [15] with a linear sched-204
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Figure 18: BPS Evaluator architecture. Our model takes in a basis point set and a grasp, which
are concatenated together and then passed through three fully-connected resblocks and a final fully-
connected layer, which returns logits for 3 labels: whether (i) there are unwanted collisions in the
scene, (ii) the pick succeeded in the simulator, and (iii) both (i) and (ii) are true. See the official
implementation from Mayer et al. [2] [here]. This is the same architecture used by Weng et al. [1]
and our work.

uler on the noise variance 𝛽 that moves from 0.0001 to 0.02 over a total of 1000 diffusion timesteps.205

Figure 17 shows the train and validation loss curves for this model.206

Although the diffusion sampler is trained to only generate successful grasps, it can still produce207

unsuccessful grasps as seen in previous works [1, 2]. While it could typically generate feasible-208

looking grasps on a diverse range of objects, its most common failure modes were (1) generating209

grasps that were “close” to successful but with fingers slightly too close or far to successfully execute,210

and (2) generating a grasp that was substantially too far from the object.211

D.2 Sampling from a Fixed Dataset212

To disentangle the importance of the learned evaluator from the impact of the diffusion sampler, we213

perform additional experiments in which we replace the diffusion sampler with a simple baseline214

in which we store a fixed set of 4349 grasps from the training set. More specifically, this was215

generated by storing one grasp per training set object that exhibited a high probability of success216

(𝑦PGS ≥ 0.9). For objects that did not have any such grasps, we did not store any. We emphasize217

that these grasps were from training set objects, so they were not designed for the unseen test objects218

used for simulation evaluation or the real-world objects used for hardware evaluation.219

D.3 Grasp Evaluators220

Recall that the evaluators are trained by regressing on three distinct soft labels: 𝑦PGS, 𝑦coll, and 𝑦pick.221

Although we only use the 𝑦̂PGS prediction at inference time, we choose to regress the other two labels222

𝑦̂coll and 𝑦̂pick at train time, as we found that these labels provide an additional signal about why a223

given grasp may be failing.224

D.3.1 BPS Evaluator Details225

Figure 18 shows the architecture used for the BPS evaluator. We used the official implementation226

from Mayer et al. [2] [here], which is the same architecture used by Weng et al. [1].227

D.3.2 NeRF Evaluator Details228

Figure 19 shows the architecture used for the NeRF evaluator. We use a novel grasp representation229

that leverages NeRF features directly.230
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Figure 19: NeRF Evaluator architecture. Our model takes in local and global NeRF feature
grids, passing them through 3D CoordConv networks and an MLP, which returns logits for 3 labels:
whether (i) there are unwanted collisions in the scene, (ii) the pick succeeded in the simulator, and
(iii) both (i) and (ii) are true. The Fingertip CoordConv weights are shared for all fingertips.

We will motivate this representation and then describe it in detail. A key factor for grasp success is231

the surface geometry at the contact points. Modeling this from images is difficult, and few (if any)232

fast, reliable surface reconstruction methods are adequate for grasp planning. Here, we use NeRF233

features that we hypothesize capture accurate estimates of the object surface. Centered at finger 𝑖’s234

position x𝑖 , a square of side length 0.06m is swept along d𝑖 by 0.08m to recover a rectangular prism235

which is discretized into a 4D tensor N𝑖 ∈ R4×31×31×41, where the first channel dimension is the236

NeRF density and the last 3 are spatial coordinates. These grid dimensions overapproximate both237

the fingertip size and the grasp depth to ensure the geometric information captured is not too local.238

Further, to capture the global object geometry, we generate a grid centered on the estimated object239

centroid with side lengths 0.4m N𝑔 ∈ R4×41×41×41. The centroid is estimated by assuming uniform240

mass density and integrating over spatial regions with NeRF density exceeding 15.0.241

In summary, our architecture uses local NeRF densities and global NeRF densities as inputs. The242

local NeRF densities are sampled grids approximating the fingertip swept volumes when moving243

along the grasp directions. The global NeRF densities are a sampled grid of fixed size to capture the244

object’s global geometric features.245

D.4 FRoGGeR Details246

For all experiments that use FRoGGeR [16, 17], we use the open-source implementation provided247

at https://github.com/alberthli/frogger. The procedure for acquiring the meshes248

used for planning is described in Appendix C.3.249

Out of the 100 real-world pick attempts using FRoGGeR, there were a total of 49 failures. 16 failures250

were caused by planned grasps that failed to lift the object, and 33 failures were caused by planning251

issues in which no grasp could be found within the timeout period.252

FRoGGeR allows users to either plan with a floating hand or the full hand-arm system. We opt to253

use the full hand-arm system so that the generated grasps account for kinematic reachability of grasp254

poses when using a given arm, resulting in fewer downstream motion planning failures.255

E Experiment Details256

E.1 Simulation: Ablation Study on Dataset Size Details257

We hypothesize that learned grasp evaluators could help achieve robust sim-to-real transfer for258

multi-finger grasp planners, but only if the associated data are large-scale and account for realistic259

perceptual inputs.260

Looking at prior works, we see a clear trend toward larger multi-fingered grasp datasets used for261

training grasp evaluators (see Figure 20). Recognizing this trend, our goal with this ablation is262

to study how much the increased scale of our dataset (3.5M grasps across 4.3K objects) impacts263
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Figure 20: Comparison between learned grasp evaluator dataset sizes in prior works over time, with
our dataset and our ablations shown on the right. The full training set contains 3.26M grasps.
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Figure 21: Comparison of loss curves across each model trained on a different fraction of the training
dataset and validated on the same validation dataset. These show a clear correlation between dataset
scale and validation performance. The full training set contains 3.26M grasps.

performance, which we measure by examining the improvement in the simulated probability of grasp264

success gained by evaluator refinement.265

Figure 21 shows the train and validation loss curves of each model trained on a different fraction of266

the training dataset and validated on the same validation dataset. We see that all models are trained267

to convergence and achieve similar train losses, but their corresponding validation losses show a268

consistent correlation between dataset scale and validation performance.269

E.2 Hardware: Object Selection270

Figure 22 shows the real-world objects labeled with their corresponding names. Easy objects are271

those that have high-quality grasps when approached from any or most directions. For example, tall,272

cylindrical objects can be grasped overhead or from the side. Medium objects are those with more273

unusual geometry, including “distractors,” or objects which are harder to grasp when the hand is274

arbitrarily oriented. For example, the mug has a handle and the lunchbox is more easily pinched in275

the thin direction. Lastly, hard objects contain very unusual, non-convex geometry/visual features,276

or are difficult to grasp without affordances. For example, the goggles are both reflective and277

transparent, which poses a challenge for object reconstruction algorithms, and the bunny’s ears are a278

large distractor for grasp planners. The bunny, squirrel, and dino were custom printed as hard279

test objects. The strainer and mallet were chosen to be out-of-distribution objects, providing280

a ceiling on the performance of our grasping algorithms. No method obtained any successful grasps281

on the strainer.282
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Figure 22: Real-world objects labeled with their names corresponding to Table 4.

E.3 Hardware: Detailed Results283

Table 4 presents the detailed quantitative results of all grasp planning methods on various objects in284

the real world.285

Difficulty Objects
Methods

No Evaluator Evaluator
FRoGGeR Diffusion Diffusion Diffusion Fixed

No Evaluator BPS NeRF BPS

Easy

Apple 4/5 3/5 5/5 5/5 5/5
Cube 3/5 1/5 5/5 4/5 5/5

Yellowcup 5/5 4/5 5/5 5/5 5/5
Conditioner 4/5 5/5 5/5 4/5 5/5

Greentea 3/5 4/5 4/5 5/5 5/5
Purplecup 5/5 5/5 5/5 5/5 5/5
TOTAL 24/30 22/30 29/30 28/30 30/30

(80%) (73%) (97%) (93%) (100%)

Medium

Redmug 2/5 4/5 5/5 5/5 5/5
Goblet 5/5 3/5 5/5 5/5 5/5
Spray 4/5 0/5 2/5 4/5 3/5
Milk 1/5 5/5 5/5 5/5 5/5

Redbox 5/5 1/5 4/5 5/5 3/5
Lunchbox 2/5 0/5 5/5 2/5 4/5
TOTAL 19/30 13/30 26/30 26/30 25/30

(63%) (43%) (87%) (87%) (83%)

Hard

Dragon 0/5 0/5 2/5 2/5 4/5
Goggles 0/5 0/5 4/5 2/5 4/5
Minion 0/5 3/5 5/5 5/5 5/5
Strainer 0/5 0/5 0/5 0/5 0/5
Bunny 0/5 1/5 5/5 4/5 3/5

Squirrel 1/5 2/5 4/5 3/5 4/5
Dino 2/5 2/5 5/5 5/5 5/5

Mallet 5/5 0/5 1/5 1/5 0/5
TOTAL 8/40 8/40 26/40 22/40 25/40

(20%) (20%) (65%) (55%) (62%)

All TOTAL 51/100 43/100 81/100 76/100 80/100
(51%) (43%) (81%) (76%) (80%)

Table 4: Results of different grasp planning methods on various objects in the real world. Images of
these objects can be found in Figure 22.

Qualitatively, we observed that our evaluator-based methods very rarely exhibited edge-seeking286

behavior, wherein the fingers are placed on corners or edges of objects, and has been noted as287

a common failure mode by other works [16, 17]. We suspect this may be a result of our label288
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smoothing, though we do not rigorously test this. However, “distractor” geometries like the bunny289

ears or spray nozzle frequently caused grasp planning failures, attracting the fingers towards them.290

Methods like FRoGGeR rely on online mesh reconstruction, so objects like the goggles caused291

issues due to transparency/reflectivity. Lastly, many of the diffusion sampler’s unrefined grasps292

appeared “close” to success even when failing, which suggests that generative modeling may be a293

viable strategy with more data. Some examples are shown in Figure 23.294

Figure 23: Some examples of failed grasps generated by the diffusion sampler. Though they failed,
the grasps appear qualitatively reasonable.

E.4 Hardware: Motion Planning295

To evaluate a given grasp in the real world, we need to use a motion planner to move the hand to296

the corresponding pre-grasp pose. We use cuRobo [18], which performs parallelized collision-free297

motion generation. In particular, we use cuRobo’s graph planner, which uses Probabilistic Road298

Map (PRM) to find a collision-free path. Object collision avoidance requires an object mesh, which299

is acquired through a process explained in Appendix C.3. We use a collision buffer of 1mm.300

When executing a grasp on hardware, we decompose the motion into three stages: (1) start pose to301

pre-grasp pose, (2) pre-grasp pose to grasp pose, (3) grasp pose to lift pose.302

The first stage is the most challenging motion planning problem because the hand needs to find303

a collision-free path to get very close to the object. To simplify this problem, we utilize inverse304

kinematics to adjust the pre-grasp finger joints, moving them an additional 3cm backward along the305

fingertip grasp directions.306

In addition to ensuring kinematic feasibility, we also need to avoid damaging the cabling of the307

wrist-mounted camera during grasp execution. To achieve this, we filter out grasp samples if either308

(1) the normal direction of the palm is within 60 degrees from the upward direction of the world309

frame or (2) the direction from the palm to the middle finger deviates by more than 60 degrees from310

the forward direction of the world frame.311

To account for these checks, we request 40 grasps from the grasp planner, which are then sorted by312

the grasp planner’s metric. If no metric is available, such as in the case of a diffusion sampler without313

an evaluator, the grasps remain unsorted. Next, we utilize cuRobo to solve all 40 motion planning314

problems in parallel and then execute the first grasp for which a motion plan is successfully found.315
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