
A Maintenance

In this section we present a maintenance plan that is adapted from the datasheets for datasets [92].

• Who is maintaining the benchmarking library? HPOBench is developed and maintained
by the Machine Learning Lab at the University of Freiburg.

• How can the maintainer of the dataset be contacted(e.g., email address)? Questions
should be submitted via an issue on the Github repository at https://github.com/
automl/HPOBench.

• Is there an erratum? No.

• Will the benchmarking library be updated? We consider adding new benchmarking
problems and potentially fix existing issues with existing benchmarks. Such changes will be
communicated via release notes in Github releases.

• Will older versions of the benchmarking library continue to be sup-
ported/hosted/maintained? Older versions of the benchmarking code are available via
the underlying git repository. Containers are versioned and available via Gitlab. We aim
to answer questions on a best-effort basis, but will not do so for older versions of the
benchmarking library.

• If others want to extend/augment/build on/contribute to the dataset, is there a mech-
anism for them to do so? We allow contributions from the community via a pro-
cess that is currently described at https://github.com/automl/HPOBench/wiki/
How-to-add-a-new-benchmark-step-by-step.

• Any other comments? No.

B Benchmarking efforts

In addition to Section 3 of the main paper, we provide here a non-exhaustive list of further bench-
marking libraries in the area of HPO consisting of not only a publication but which constitute or
constituted a long-running effort to compare methods:

• HPOLib [6] to benchmark global optimization methods

• ACLib [47] to benchmark algorithm configuration methods

• OpenAI Gym [93] to benchmark RL methods

• COCO [9] to compare continuous optimization methods

• Bayesmark [8] to benchmark Bayesian optimization methods

• OpenML benchmarking suites [94] provide a set of datasets for supervised classification

• Olympus [12] provides a set of experiment planning tasks to evaluate optimization algorithms

• HPO-B [48] provides a tabular benchmark to compare black-box HPO methods

• ExpoBench [11] provides expensive benchmark problems for HPO

C Benchmarking competitions

In addition to Section 3 of the main paper, we provide here a non-exhaustive list of benchmarking
competitions on HPO and related topics:

• The AutoML challenges [49]

• The AutoDL challenge [50]

• NeurIPS 2020 Black-Box optimization challenge [51]

• The KDD cup (see https://www.kdd.org/kdd-cup)

• Challenges in Machine Learning (CIML) workshop series (see https://ciml.chalearn.
org/)

• Black-box Optimization Benchmarking (BBOB) workshop series [95] (see https://
numbbo.github.io/workshops/)

18

https://github.com/automl/HPOBench
https://github.com/automl/HPOBench
https://github.com/automl/HPOBench/wiki/How-to-add-a-new-benchmark-step-by-step
https://github.com/automl/HPOBench/wiki/How-to-add-a-new-benchmark-step-by-step
https://github.com/automl/HPOlib
https://bitbucket.org/mlindauer/aclib2
https://gym.openai.com/
https://github.com/numbbo/coco
https://github.com/uber/bayesmark
https://www.openml.org/s/99
https://github.com/aspuru-guzik-group/olympus
https://github.com/releaunifreiburg/HPO-B
https://github.com/AlgTUDelft/ExpensiveOptimBenchmark
https://www.kdd.org/kdd-cup
https://ciml.chalearn.org/
https://ciml.chalearn.org/
https://numbbo.github.io/workshops/
https://numbbo.github.io/workshops/

D More Details on Considered Benchmarks

In addition to the main paper, here we provide further details on our benchmarks collected. We start
with issues we faced during collection and then briefly describe the existing community benchmarks
(Section D.2) and the new benchmarks (Section D.3).

D.1 Conflicting Dependencies.

During benchmark collection, we also encountered a few examples of conflicting dependencies and
updated interfaces making long-term maintenance of non-containerized benchmarks hard: Net [22]
was built with the latest version of scikit-learn [72] (0.18) when it was developed but is incompatible
with the current version (0.24); the Cartpole benchmark does not run with the latest version of
TensorForce [96] due to a change in the API; NB201 [70] changed its interface as well as the
underlying data from its initial release. Additionally, in total, none of the existing community
benchmarks we collected for this paper had a full list of dependencies given.

D.2 Existing Community Benchmarks

Here, we provide more details on the existing community benchmarks currently in HPOBench and
list their hyperparameter and fidelity spaces in Table 4.

Cartpole [22] A highly stochastic benchmark having 7 hyperparameters of the proximal policy opti-
mization [97] algorithm implemented in TensorForce [96] for the cartpole swing-up task implemented
in the OpenAI Gym [93]. The number of repetitions is used as the fidelity and this benchmark is
available only as a raw benchmark.

BNN [22] The Bayesian neural network benchmark is a 4-hyperparameter tuning task to minimize the
negative log-likelihood of a Bayesian neural network trained with stochastic gradient Hamilton Monte-
Carlo [98] with scale adaption [99] on two different regression datasets from the UCI repository ([100],
Protein Structure and YearPredictionMSD). It is implemented with Lasagne [101] and Theano [102].
It uses the number of MCMC sampling steps and is available only as a raw benchmark.

Net [22] This benchmark has 6 architectural and training hyperparameters to train a feed-forward
neural network on six different datasets from OpenML [75]: Adult, Higgs, Letter, MNIST, Optdigits
and Poker. As fidelity it uses the number of training epochs for the neural networks. This is a surrogate
benchmark and uses a random forest, which is trained on 10K randomly samples configurations.

NBHPO. [69] This benchmark is a joint neural architecture search and HPO for a 2-layer feedforward
neural network. The output layer was designed as a linear layer with parameterized architecture
details and training parameters while the search space is a large grid of configurations on four popular
UCI datasets for regression: protein structure, slice localization, naval propulsion and parkinsons
telemonitoring.

NB101. [54] This was the first introduced NAS benchmark based on tabular lookup, designed for
reproducibility in NAS research. Each architecture is represented as a stack of architectural cells,
where each such cell is represented as directed acyclic graphs (DAGs). The benchmarks offers a
search space that includes nearly 423k unique architectures by parameterizing the nodes and edges of
the DAGs. The lookup table allows to query performance of architectures on the Cifar-10 dataset.
Additionally, queries can be made for intermediate training epochs too, thereby allowing multi-fidelity
optimization. In contrast to the original implementation, we always return the average across the
three repetitions as a score.

NB1Shot1. [71] The NAS-Bench-1shot1 was derived from the large architecture space of NAS-
Bench-101, such that, weight-sharing based one-shot NAS methods can be applied for this tabular
lookup. The cell-level encoding was modified to yield 3 variants of the architecture space which
contains around 6k (search space 1), 29k (search space 2), 300k (search space 3) architectures. In
contrast to the original implementation we always return the average across the three repetitions as a
score.

NB201. [70] To further aid the use of weight sharing algorithms to NAS Benchmarks, this benchmark
introduced a fixed cell search space wherein a DAG has only 4 nodes that define the cell architecture.
Whereas the edges define the operations. Thus, creating a search space of around 15k unique

19

Table 4: Hyperparameter spaces of our benchmarks. For each benchmark, we report the hyperpa-
rameter names, type, whether they are on a log scale, and their respective range for each benchmark.
Additionally, we report the same information for the fidelity space. If the spaces are different for
different benchmarks within one family, we report them separately.

benchmark name type log range

Cartpole

batch_size int ✓ [8, 256]
discount float ✗ [0.0, 1.0]
entropy_regularization float ✗ [0.0, 1.0]
learning_rate float ✓ [1e−07, 0.1]
likelihood_ratio_clipping float ✗ [1e−7, 1.0]
n_units_{1,2}* int ✓ [8, 128]

repetitions int ✗ [1, 9]

BNN

burn_in float ✗ [0.0, 0.8]
l_rate float ✓ [1e−6, 0.1]
mdecay float ✗ [0.0, 1.0]
n_units_{1,2}* int ✓ [16, 512]

epochs int ✗ [500, 10000]

Net

average_units_per_layer_log2 float ✗ [4.0, 8.0]
batch_size_log2 float ✗ [3.0, 8.0]
dropout float ✗ [0.0, 0.5]
final_lr_fraction_log2 float ✗ [−4.0, 0.0]
initial_lr_log10 float ✗ [−6.0,−2.0]
num_layers int ✗ [1, 5]

adult, higgs, mnist

epochs

int ✗ [9, 243]
letter int ✗ [3, 81]
optdigits int ✗ [1, 27]
poker int ✗ [81, 2187]

NBHPO

activation_fn_{1, 2}* cat - {tanh, relu}
batch_size ord - {8, 16, 32, 64}
dropout_{1, 2}* ord - {0.0, 0.3, 0.6}
init_lr ord - {0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}
lr_schedule cat - {cosine, const}
n_units_{1, 2}* ord - {16, 32, 64, 128, 256, 512}

epochs int ✗ [3, 100]

NB201

1<-0 cat - {none, skip_connect,
2<-{0,1}∗ cat - nor_conv_1x1, nor_conv_3x3,
3<-{0,1,2}∗ cat - avg_pool_3x3}

epochs int ✗ [12, 200]

NB101Cf10A

edge_{0, 1, ..., 20}* cat - {0, 1}
op_node_{0, 1, .., 4}* cat - {conv1x1-bn-relu, conv3x3-bn-relu,

maxpool3x3}

epochs ord ✗ {[4, 12, 36, 108}

NB101Cf10B

edge_{0, 1, ..., 8}* cat - {0, 1, 2, ..., 20}
op_node_{0, 1, ..., 4}* cat - {conv1x1-bn-relu, conv3x3-bn-relu,

maxpool3x3}

epochs ord ✗ {4, 12, 36, 108}

NB101Cf10C

edge_{0, 1, ..., 20}* float ✗ [0.0, 1.0]
num_edges int ✗ [0, 9]
op_node_{0, 1, ..., 4}* cat - {conv1x1-bn-relu, conv3x3-bn-relu,

maxpool3x3}

epochs ord ✗ {4, 12, 36, 108}

20

Table 5: Table 4 continued

NB1Shot11

choice_block_{1,2,3,4}_op* cat - {conv1x1-bn-relu, conv3x3-bn-relu,
maxpool3x3}

choice_block_1_parents cat - {(0,)}
choice_block_2_parents cat - {(0,1)}
choice_block_3_parents cat - {(0,1), (0,2), (1,2)}
choice_block_4_parents cat - {(0,1), (0,2), (0,3), (1,2), (1,3), (2,3)}
choice_block_5_parents cat - {(0,1), (0,2), (0,3), (0,4), (1,2), (1,3),

(2,3), (1,4), (2,3), (2,4), (3,4)}

epochs ord ✗ {4, 12, 36, 108}

NB1Shot12

choice_block_{1,2,3,4}_op* cat - {conv1x1-bn-relu, conv3x3-bn-relu,
maxpool3x3}

choice_block_1_parents cat - {(0,)}
choice_block_2_parents cat - {(0,), (1,)}
choice_block_3_parents cat - {(0, 1), (0, 2), (1, 2)}
choice_block_4_parents cat - {(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}
choice_block_5_parents cat - {(0, 1, 2), (0, 1, 3), (0, 1, 4), (0, 2, 3), (0, 2, 4),

(0, 3, 4), (1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)}

epochs ord ✗ {4, 12, 36, 108}

NB1Shot13

choice_block_{1,2,3,4,5}_op* cat - {conv1x1-bn-relu, conv3x3-bn-relu,
maxpool3x3}

choice_block_1_parents cat - (0,)
choice_block_2_parents cat - {(0,), (1,)}
choice_block_3_parents cat - {(0,), (1,), (2,)}
choice_block_4_parents cat - {(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}
choice_block_5_parents cat - {(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3),

(1, 4), (2, 3), (2, 4), (3, 4)}
choice_block_6_parents cat - {(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 2),

(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5),
(3, 4), (3, 5), (4, 5)}

epochs ord ✗ {4, 12, 36, 108}

architectures. NAS-Bench-201 provides a lookup table for Cifar-10, Cifar-100, and ImageNet16-120.
In contrast to the original implementation we always return the average across the three repetitions as
a score.

D.3 New Benchmarks

Here, we provide more details on the new benchmarks and list their hyperparameter and fidelity
spaces in Table 6.

SVM A 2-dimensional benchmark for a SVM model with an RBF kernel with the regularization
and the kernel coefficient gamma as available hyperparameters to tune. It uses the dataset subset
fraction as the fidelity and is available as both raw and tabular benchmarks. For the tabular version,
we discretized each hyperparameter into 21 bins for 441 unique hyperparameter configurations and
evaluated each of these on 20 datasets from the AutoML benchmark [74].

LogReg This benchmark has 2 hyperparameters – learning rate and regularization for a logistic
regression model trained using Stochastic Gradient Descent (SGD). It uses dataset fraction and/or
the number of SGD iterations as the fidelity and is available as both a raw and tabular benchmark.
For the tabular version we evaluated a grid of 625 configurations on 20 datasets from the AutoML
benchmark [74].

XGBoost This benchmark has 4 hyperparameters that tune the maximum depth per tree, the features
subsampled per tree, the learning rate and the L2 regularization for the XGBoost model. It uses
dataset fraction and/or the number of boosting iterations as fidelities and is available as both a raw
and tabular benchmark. For the tabular version we discretized each hyperparameter into 10 bins and
evaluated the resulting grid of 10k configurations on 20 datasets from the AutoML benchmark [74].

21

RandomForest This benchmark has 4 hyperparameters that tune the maximum depth per tree, the
maximum features subsampled per split, the minimum number of samples required for splitting a
node, and the minimum number of samples required in each leaf node for a random forest model. It
uses dataset fraction and/or the number of trees as fidelities and is available as both a raw and tabular
benchmark. For the tabular version we discretized each hyperparameter into 10 bins and evaluated
the resulting grid of 10k configurations on 20 datasets from the AutoML benchmark [74].

MLP This benchmark has 5 hyperparameters – two hyperparameters that determine the depth and
width of the network; three more hyperparameters tune the batch size, L2 regularization and the
initial learning rate for Adam. It uses dataset fraction and/or the number of epochs as fidelities
and is available as both a raw and tabular benchmark. For the tabular version, we discretized
each hyperparameter into 10 bins and evaluated the resulting grid of 1k configurations for each of
30 different architectures, resulting in 30k configurations in total, on 8 datasets from the AutoML
benchmark [74].

To collect the data for the tabular benchmark, we evaluated every configuration-fidelity pair in the
discretized space on 5 different seeds; each such repetition is evaluated on the following 4 metrics:
accuracy, balanced accuracy, precision, f1.

Table 6: Table detailing the configuration spaces for the new
benchmarks included in HPOBench. For each model, we report
the hyperparameters and their ranges (top part) and fidelities
and their ranges (bottom part).

benchmark name type log range

SVM
C float ✓ [2−10, 210]
gamma float ✓ [2−10, 210]

subsample float ✗ [0.1, 1.0]

LogReg

alpha float ✓ [1e− 05, 1.0]
eta0 float ✓ [1e− 05, 1.0]

iter int ✗ [10, 1000]
subsample float ✗ [0.1, 1.0]

XGBoost

colsample_bytree float ✗ [0.1, 1.0]

eta float ✓ [2−10, 1.0]
max_depth int ✓ [1, 50]
reg_lambda float ✓ [2−10, 210]

n_estimators int ✗ [50, 2000]
subsample float ✗ [0.1, 1.0]

RandomForest

max_depth int ✓ [1, 50]
max_features float ✗ [0.0, 1.0]
min_samples_leaf int ✗ [1, 2]
min_samples_split int ✓ [2, 128]

n_estimators int ✗ [16, 512]
subsample float ✗ [0.1, 1.0]

MLP

alpha float ✓ [1.0e−08, 1.0]
batch_size int ✓ [4, 256]
depth int ✗ [1, 3]
learning_rate_init float ✓ [1.0e−05, 1.0]
width int ✓ [16, 1024]

epochs int ✗ [3, 243]
subsample float ✗ [0.1, 1]

Table 7: OpenML Task IDs used
from the AutoML benchmark for
SVM, LogReg, XGBoost and Ran-
domForest. MLP uses only the
first 8 task IDs. The table shows
the total number of instances
available (train + test) (#obs), and
the total number of features prior
to preprocessing (#feat).

name tid #obs #feat

blood-transf.. 10101 748 4
vehicle 53 846 18
Australian 146818 690 14
car 146821 1728 6
phoneme 9952 5404 5
segment 146822 2310 19
credit-g 31 1000 20
kc1 3917 2109 22

sylvine 168912 5124 20
kr-vs-kp 3 3196 36
jungle_che.. 167119 44819 6
mfeat-factors 12 2000 216
shuttle 146212 58000 9
jasmine 168911 2984 145
cnae-9 9981 1080 856
numerai28.6 167120 96320 21
bank-mark.. 14965 45211 16
higgs 146606 98050 28
adult 7592 48842 14
nomao 9977 34465 118

E Details on Hardware Used for Experiments

For our benchmark study we ran all jobs on a compute cluster equipped with Intel(R) Xeon(R) Gold
6242 CPU @ 2.80GHz. If not stated otherwise, we run all job on 1 CPU with up to 6GB RAM for at

22

https://www.openml.org/t/10101
https://www.openml.org/t/53
https://www.openml.org/t/146818
https://www.openml.org/t/146821
https://www.openml.org/t/9952
https://www.openml.org/t/146822
https://www.openml.org/t/31
https://www.openml.org/t/3917
https://www.openml.org/t/168912
https://www.openml.org/t/3
https://www.openml.org/t/167119
https://www.openml.org/t/12
https://www.openml.org/t/146212
https://www.openml.org/t/168911
https://www.openml.org/t/9981
https://www.openml.org/t/167120
https://www.openml.org/t/14965
https://www.openml.org/t/146606
https://www.openml.org/t/7592
https://www.openml.org/t/9977

most 4 days or till the benchmark budget was exhausted. For runs that needed more memory to load
data, we allowed up to 12GB RAM (NB101, NB1Shot1, NB201). For collecting tabular data for the
new benchmarks, we ran all jobs on a compute cluster equipped with Intel(R) Broadwell E5-2630v4
@ 2.2GHz with up to 6GB RAM.

F Details on Runtime

Running all optimizers on the raw versions of the existing community benchmarks would take more
than 1500 CPU years, but the use of tabular and surrogate-based benchmarks in HPOBench reduces
this amount to only 22.5 CPU years. While this is still a lot, we emphasize that most of this time is
used by the optimizers (and not the benchmarks). For developing and evaluating a new multi-fidelity
method and comparing it to computationally cheap baselines, e.g. sequentially evaluating both RS
and DE on all tabular and surrogate benchmarks took < 10 CPU days, HB took around 50 CPU days
and DEHB needed around 40 CPU days. To further explain the amount of time it took to obtain
results for our empirical study, we look at statistics of our runs. In Table 8, we report the average
runtime (in hours, maximum 96, however, we only record the last call to our objective function, so a
runtime of, e.g. 95 could also mean that the optimizer did not call the objective function for 2 hours
and was then forcefully terminated) and the number of calls/100 to the objective function for one
exemplary benchmark per family. The last two rows show the total time spent on obtaining results for
all raw benchmarks and surrogate plus tabular benchmarks per optimizers. Additionally, we give the
overall amount of compute spent on our empirical study.

Looking at the first part of the table, we favourably see, that most optimizers on average took less
than two hours to spend the simulated optimization budget. However, there are some exceptions
like BOGP and DF mostly hitting the optimization budget of 4 days resulting in fewer calls to the
objective function and worse performance.

Additionally, these statistics also allow to study some failure cases of the optimizers. For DF on
NB1Shot1, it only evaluated 90 configurations while taking less than 1 hour. Here DF stopped
right after the initial design, because it could not construct a model, the same happened for the
BNN benchmarks and thus the total runtime for the raw benchmarks is substantially lower. Finally,
RS called NB101Cf10A three times more often than other black-box optimizers, because the table
underlying this benchmark does not cover the complete hyperparameter space and thus returns a loss
of 1 and costs of 0 for configurations not in the table. More advanced search algorithms avoid these
seemingly badly performing regions and thus sample more costly evaluations.

Table 8: We report the median wallclock time (in hours) and number of calls/100 to the objective
function for all optimizers and one benchmark per benchmark family.

NetAdult NBHPOSlice NB101Cf10A NB201Cf100 NB1Shot11 total time
optimizer t #c t #c t #c t #c t #c raw tab+sur

RS 0 25 0 47 0 118 0 9 0 23 2295 102
DE 0 25 0 29 0 31 0 7 0 13 2290 48
BOKDE 0 25 1 31 0 31 0 8 0 27 2297 716
BOGP 82 13 96 12 96 7 9 7 96 12 2296 46566
BORF 2 25 2 43 2 39 0 8 1 21 2299 7326
HEBO 84 13 96 12 96 11 26 7 96 12 2300 48735

HB 0 108 3 209 1 242 0 21 0 95 2300 1299
BOHB 0 108 2 130 0 104 0 20 1 110 2298 1508
DEHB 0 108 0 126 0 118 0 17 0 63 2255 1031
SMAC-HB 8 105 8 202 8 166 0 20 2 96 2298 12370
DF 93 10 92 9 90 6 94 10 0 1 532 41867

Optunahb
tpe 0 109 0 109 0 75 0 31 0 55 2297 1606

Optunamd
tpe 4 287 0 111 0 81 0 15 0 78 2278 5694

sum in CPU years 3.2 19.3

23

G More Details on Considered Optimizers

Here, we provide additional details on the optimizers used in this work. We provide an overview in
Table 9 and then briefly explain our baselines, black-box and multi-fidelity optimizers in detail. We
note that we used the default settings for all tools and implementations.

Table 9: Overview of HPO optimizers considered in this study. For each optimizer we list the model
type, what types of hyperparameters and fidelities it can handle (the tool can either handle it natively
(✓), not handle it (✗) or we could transform the type ((✓))), a link to the codebase and references.

name model
types fidelities

link reference version
cont cat log disc. cont.

RS - ✓ ✓ ✓ ✗ ✗ - [81]
BOGP GP ✓ ✓ ✓ ✗ ✗ SMAC3 [76, 78] 1.0.1
BORF RF ✓ ✓ ✓ ✗ ✗ SMAC3 [76, 78] 1.0.1
BOKDE KDE ✓ ✓ ✓ ✗ ✗ HpBandSter [22] 0.7.4
DE - ✓ ✓ ✓ ✗ ✗ DEHB [24] git commit
HEBO GP ✓ ✓ ✓ ✗ ✗ HEBO [77] 0.1.0

HB - ✓ ✓ ✓ (✓) ✓ HpBandSter [19] 0.7.4
BOHB KDE ✓ ✓ ✓ (✓) ✓ HpBandSter [22] 0.7.4
DEHB - ✓ ✓ ✓ (✓) ✓ DEHB [5] git commit
SMAC-HB RF ✓ ✓ ✓ (✓) ✓ SMAC3 [76, 78] 1.0.1
DF GP ✓ ✓ (✓) ✓ ✓ Dragonfly [79] 0.1.5

Optunamd
tpe TPE ✓ ✓ ✓ ✓ ✗ Optuna [80] 2.8.0

Optunahb
tpe TPE ✓ ✓ ✓ ✓ ✗ Optuna [80] 2.8.0

G.1 Baselines

Random Search (RS) is a simple baseline that samples new configurations uniformly at random
from a prior. It was proposed as an improved baseline over grid search [81] as it can handle low
intrinsic dimensionality and is easier to run in parallel.

Hyperband (HB) [19] is a bandit algorithm for the pure-exploration, non-stochastic infinite-armed
bandit problem which we described in Section 2. We will use it as a random search baseline for
multi-fidelity optimization.

G.2 Black-box Optimizers

BOGP is an implementation of traditional Gaussian process-based BO with a Matérn kernel [52]
and a SOBOL sequence initial design [103]. For categorical hyperparameters it uses a Hamming
kernel [104] and is implemented in the SMAC toolbox [78], thus it is using local search for acquisition
function optimization [76]. Its hyperparameters were tuned for good average performance over 50
function evaluations using meta-optimization [85].

BORF is similar to BOGP but uses random forests as suggested in the original SMAC publication [76].
In contrast to the original hyperparameter setting of SMAC with random forests, this version uses
a SOBOL sequence initial design [103] and only 20% interleaved random samples instead of 50%.
These hyperparameter settings were found via meta-optimization [85] for good average performance
over 50 function evaluations.

BOKDE is a re-implementation of the TPE algorithm using multi-dimensional kernel density esti-
mators as used by the BOHB algorithm [22]. Instead of modeling the objective function as p(y|x),
it models two densities, p(x|ygood) and p(x|ybad), and uses their ratio that is proportional to the
expected improvement acquisition function [14].

DE. We use the canonical DE with rand/1 as the mutation strategy and binomial crossover. We set
the mutation factor F and crossover rate CR to 0.5 each and the population size NP to 20 [24].

HEBO is a GP-based BO algorithm that uses input warping and output warping, an ensemble of
acquisition functions [77] and won the recent NeurIPS Blackbox Optimization challenge [51].

24

https://github.com/automl/SMAC3
https://github.com/automl/SMAC3
https://github.com/automl/HpBandSter
https://github.com/automl/DEHB
https://github.com/automl/DEHB/commit/2e4ee7754d90d7196f1148e4b1c252db60be58fa
https://github.com/huawei-noah/HEBO/tree/master/HEBO
https://github.com/automl/HpBandSter
https://github.com/automl/HpBandSter
https://github.com/automl/DEHB
https://github.com/automl/DEHB/commit/2e4ee7754d90d7196f1148e4b1c252db60be58fa
https://github.com/automl/SMAC3
https://github.com/dragonfly/dragonfly
https://optuna.readthedocs.io/en/stable/
https://optuna.readthedocs.io/en/stable/

G.3 Multi-fidelity Optimizers

BOHB [22] combines BO and HB with the goal of both algorithms complementing each other. It
follows the regular HB scheme, but instead of sampling configurations at random it uses BO. For BO
it uses a KDE model as described above. To handle multiple fidelities it builds an independent model
per fidelity, but only if there is sufficient (number of hyperparameters + 1) training data available, to
then always use the model from the highest fidelity for which a model is available.

SMAC-HB [78] is a straight-forward re-implementation of the BOHB algorithm using the BORF

building blocks described in the previous section.

DEHB [5] is a new model-free successor of BOHB which uses the evolutionary optimization method
DE instead of BO. For each fidelity, DEHB maintains a subpopulation and runs a separate DE
evolution while the information about good configurations flows from subpopulations at lower
fidelities to those at higher fidelities through a modified mutation strategy. The mutation allows the
use of these good configurations from lower fidelities to be selected as parents to evolve the new
subpopulation at a higher fidelity. The hyperparameters of the DE-part of DEHB are set exactly as
for DE described above.

Dragonfly (DF) [79] is a BO algorithm which implements an improved version of the BOCA
algorithm [3], which uses Gaussian processes and the upper confidence bound acquisition function to
first decide a location to query before deciding the fidelity to query.

Optunamd
tpe is implemented in the Optuna framework [80], which is a high level optimization frame-

work that allows to combine sampling (to propose new configurations to evaluate) and pruning (to stop
configurations if they are not promising) strategies to construct optimization algorithms. Optunamd

tpe

uses TPE as a sampling algorithm and the median stopping [25] rule as a pruning algorithm. It fits a
Gaussian Mixture Model on the best so far seen configurations. The pruner stops a configuration if
its best intermediate result is worse compared to the median of the other configurations on the same
fidelity level.

Optunahb
tpe is like Optunamd

tpe implemented in the Optuna framework [80] and uses TPE for sampling,
but HB as a pruning algorithm.

H More Results

Here, we give more results on our large-scale empirical study. First, we report results for all optimizers
in Table 10, 11 for the existing community benchmarks, and in Tables 12- 21 for the new benchmarks.
Second, we report statistical tests for RQ1 and RQ2 similar to the ones in the main paper for the new
benchmarks in Tables 22 and 23. Third, we report average ranking-over-time for each benchmark
family in Figure 5, 6 and 7. Finally, we show performance-over-time plots for all existing community
benchmarks in Figure 8, 9 and 10.

25

Table 10: Final performance of each black-box optimizer (lower is better). We report median
performance (regret for tabular/surrogate benchmarks and function values for raw benchmarks) across
32 repetitions per existing community benchmark. We boldface the best result per row.

benchmark black-box optimizers
RS DE BOGP BORF BOKDE HEBO

Cartpole 786.444 851.72222 826.444 227.056 381.72222 191.833
BNNProtein 3.17763 3.05335 3.10514 3.09424 3.04537 3.08331
BNNY ear 4.07933 4.01501 3.97039 3.88006 3.86969 3.77791
NetAdult 0.00258 0.00072 0.00141 0.00110 0.00068 0.00006
NetHiggs 0.00390 0.00194 0.00250 0.00277 0.00256 0.00193
NetLetter 0.00263 0.00000 0.00095 0.00055 0.00101 0.00038
NetMNIST 0.00097 0.00014 0.00040 0.00019 0.00027 0.00015
NetOptDig 0.00229 0.00048 0.00225 0.00137 0.00129 0.00121
NetPoker 0.00099 0.00054 0.00051 0.00024 0.00035 0.00004
NBHPONaval 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000
NBHPOPark 0.00000 0.00000 0.00092 0.00000 0.00000 0.00000
NBHPOProt 0.00328 0.00000 0.00000 0.00000 0.00104 0.00000
NBHPOSlice 0.00004 0.00000 0.00006 0.00000 0.00001 0.00000
NB101Cf10A 0.00638 0.00417 0.00638 0.00497 0.00638 0.00497
NB101Cf10B 0.00638 0.00497 0.00638 0.00454 0.00603 0.00497
NB101Cf10C 0.00638 0.00491 0.00638 0.00638 0.00604 0.00180
NB201Cf100 0.86667 0.00000 0.00000 0.00000 1.09833 0.00000
NB201Cf10V 0.16667 0.00000 0.00000 0.00000 0.18667 0.00000
NB201INet 0.86667 0.45556 0.00000 0.27222 1.21667 0.00000
NB1Shot11 0.00033 0.00060 0.00000 0.00000 0.00087 0.00073
NB1Shot12 0.00107 0.00000 0.00000 0.00000 0.00107 0.00160
NB1Shot13 0.00249 0.00114 0.00177 0.00177 0.00307 0.00250

Table 11: Final performance of each multi-fidelity optimizer (lower is better). We report median
performance (regret for tabular/surrogate benchmarks and function values for raw benchmarks) across
32 repetitions per existing community benchmark. We boldface the best result per row.

benchmark multi-fidelity optimizers

HB BOHB DEHB SMAC-HB DF Optunamd
tpe Optunahb

tpe

Cartpole 724.88889 232.94444 593.83333 211.33333 1004.38889 702.33333 523.66667
BNNProtein 3.14047 3.03529 3.07514 3.06393 9.65112 3.03252 3.08817
BNNY ear 4.11971 3.92703 4.03676 3.88357 12.30007 3.91723 4.02678
NetAdult 0.00232 0.00060 0.00062 0.00067 0.00298 0.00067 0.00059
NetHiggs 0.00373 0.00232 0.00206 0.00278 0.00469 0.00212 0.00209
NetLetter 0.00197 0.00140 0.00032 0.00075 0.00240 0.00147 0.00045
NetMNIST 0.00075 0.00032 0.00018 0.00023 0.00117 0.00026 0.00018
NetOptDig 0.00201 0.00153 0.00101 0.00161 0.00394 0.00153 0.00056
NetPoker 0.00072 0.00018 0.00031 0.00008 0.00053 0.00020 0.00028
NBHPONaval 0.00000 0.00000 0.00000 0.00000 0.00001 0.00001 0.00005
NBHPOPark 0.00000 0.00000 0.00000 0.00000 0.00246 0.00359 0.00149
NBHPOProt 0.00104 0.00414 0.00000 0.00000 0.00000 0.00423 0.00162
NBHPOSlice 0.00001 0.00001 0.00000 0.00000 0.00008 0.00009 0.00004
NB101Cf10A 0.00638 0.00619 0.00482 0.00476 0.00921 0.00863 0.00638
NB101Cf10B 0.00638 0.00497 0.00497 0.00442 0.00775 0.00838 0.00608
NB101Cf10C 0.00638 0.00497 0.00486 0.00638 0.00773 0.00861 0.00638
NB201Cf100 0.76000 0.86333 0.00000 0.00000 0.00000 0.87333 9.99667
NB201Cf10V 0.06267 0.10200 0.00000 0.01933 0.00000 0.27267 4.66800
NB201INet 0.71111 0.63611 0.27222 0.27222 0.28889 0.57222 11.29444
NB1Shot11 0.00007 0.00154 0.00000 0.00040 0.00387 0.00544 0.00224
NB1Shot12 0.00100 0.00107 0.00000 0.00090 0.00569 0.00392 0.00140
NB1Shot13 0.00210 0.00210 0.00154 0.00177 0.00651 0.00651 0.00224

26

Table 12: Final performance of each black-box optimizers (lower is better). We report the median
normalized regret across 32 repetitions for each new benchmarks collected for SVM. We boldface the
best result per row.

optimizer RS DE BOGP BORF BOKDE HEBO

svm_10101 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.046
svm_53 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.003 0.016
svm_146818 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.01 0.042
svm_146821 0.001 0.00e+00 0.00e+00 0.00e+00 0.001 0.011
svm_9952 0.019 0.019 0.00e+00 0.00e+00 0.02 0.00e+00
svm_146822 0.005 0.005 0.00e+00 0.00e+00 0.005 0.006
svm_31 1.21e-15 1.21e-15 1.21e-15 6.06e-16 1.21e-15 0.199
svm_3917 0.031 0.031 0.00e+00 0.00e+00 0.038 0.095
svm_168912 0.003 9.12e-04 0.00e+00 0.00e+00 0.003 0.00e+00
svm_3 0.001 9.08e-04 0.00e+00 0.00e+00 0.002 9.08e-04
svm_167119 0.005 1.76e-04 0.00e+00 0.00e+00 0.002 0.00e+00
svm_12 3.20e-17 3.20e-17 3.20e-17 3.20e-17 3.20e-17 3.20e-17
svm_146212 3.00e-04 0.00e+00 0.00e+00 0.00e+00 2.18e-04 0.00e+00
svm_168911 0.009 0.007 0.00e+00 0.00e+00 0.011 0.007
svm_9981 0.018 0.012 0.00e+00 0.00e+00 0.045 0.017
svm_167120 0.842 0.843 0.842 0.842 0.846 0.842
svm_14965 0.009 0.013 0.00e+00 0.00e+00 0.009 0.00e+00
svm_146606 0.017 0.00e+00 0.00e+00 0.00e+00 0.017 0.001
svm_7592 0.002 0.002 0.00e+00 0.00e+00 0.006 0.00e+00
svm_9977 0.001 0.001 0.00e+00 0.00e+00 5.12e-04 0.00e+00

Table 13: Final performance of each multi-fidelity optimizers (lower is better). We report the median
normalized regret across 32 repetitions for each new benchmarks collected for SVM. We boldface the
best result per row. We can not report results for Optunahb

tpe, since it does not support fidelity values
≤ 1, which is the case for dataset fractions for the SVM benchmark.

optimizer HB BOHB DEHB SMAC-HB DF Optunamd
tpe Optunahb

tpe

svm_10101 0.023 0.00e+00 0.023 0.023 0.167 0.126 -
svm_53 0.00e+00 0.003 0.00e+00 0.00e+00 0.078 0.00e+00 -
svm_146818 0.00e+00 0.01 0.00e+00 0.00e+00 0.049 0.00e+00 -
svm_146821 0.001 0.001 0.00e+00 0.00e+00 0.088 0.00e+00 -
svm_9952 0.006 0.019 0.00e+00 0.00e+00 0.074 0.003 -
svm_146822 0.005 0.005 0.00e+00 0.00e+00 0.023 0.00e+00 -
svm_31 1.21e-15 1.21e-15 1.21e-15 1.21e-15 0.324 1.21e-15 -
svm_3917 0.031 0.046 0.038 0.031 0.137 0.046 -
svm_168912 3.04e-04 3.04e-04 0.00e+00 0.00e+00 3.04e-04 0.00e+00 -
svm_3 9.08e-04 0.002 4.54e-04 9.08e-04 0.014 0.001 -
svm_167119 1.76e-04 0.001 0.00e+00 0.00e+00 0.00e+00 0.00e+00 -
svm_12 3.20e-17 3.20e-17 3.20e-17 3.20e-17 0.001 3.20e-17 -
svm_146212 2.18e-04 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 -
svm_168911 0.009 0.012 0.00e+00 0.00e+00 0.012 0.00e+00 -
svm_9981 0.012 0.029 0.00e+00 0.00e+00 0.204 0.00e+00 -
svm_167120 0.842 0.845 0.842 0.842 0.842 0.842 -
svm_14965 0.004 0.004 0.00e+00 0.00e+00 0.004 0.004 -
svm_146606 0.003 0.01 0.017 0.00e+00 0.00e+00 0.003 -
svm_7592 0.002 0.005 0.001 0.001 0.00e+00 0.004 -
svm_9977 1.83e-04 3.66e-04 0.00e+00 1.83e-04 0.00e+00 0.00e+00 -

27

Table 14: Final performance of each black-box optimizers (lower is better). We report the median
normalized regret across 32 repetitions for each new benchmarks collected for LogReg. We boldface
the best result per row.

optimizer RS DE BOGP BORF BOKDE HEBO

lr_10101 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.007
lr_53 0.005 0.003 0.00e+00 0.003 0.005 0.005
lr_146818 0.003 0.00e+00 0.00e+00 0.00e+00 0.003 0.007
lr_146821 0.002 0.004 0.00e+00 0.00e+00 0.004 0.00e+00
lr_9952 6.78e-04 3.39e-04 0.00e+00 0.00e+00 6.78e-04 0.00e+00
lr_146822 0.001 0.001 0.00e+00 0.00e+00 0.001 0.00e+00
lr_31 0.033 0.033 4.58e-16 4.58e-16 0.028 0.011
lr_3917 0.019 0.018 0.00e+00 0.018 0.021 0.018
lr_168912 9.47e-04 3.16e-04 0.00e+00 1.58e-04 7.89e-04 0.00e+00
lr_3 0.001 9.23e-04 0.00e+00 4.57e-17 0.001 4.57e-17
lr_167119 9.35e-04 3.94e-04 0.00e+00 0.00e+00 0.002 0.00e+00
lr_12 2.54e-17 2.54e-17 1.27e-17 2.54e-17 2.54e-17 2.54e-17
lr_146212 0.01 0.009 0.007 0.007 0.011 0.007
lr_168911 0.002 8.17e-04 0.00e+00 0.00e+00 0.007 0.00e+00
lr_9981 0.002 0.002 0.00e+00 0.00e+00 0.003 0.00e+00
lr_167120 0.002 0.003 0.00e+00 0.00e+00 0.004 0.00e+00
lr_14965 8.04e-04 1.46e-04 0.00e+00 0.00e+00 0.001 0.00e+00
lr_146606 1.42e-04 9.44e-05 0.00e+00 0.00e+00 3.30e-04 0.00e+00
lr_7592 1.52e-04 1.33e-04 0.00e+00 0.00e+00 1.90e-04 0.00e+00
lr_9977 2.83e-04 0.00e+00 0.00e+00 0.00e+00 2.83e-04 0.00e+00

Table 15: Final performance of each multi-fidelity optimizers (lower is better). We report the median
normalized regret across 32 repetitions for each new benchmarks collected for LogReg. We boldface
the best result per row. We note that there are negative regret values for some cases. For these the
optimizer did not evaluate a configuration on the highest fidelity within the given optimization budget
and the observed final function value was better than the best possible function value on the highest
budget (which we used to compute regret).

optimizer HB BOHB DEHB SMAC-HB DF Optunamd
tpe Optunahb

tpe

lr_10101 0.00e+00 0.007 0.00e+00 0.00e+00 0.094 0.00e+00 0.00e+00
lr_53 0.003 0.005 0.00e+00 0.003 0.068 0.00e+00 0.00e+00
lr_146818 0.003 0.009 0.003 0.003 0.06 0.004 0.003
lr_146821 0.002 0.009 0.00e+00 0.003 0.324 0.003 0.001
lr_9952 0.008 0.009 0.008 0.004 0.064 0.013 0.008
lr_146822 0.001 0.002 0.001 0.001 0.033 9.51e-04 9.51e-04
lr_31 4.58e-16 0.011 4.58e-16 0.011 0.131 4.58e-16 4.58e-16
lr_3917 0.018 0.021 0.00e+00 0.021 0.092 0.018 0.018
lr_168912 3.16e-04 0.001 0.00e+00 3.16e-04 0.015 0.001 4.73e-04
lr_3 4.57e-17 0.002 4.57e-17 9.23e-04 0.063 9.23e-04 4.57e-17
lr_167119 9.84e-05 0.001 0.00e+00 9.84e-05 0.034 2.95e-04 4.92e-05
lr_12 2.54e-17 6.17e-04 2.54e-17 2.54e-17 0.015 4.11e-04 2.54e-17
lr_146212 0.01 0.012 0.01 0.011 0.108 0.01 0.011
lr_168911 0.002 0.003 8.17e-04 0.002 0.062 0.003 0.002
lr_9981 0.003 0.004 0.002 0.002 0.013 0.004 0.003
lr_167120 0.002 0.004 0.002 0.002 0.516 0.003 0.002
lr_14965 0.001 0.002 2.56e-04 0.00e+00 0.034 0.00e+00 0.001
lr_146606 0.00e+00 1.89e-04 0.00e+00 9.44e-05 0.206 2.83e-04 0.00e+00
lr_7592 1.14e-04 5.88e-04 1.90e-04 1.90e-04 0.017 3.03e-04 1.52e-04
lr_9977 1.41e-04 6.72e-04 0.00e+00 2.83e-04 0.041 3.18e-04 0.00e+00

28

Table 16: Final performance of each black-box optimizers (lower is better). We report the median
normalized regret across 32 repetitions for each new benchmarks collected for XGBoost. We boldface
the best result per row.

optimizer RS DE BOGP BORF BOKDE HEBO

xgb_10101 0.013 0.013 0.00e+00 0.013 0.013 0.013
xgb_53 0.004 0.004 0.002 0.002 0.004 0.002
xgb_146818 0.00e+00 0.00e+00 0.009 0.00e+00 0.00e+00 0.005
xgb_146821 0.01 0.01 0.01 0.005 0.009 0.00e+00
xgb_9952 0.006 0.009 0.008 0.006 0.006 0.006
xgb_146822 0.013 0.015 0.013 0.013 0.013 0.00e+00
xgb_31 0.012 0.01 0.008 0.006 0.008 0.00e+00
xgb_3917 0.008 0.008 0.008 0.008 0.008 0.008
xgb_168912 0.012 0.011 0.005 0.01 0.005 0.005
xgb_3 0.004 0.00e+00 0.002 0.004 0.004 0.00e+00
xgb_167119 4.41e-04 0.002 0.001 0.00e+00 0.001 0.00e+00
xgb_12 0.02 0.02 0.02 0.02 0.02 1.31e-15
xgb_146212 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
xgb_168911 0.01 0.01 0.009 0.01 0.008 0.008
xgb_9981 0.004 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
xgb_167120 0.001 0.001 0.001 0.001 0.001 8.31e-04
xgb_14965 0.002 0.003 0.002 4.64e-04 0.002 4.64e-04
xgb_146606 0.002 0.002 0.002 0.001 0.002 2.35e-04
xgb_7592 0.002 0.001 0.001 0.00e+00 0.001 0.00e+00
xgb_9977 0.006 0.004 0.003 0.004 0.002 0.002

Table 17: Final performance of each multi-fidelity optimizers (lower is better). We report the median
normalized regret across 32 repetitions for each new benchmarks collected for XGBoost. We boldface
the best result per row. We note that there are negative regret values for some cases. For these the
optimizer did not evaluate a configuration on the highest fidelity within the given optimization budget
and the observed final function value was better than the best possible function value on the highest
budget (which we used to compute regret).

optimizer HB BOHB DEHB SMAC-HB DF Optunamd
tpe Optunahb

tpe

xgb_10101 0.013 0.013 0.013 0.013 0.597 0.013 0.013
xgb_53 1.47e-16 1.47e-16 1.47e-16 1.47e-16 0.053 0.008 0.004
xgb_146818 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.065 0.00e+00 0.00e+00
xgb_146821 0.01 0.01 0.01 0.006 0.027 0.012 0.01
xgb_9952 0.006 0.011 0.008 0.008 0.218 0.008 0.008
xgb_146822 0.009 0.009 0.013 0.00e+00 0.06 0.013 0.004
xgb_31 0.012 0.012 0.006 0.008 0.07 0.004 0.008
xgb_3917 0.012 0.016 0.012 0.012 0.055 0.016 0.01
xgb_168912 0.005 0.012 0.005 0.005 0.052 0.012 0.011
xgb_3 0.004 0.004 0.004 0.004 0.016 0.004 0.004
xgb_167119 4.41e-04 0.002 4.41e-04 0.00e+00 0.51 0.001 0.001
xgb_12 1.31e-15 0.02 0.01 0.02 0.137 0.02 6.57e-16
xgb_146212 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.019 0.00e+00 0.00e+00
xgb_168911 0.007 0.01 0.008 0.00e+00 0.054 0.01 0.00e+00
xgb_9981 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.042 0.00e+00 0.00e+00
xgb_167120 0.001 0.001 0.001 0.001 0.011 0.001 0.001
xgb_14965 0.003 0.005 0.004 0.002 0.071 0.004 0.003
xgb_146606 0.002 0.002 0.002 2.35e-04 0.081 0.002 0.001
xgb_7592 0.002 0.002 0.003 0.001 0.352 0.003 0.002
xgb_9977 0.006 0.006 0.005 0.005 0.029 0.007 0.005

29

Table 18: Final performance of each black-box optimizers (lower is better). We report the median
normalized regret across 32 repetitions for each new benchmarks collected for RandomForest. We
boldface the best result per row.

optimizer RS DE BOGP BORF BOKDE HEBO

rf_10101 0.102 0.092 0.049 0.00e+00 0.068 0.00e+00
rf_53 0.013 0.008 0.003 0.00e+00 0.004 0.00e+00
rf_146818 0.033 0.019 0.008 0.00e+00 0.015 0.00e+00
rf_146821 0.032 0.02 0.001 0.00e+00 0.007 0.00e+00
rf_9952 0.009 0.009 0.003 0.00e+00 0.008 0.00e+00
rf_146822 0.005 0.006 0.001 0.00e+00 0.003 0.00e+00
rf_31 0.074 0.066 0.053 0.007 0.079 0.01
rf_3917 0.066 0.055 0.024 4.52e-16 0.038 4.52e-16
rf_168912 0.053 0.08 0.012 0.004 0.014 0.00e+00
rf_3 0.006 0.009 5.38e-04 0.00e+00 0.002 0.00e+00
rf_167119 0.061 0.034 0.003 0.00e+00 0.006 0.00e+00
rf_12 0.002 0.001 5.83e-04 3.91e-17 0.002 0.00e+00
rf_146212 1.09e-04 5.43e-05 1.09e-04 0.00e+00 1.09e-04 0.00e+00
rf_168911 0.038 0.044 0.005 0.002 0.013 0.002
rf_9981 0.012 0.019 0.003 0.00e+00 0.02 0.00e+00
rf_167120 0.003 0.002 0.002 0.002 0.003 0.001
rf_14965 0.091 0.084 0.02 9.08e-04 0.008 0.00e+00
rf_146606 0.008 0.008 0.001 0.00e+00 0.004 0.00e+00
rf_7592 0.112 0.106 0.026 0.00e+00 0.095 0.00e+00
rf_9977 0.005 0.004 0.001 1.43e-04 0.001 0.00e+00

Table 19: Final performance of each multi-fidelity optimizers (lower is better). We report the median
normalized regret across 32 repetitions for each new benchmarks collected for RandomForest. We
boldface the best result per row.

optimizer HB BOHB DEHB SMAC-HB DF Optunamd
tpe Optunahb

tpe

rf_10101 0.049 0.00e+00 0.00e+00 0.00e+00 0.689 0.00e+00 0.00e+00
rf_53 0.007 0.003 0.003 0.002 0.295 0.002 0.002
rf_146818 0.015 0.015 0.011 0.00e+00 0.377 0.002 0.006
rf_146821 0.013 0.001 0.001 0.00e+00 0.695 0.00e+00 0.001
rf_9952 0.002 0.004 4.83e-04 0.00e+00 0.371 4.83e-04 4.83e-04
rf_146822 0.002 0.002 0.002 0.00e+00 0.125 5.32e-04 0.001
rf_31 0.028 0.063 0.056 0.01 0.914 0.01 0.023
rf_3917 0.029 0.019 0.012 4.52e-16 0.794 0.01 0.007
rf_168912 0.016 0.004 0.012 0.00e+00 0.793 0.011 0.01
rf_3 0.002 0.001 5.38e-04 0.00e+00 0.128 0.00e+00 2.69e-04
rf_167119 0.009 0.005 0.005 0.00e+00 0.515 9.31e-04 8.62e-04
rf_12 8.75e-04 5.83e-04 5.83e-04 0.00e+00 0.038 3.91e-17 3.91e-17
rf_146212 5.43e-05 5.43e-05 0.00e+00 0.00e+00 0.009 2.71e-05 5.43e-05
rf_168911 0.016 0.016 0.016 0.002 0.749 0.004 0.005
rf_9981 0.004 0.006 0.004 0.00e+00 0.355 7.42e-04 7.42e-04
rf_167120 0.002 0.003 0.002 0.002 0.873 0.002 0.002
rf_14965 0.027 0.008 0.037 0.002 0.886 0.031 0.008
rf_146606 0.004 0.004 0.002 1.86e-05 0.601 5.86e-04 0.001
rf_7592 0.031 0.003 0.126 0.00e+00 0.782 0.032 0.012
rf_9977 0.002 0.001 0.003 1.43e-04 0.191 4.29e-04 4.29e-04

30

Table 20: Final performance of each black-box optimizers (lower is better). We report the median
normalized regret across 32 repetitions for each new benchmarks collected for MLP. We boldface the
best result per row.

optimizer RS DE BOGP BORF BOKDE HEBO

nn_10101 0.047 0.034 0.03 0.035 0.03 0.042
nn_53 0.005 0.004 0.004 0.003 0.004 0.003
nn_146818 0.011 0.009 0.008 0.006 0.009 0.009
nn_146821 8.78e-04 5.85e-04 5.85e-04 2.93e-04 8.78e-04 0.001
nn_9952 0.012 0.013 0.01 0.009 0.01 0.008
nn_146822 0.005 0.005 0.003 0.004 0.003 0.004
nn_31 0.014 0.012 0.009 0.009 0.012 0.01
nn_3917 0.009 0.01 0.008 0.01 0.01 0.01

Table 21: Final performance of each multi-fidelity optimizers (lower is better). We report the median
normalized regret across 32 repetitions for each new benchmarks collected for MLP. We boldface the
best result per row.

optimizer HB BOHB DEHB SMAC-HB DF Optunamd
tpe Optunahb

tpe

nn_10101 0.042 0.049 0.04 0.045 0.132 0.04 0.042
nn_53 0.006 0.008 0.005 0.006 0.196 0.006 0.006
nn_146818 0.013 0.016 0.011 0.011 0.111 0.015 0.011
nn_146821 5.85e-04 0.001 0.001 0.001 0.046 0.001 0.001
nn_9952 0.012 0.01 0.009 0.01 0.278 0.01 0.009
nn_146822 0.005 0.007 0.004 0.005 0.082 0.004 0.005
nn_31 0.013 0.013 0.009 0.013 0.215 0.014 0.013
nn_3917 0.011 0.012 0.011 0.013 0.153 0.01 0.012

Table 22: P-value of a sign test for the hypothesis that advanced methods outperform the baseline
RS for black-box optimization and HB for multi-fidelity optimization for the new benchmarks. We
underline p-values that are below α = 0.05 and also boldface p-values that are below α = 0.05
after multiple comparison correction (dividing α by the number of comparisons, i.e. 5 and 4;
boldface/underlined implies that the advanced method is better). We also give the wins/ties/losses of
RS and HB against the challengers.

DE BOGP BORF HEBO BOKDE

p-value against RS 0.00091 0.00000 0.00000 0.00000 0.16870
wins/ties/losses against RS 45/28/15 69/16/3 70/17/1 68/8/12 33/32/23

BOHB DEHB SMAC-HB DF
p-value against HB 0.99995 0.00251 0.00058 1.00000
wins/ties/losses against HB 14/25/49 41/33/14 44/31/13 5/3/80

31

Table 23: P-values of a sign test for the hypothesis that multi-fidelity outperform their black-box
counterparts for the new benchmarks. We boldface p-values that are below α = 0.05 (boldface
implies that the multi-fidelity method is better).

Budget RS vs HB DE vs DEHB BOKDE vs BOHB BORF vs SMAC-HB

100%
p-values 0.00003 0.00091 0.66586 0.99992

w/t/l 47/32/9 49/20/19 30/25/33 7/40/41

10%
p-values 0.00011 0.00058 0.37466 0.00042

w/t/l 53/17/18 55/9/24 42/8/38 54/12/22

1%
p-values 0.00000 0.00000 0.00000 0.00000

w/t/l 76/0/12 76/2/10 78/1/9 78/2/8

Cartpole BNN Net NBHPO

NB101 NB1Shot1 NB201 SVM

LogReg RandomForest XGBoost MLP

Figure 5: Median rank over time. We report the median rank of the performance across all benchmarks
of a benchmark family (see Table 1) for all optimizers.

32

Cartpole BNN Net NBHPO

NB101 NB1Shot1 NB201 SVM

LogReg RandomForest XGBoost MLP

Figure 6: Median rank over time. We report the median rank of the performance across all benchmarks
of a benchmark family (see Table 1) for black-box optimizers.

Cartpole BNN Net NBHPO

NB101 NB1Shot1 NB201 SVM

LogReg RandomForest XGBoost MLP

Figure 7: Median rank over time. We report the median rank of the performance across all benchmarks
of a benchmark family (see Table 1) for multi-fidelity optimizers.

33

Cartpole BNNProtein BNNY ear

NetAdult NetHiggs NetLetter NetMNIST

NetOptDig NetPoker

NB101Cf10A NB101Cf10B NB101Cf10C

NBHPONaval NBHPOPark NBHPOProt NBHPOSlice

NB201Cf10V NB201Cf100 NB201INet

NB1Shot11 NB1Shot12 NB1Shot13

Figure 8: Median performance-over-time for all optimizers.

34

Cartpole BNNProtein BNNY ear

NetAdult NetHiggs NetLetter NetMNIST

NetOptDig NetPoker

NB101Cf10A NB101Cf10B NB101Cf10C

NBHPONaval NBHPOPark NBHPOProt NBHPOSlice

NB201Cf10V NB201Cf100 NB201INet

NB1Shot11 NB1Shot12 NB1Shot13

Figure 9: Median performance-over-time for black-box optimizers.

35

Cartpole BNNProtein BNNY ear

NetAdult NetHiggs NetLetter NetMNIST

NetOptDig NetPoker

NB101Cf10A NB101Cf10B NB101Cf10C

NBHPONaval NBHPOPark NBHPOProt NBHPOSlice

NB201Cf10V NB201Cf100 NB201INet

NB1Shot11 NB1Shot12 NB1Shot13

Figure 10: Median performance-over-time for multi-fidelity optimizers.

36

	Maintenance
	Benchmarking efforts
	Benchmarking competitions
	More Details on Considered Benchmarks
	Conflicting Dependencies.
	Existing Community Benchmarks
	New Benchmarks

	Details on Hardware Used for Experiments
	Details on Runtime
	More Details on Considered Optimizers
	Baselines
	Black-box Optimizers
	Multi-fidelity Optimizers

	More Results

