
A Proof sketch of Proposition 1.1

In this appendix, we sketch the proof of Proposition 1.1.
Proposition 1.1. The Gaussian+sawtooth model, with “teeth” of width w and slope �, has Fisher
information �2 � 1 but no location estimator can have error o(1/

p
n) with constant probability

over n samples, unless n > 0.01/w2.

This holds for arbitrarily large � and small w. By contrast, the asymptotic theory predicts error
O(1/(�

p
n)), which only holds for n & 1/w2.

Proof sketch. Let f denote the Gaussian with sawtooth model, and f
(") denote the model but shifted

by a distance of d"/wew. That is, the largest number of sawteeth that fits into a distance of ".

Then, the KL divergence satisfies DKL(f k f ("))  O("2). By Pinsker’s inequality, this implies that
we need ⌦(1/"2) samples to distinguish f and f

(") with constant probability. For " > w, the shift
between f and f

(") is at least "/2.

Concluding, if n < 0.01/w2, then we set " = 1/(10
p
n) and there is no algorithm that can distinguish

f and f
(1/(10

p
n)) using n samples with constant probability, meaning that no location estimator can

achieve error 1/(20
p
n) with constant probability. The reasoning generalizes to the high probability

regime as well.

B Proofs from Section 3

We first prove a utility lemma, Lemma B.1, which we use throughout the rest of the paper.
Lemma B.1. Let f be an arbitrary distribution and let fr be the r-smoothed version of f . That

is, fr = Ey f


1p
2⇡r2

e
� (x�y)2

2r2

�
. Let sr be the score function of fr. Let (X,Y, Zr) be the joint

distribution such that Y ⇠ f , Zr ⇠ N (0, r2) are independent, and X = Y + Zr ⇠ fr. We have, for
every " > 0,

fr(x+ ")

fr(x)
= E

Zr|x


e

2"Zr�"
2

2r2

�
and in particular sr(x) = E

Zr|x


Zr

r2

�

Proof. For simplicity of exposition, we only show the case where f has a density. The general case
can be proven by, for example, a limit argument. Let wr be the pdf of N (0, r2). First, we show that
for any x, " we have

fr(x+ ")

fr(x)
= E

Zr|x


wr(Zr + ")

wr(Zr)

�
(2)

Denote the density of (x, z, bx) by p(·). Note that

p(z | x) = p(x, z)

p(x)
=

f(x� z)wr(z)

fr(x)

and hence

fr(x+ ") =

Z 1

�1
wr(z)f(x+ "� z) dz =

Z 1

�1
wr(z + ")f(x� z) dz

=

Z 1

�1
p(z | x)fr(x)

wr(z + ")

wr(z)
dz

= fr(x) E
Z|x


wr(Zr + ")

wr(Zr)

�

proving (2).

Since wr(z) =
1p
2⇡r2

e
� z

2

2r2 , this gives

fr(x+ ")

fr(x)
= E

Z|x


e

2"Zr�"
2

2r2

�
.
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Taking the derivative with respect to " and evaluating at " = 0,

f
0
r
(x)

fr(x)
= E

Z|x

Zr

r2
.

We now prove Lemmas 3.1 and 3.2, which upper and lower bound the r-smoothed Fisher information
Ir respectively.
Lemma 3.1. Let Ir be the Fisher information of an r-smoothed distribution fr. Then, Ir  1/r2.

Proof. Using Lemma B.1 and Jensen’s inequality,

Ir = E
x
[s2

r
(x)] = E

x
[( E
Zr|x

Zr/r
2)2]  E

x
[ E
Zr|x

Z
2

r
/r

4] = 1/r2

The lemma can alternatively be proven using Stam’s inequality for Fisher information, which states
that for independent real-valued random variables X and Y , we have 1/I(X + Y ) � 1/I(X) +
1/I(Y ).

Lemma 3.2. Let Ir be the Fisher information for fr, the r-smoothed version of distribution f . Let
IQR be the interquartile range of f . Then, Ir & 1/(IQR + r)2. Here, the hidden constant is a
universal one independent of the distribution f and independent of r.

Proof. First, observe that fr is a smooth distribution in the sense that it is differentiable, and
furthermore, its derivative is continuous. Thus, letting R be the 30th-70th percentile range of fr. Then,
by a known result [SV11] (Section 3.1), Ir & 1/R2.

It then suffices to show that R  IQR + O(r). Let q` be the 25th percentile of f . Drawing a
sample from fr is equivalent to independently drawing x from f and zr from N (0, r2) and returning
x+ zr. With probability at least 0.75, we have x � q`. Also, with probability at least 0.95, we have
zr � �⇥(r). Therefore, by a union bound, we have x+ zr � q` �⇥(r) except with probability at
most 0.3, meaning that the 30th percentile of fr is at least q` �⇥(r). Combined with the symmetric
argument for the 70th percentile of fr, this shows that R  IQR +O(r).

Next, we prove another utility lemma, which states that the derivative of the score function cannot be
too small for an r-smoothed distribution. Phrased differently, the score function of an r-smoothed
distribution cannot decrease fast.
Lemma B.2. s

0
r
(x) � �1/r2 for all x, where sr is the score function of fr, the r-smoothed version

of distribution f .

Proof. By taking the derivative of Lemma B.1 in ",

f
0
r
(x+ ")

fr(x)
= E

Z|x


e

2"Z�"
2

2r2
Zr � "

r2

�

Hence

sr(x+ ") =
f
0
r
(x+ ")

fr(x+ ")
=

f
0
r
(x+ ")

fr(x)

fr(x)

fr(x+ ")
=

EZr|x


e

2"Zr�"
2

2r2
Zr�"
r2

�

EZr|x

h
e

2"Zr�"2

2r2

i .

For " > 0, since e
2"Zr�"

2

2r2 and Zr�"
r2

are monotonically increasing in Zr, and the former is nonnega-
tive, they are positively correlated:

E
Zr|x


e

2"Zr�"
2

2r2
Zr � "

r2

�
� E

Zr|x


e

2"Zr�"
2

2r2

�
E

Zr|x


Zr � "

r2

�

Hence
sr(x+ ") � E

Zr|x


Zr � "

r2

�
= sr(x)�

"

r2
.

or (taking "! 0), s0
r
(x) � � 1

r2
.
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Lastly, we prove the concentration of empirical score function. The way we do so is to show
(Lemma B.6) that the k

th absolute moment of the score function is upper bounded according to the
standard moment bounds for sub-Gamma distributions. As a corollary (Corollary 3.3), we get that
the scores have sub-Gamma concentration.

As a utility lemma, we bound the moments of the score function when the score function is aligned
with the distribution, instead of being misaligned by some " distance.
Lemma B.3. Let sr be the score function of an r-smoothed distribution fr with Fisher information
Ir. Then, for k � 3,

E
x
[|sr(x)|k]  (1.6/r)k�2kk/2Ir

Proof. For any x, ", by Lemma B.1 and Jensen’s inequality,

fr(x+ ") � fr(x)e
"sr(x)� "

2

2r2 .

Setting " = ±r with sign matching sr(x), we have that

fr(x+ rsign(sr(x))) � fr(x)e
r|sr(x)|/

p
e.

We also have, from Lemma B.2, that

sr(x� r)  sr(x) + 1/r

and
sr(x+ r) � sr(x)� 1/r.

In other words,
|sr(x+ rsign(sr(x)))|� |sr(x)|�1/r.

Therefore, for any k � 2, and |sr(x)|> ↵/r for ↵ := 2 + 1.2
p
k,

fr(x+ rsign(sr(x)))|sr(x+ rsign(sr(x)))|k �
1p
e
fr(x)e

r|sr(x)|(|sr(x)|�1/r)k

= fr(x)|sr(x)|k·
✓

1p
e
e
r|sr(x)|(1� 1

r|sr(x)|
)k
◆

� fr(x)|sr(x)|k·
✓

1p
e
e
↵�1.4 k

↵

◆

� fr(x)|sr(x)|k·4.

Therefore

fr(x)|sr(x)|k 
1

4

�
fr(x� r)|sr(x� r)|k+fr(x+ r)|sr(x+ r)|k

�
(3)

whenever k � 2 and |sr(x)|� ↵/r. Integrating this,

E[sk
r
(x)] =

Z 1

�1
fr(x)|sr(x)|k dx = 2

Z 1

�1
fr(x)|sr(x)|k�

1

4
fr(x� r)|sr(x� r)|k�1

4
fr(x+ r)|sr(x+ r)|k dx

 2

Z 1

�1
fr(x)|sr(x)|k1|sr(x)|<↵/r dx

 2

Z 1

�1
fr(x)|sr(x)|2(↵/r)k�21|sr(x)|<↵/r dx

 2(↵/r)k�2 E
x
[s2

r
(x)] = 2(↵/r)k�2Ir

Finally, we observe for any k � 2 that

2(1.2
p
k + 2)k�2  k

k/2 · 1.6k�2

giving the lemma.
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The proof of Lemma B.6 has the same logical structure as the proof of Lemma B.3, but has further
subtleties. The following two lemmas generalize the first step in the proof of Lemma B.3.
Lemma B.4. Let sr be the score function of an r-smoothed distribution fr with Fisher information
Ir. For any x, k � 3 and 0  "  r/2, if sr(x+ ") � max(2

p
k + 2, 9.5)/r, then

fr(x)|sr(x+ ")|k 1

5
max

�
fr(x� ")|sr(x� ")|k, fr(x+ "+ r)|sr(x+ "+ r)|k

�

Proof. Let ↵ := fr(x)

fr(x+")
. By Lemma B.1, we have

↵ = E
Zr|x+"


e

�2"Zr�"
2

2r2

�
(4)

We will consider two cases.

When log↵  3

4
rsr(x+ ")� 2. First, by Lemma B.1 and Jensen’s inequality, we have

fr(x+ "+ r)

fr(x+ ")
� e

rsr(x+")�1/2

We also have, by Lemma B.2,

sr(x+ "+ r) � sr(x+ ")� 1/r

So,

fr(x+ "+ r)|sr(x+ "+ r)|k � fr(x+ ")|sr(x+ ")|kersr(x)�1/2
✓
1� 1

rsr(x+ ")

◆k

� fr(x+ ")|sr(x+ ")|kersr(x+")� k

rsr(x+")�1�1/2

Since sr(x+ ") � (2
p
k + 2)/r,

fr(x+ "+ r)|sr(x+ "+ r)|k� fr(x+ ")|sr(x+ ")|ke 3
4 rsr(x+")

So, since

↵ =
fr(x)

fr(x+ ")
 e

3
4 rsr(x+")�2

we have

f(x)|sr(x+ ")|k= ↵fr(x+ ")|sr(x+ ")|k 1

5
f(x+ "+ r)|sr(x+ "+ r)|k

When log↵ >
3

4
rsr(x+ ")� 2 Evaluating (4) at x� " gives

fr(x� ")

fr(x)
= E

Zr | x


e

�2"Zr�"
2

2r2

�

Taking derivative with respect to ", we have

f
0
r
(x� ")

fr(x)
= E

Zr|x


(Zr + ")

r2
e

�2"Zr�"
2

2r2

�

and so by evaluating at x+ " (to “shift back")

f
0
r
(x)

fr(x+ ")
= E

Zr|x+"


(Zr + ")

r2
e

�2"Zr�"
2

2r2

�

Define y = e
�2"Zr�2"2

2r2 , so that EZr|x+"[y] = ↵e
"
2

2r2 , and

(Zr + ")

r2
e

�2"Zr�"
2

2r2 = �e
"
2

2r2

"
y log y
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is concave, so by Jensen’s inequality
f
0(x)

f(x+ ")
 �e

"
2
/(2r

2
)

"
(e�

"
2

2r2 ↵) log(e�
"
2

2r2 ↵) = �↵ log↵

"
+

↵"

2r2

So,

sr(x) =
f
0
r
(x)

fr(x)
 � log↵

"
+

"

2r2

Finally, we move to consider the point x� ". By Lemma B.2, we have

sr(x� ")  sr(x) + "/r
2  � log↵

"
+

3"

2r2

By Lemma B.1,
f(x� ")

f(x+ ")
= E

Zr|x+"


e
� 4"Zr�4"2

2r2

�
= E

Zr|x+"

[y2] � E
Zr|x+"

[y]2 = ↵
2
e
� "

2

r2

Since log↵ � 3

4
sr(x+ ")� 2,

�sr(x� ") �
3

4
rsr(x+ ")� 2

"
� 3"

2r2
� 3

2
sr(x+ ")� 4.75

r
� sr(x)

where the second inequality comes from the fact that 3

4
rsr(x + ") � 2 > 0 and so the function is

decreasing in ", with minimum evaluated at " = r/2.

Thus, we have
fr(x� ")|sr(x� ")|k� ↵e

�"2/r2
fr(x)|sr(x+ ")|k

Since our assumptions give ↵e
�"2/r2 � e

5.125
e
�1/4 � 5, we get the result.

Lemma B.5. Let sr be the score function of an r-smoothed distribution fr with Fisher information
Ir.

For any x, k � 3 and �r/2  "  0, if sr(x+ ") � ↵/r for ↵ = 2 + 1.2
p
k, then we have

fr(x)|sr(x+ ")|k 1

4

�
fr(x� r)|sr(x+ "� r)|k+fr(x+ r)|sr(x+ "+ r)|k

�

As an immediate corollary, the statement is true also when " 2 [0, r/2) and sr(x)  �↵/r.

Proof. For any x,, by Lemma B.1 and Jensen’s inequality,

fr(x+ ) � fr(x)e
sr(x)� 

2

2r2 .

So, setting  = r, we have
fr(x+ r) � fr(x)e

rsr(x)/
p
e

By Lemma B.2, we have that
sr(x+ "+ r) � sr(x+ ")� 1/r

Since our right hand side is positive by assumption, this is equivalently stated as
|sr(x+ "+ r))|� |sr(x+ ")|�1/r

When " < 0, we have, by Lemma B.2, and since |"| r, sr(x) � sr(x+ ")� 1/r. So,

fr(x+ r)|sr(x+ "+ r)|k � 1p
e
fr(x)e

rsr(x)(|sr(x+ ")|�1/r)k

� 1p
e
fr(x)e

r(sr(x+")�1/r)(|sr(x+ ")|�1/r)k

� fr(x)|sr(x+ ")|k
 

1p
e
e
r|sr(x+")|�1

✓
1� 1

r|sr(x+ ")|

◆k
!

� fr(x)|sr(x+ ")|k·
⇣
e
�3/2

e
↵�1.4k/↵

⌘

� fr(x)|sr(x+ ")|k·4 since k � 3
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We are now ready to prove Lemma B.6, which states that the distribution of the score function
sr(x+ ") where x ⇠ fr is a sub-Gamma distribution. Corollary 3.3 then states that the average of
many score function samples is well-concentrated, following sub-Gamma concentration.
Lemma B.6. Let sr be the score function of an r-smoothed distribution fr with Fisher information
Ir. Then, for k � 3 and |"| r/2,

E
x
[|sr(x+ ")|k]  k!

2
(15/r)k�2 max(E

x
[s2

r
(x+ ")], Ir)

Equivalently, sr(x+ ") is a sub-Gamma random variable.

sr(x+ ") 2 �(max(E
x
[s2

r
(x+ ")], Ir), 15/r).

Proof. Without loss of generality we only show the " � 0 case.

Using Lemma B.4 and Lemma B.3, we have
Z 1

�1
fr(x� ")|sr(x)|k sr(x)>max(2

p
k+2,9.5)/r

dx

 1

5

Z 1

�1
fr(x� 2")|sr(x� 2")|k+fr(x+ r)|sr(x+ r)|k dx

=
2

5
E[|sr(x)|k]

 2

5
(1.6/r)k�2kk/2Ir

We can start bounding the k
th moment quantity in the lemma:

E[|sr(x+ ")|k]

=

Z 1

�1
fr(x� ")|sr(x)|k dx

= 2

Z 1

�1
fr(x� ")|sr(x)|k�

1

4
fr(x� "� r)|sr(x� r)|k�1

4
fr(x� "+ r)|sr(x+ r)|k dx

 2

Z 1

�1
fr(x� ")|sr(x)|k sr(x)��max(2

p
k+2,9.5)/r

dx

where the last inequality follows from (a slight weakening of) Lemma B.5. Now, by the previous
claim, we get that

E[|sr(x+ ")|k]

 2

Z 1

�1
fr(x� ")|sr(x)|k |sr(x)|max(2

p
k+2,9.5)/r

dx+
4

5
(1.6/r)k�2kk/2Ir

 2

Z 1

�1
fr(x� ")|sr(x)|2(max(2

p
k + 2, 9.5)/r)k�2 |sr|max(2

p
k+2,9.5)/r

dx+
4

5
(1.6/r)k�2kk/2Ir

 2(max(2
p
k + 2, 9.5)/r)k�2 E

x
[|sr(x+ ")|2] + 4

5
(1.6/r)k�2kk/2Ir

 2kk/2(2.5/r)k�2 E
x
[|sr(x+ ")|2] + 4

5
(1.6/r)k�2kk/2Ir

 3kk/2(2.5/r)k�2 max(E
x
[|sr(x+ ")|2], Ir)

 k!

2
(15/r)k�2 max(E

x
[|sr(x+ ")|2], Ir)

Corollary 3.3. Let f be an arbitrary distribution and let fr be the r-smoothed version of f . That is,

fr(x) = Ey f [
1p
2⇡r2

e
� (x�y)2

2r2 ]. Consider the parametric family of distributions f�
r
(x) = fr(x��).
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Suppose we take n i.i.d. samples y1, . . . , yn  f
�
r

, and consider the empirical score function ŝ

mapping a candidate parameter �̂ to 1

n

P
i
sr(yi � �̂), where sr is the score function of fr.

Then, for any |"| r/2,

Pr
yi

i.i.d.⇠ f�
r

0

@|ŝ(�+ ")� E
x fr

[s(x� ")]|�

s
2max(Ex[s2r(x� ")], Ir) log 2

�

n
+

15 log 2

�

nr

1

A  �

Proof. Since ŝ(� + ") = 1

n

P
n

i=1
sr(yi � � � ") = 1

n

P
n

i=1
sr(xi � "), we know that by

Lemma B.6 and the standard algebra of sub-Gamma distributions that ŝ(�+") 2 �( 1
n
max(Ex[s2r(x+

")], Ir), 15/r). The corollary then follows from the standard Bernstein inequality for sub-Gamma
distributions [BLM13].

C Proofs omitted in Section 4

We first give the proof of Theorem 1.3, assuming Theorem 4.1.

Proof of Theorem 1.3. It suffices to show that conditions 2) and 3) in the corollary statement implies
that each of the following terms from Theorem 4.1 is 1 +O(1/�):

• 1 + 1/log 1

�
: Note that Ir  1

r2
by Lemma 3.1 and so condition 3) implies that 1/log 1

�


(log log 1

�
)/log 1

�
 1

�

• 1 + ⇢r:
p
1 +O(1/�) = 1 + O(1/�). It suffices to check that

0

@
2 log

4 log 1
�

r2Ir(1� �

�
)�

n

1

A

1
4

=

O(1/
p
�). The fact that log log

1
�

�
= O(log 1

�
) together with condition 3) imply that the

quantity is bounded by O

⇣
(1+O(�)) log

1
�

n

⌘ 1
4

, which in turn is bounded by O(1/
p
�) by

condition 2).

• 1/(1� �/�)  1 +O(1/�) since � is a constant

•

s

1 +
log

4 log 1
�

r2Ir(1� �

�
)

log
1
�

: Note that
log

4 log 1
�

1� �

�

log
1
�

= O(
log log

1
�

log
1
�

) = O(1/�) as before. Also, condi-

tion 3) implies that (log 1

r2Ir

)/(log 1

�
)  (log 1

r2Ir

)(log log 1

�
)/(log 1

�
)  1/�.

The rest of this appendix is on proving Lemma 4.2, which via reparameterization gives Theorem 4.1.

We first show a utility lemma (Lemma C.1), before using it to prove Lemmas C.2 and C.3, which
bound the expectation and variance of the empirical score function. After that, we prove Lemma 4.2.
Lemma C.1. Let wr be a Gaussian with standard deviation r, f be an arbitrary probability distribu-
tion, and fr be the r-smoothed version of f . Define

�"(x) :=
fr(x+ ")� fr(x)� "f

0
r
(x)

fr(x)
.

Then for any |"| r/2,

E
x⇠fr

⇥
�"(x)

2
⇤
. "

4

r4
.
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Proof. By Lemma B.1, we have

�"(x) =
fr(x+ ")� fr(x)� "f

0
r
(x)

fr(x)
= E

Zr|x
(e

2"Zr�"
2

2r2 � 1� "Zr

r2
).

Define
↵"(z) := e

2"z�"
2

2r2 � 1� "z

r2
.

We want to bound

E
X

⇥
�"(x)

2
⇤

= E
X


E

Zr|X
[↵"(Zr)]

2

�

 E
X,Zr

h
(↵"(Zr))

2

i

= E
Zr⇠N(0,r2)

(↵"(Zr))
2
. (5)

Finally, we bound this term (5).

When |"z| r
2, we have by a Taylor expansion that

e
2"z�"

2

2r2 = 1 +
"z

r2
� "

2

2r2
+O

 ✓
2"z � "

2

2r2

◆2
!

and so

|↵"(z)| .
"
2

r2
+
⇣
"z

r2

⌘2

This implies that (↵"(z))2 . "
4
/r

4 + "
4
z
4
/r

8, meaning that

E
Zr⇠N(0,r2)

�
↵"(Zr)

2 · |"Zr|r2
�
. E

Zr⇠N(0,r2)

✓✓
"
4

r4
+

"
4
z
4

r8

◆
· |"Zr|r2

◆

. "
4

r4
+ E

Zr⇠N(0,r2)

✓
"
4
z
4

r8

◆

. "
4

r4
. (6)

On the other hand, in the case where |"z|� r
2, we have the following inequality:

|↵"(z)| e
| "z
r2

|

so

E
Zr⇠N(0,r2)

�
↵"(Zr)

2 · |"Zr|�r2
�
 2

Z 1

|r2/"|

1p
2⇡r2

e
2|"z|
r2 e

� z
2

2r2 dz

= 2e2"
2
/r

2
Z 1

|r2/"|

1p
2⇡r2

e
� (z�2|"|)2
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Which combines with (5) and (6) to give the result.

We are now ready to prove Lemma C.2, which bounds the expectation of the empirical score function.
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Lemma C.2. Suppose fr is an r-smoothed distribution with Fisher information Ir. Then, for any
|"| r/2, the expected score Ex⇠fr [sr(x+ ")] satisfies
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as desired.

Lemma C.3. Suppose fr is an r-smoothed distribution with Fisher information Ir. For any |"| r/2,
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so that we need to bound
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It remains to bound the second term on the right hand side. Observe that,
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where the first inequality is by Cauchy-Schwarz, second inequality is by two applications of Jensen’s
inequality, and the last inequality is by properties of the Gaussian with standard deviation r.
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Thus, we have shown that, whenever ↵ & 1, we have
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With the above lemmas, we are now ready to prove Lemma 4.2, which we also restate here for the
reader’s convenience.

Lemma 4.2. Suppose we have a known model fr that is the result of r-smoothing with Fisher
information Ir, and a given parameter "max. Let � and ⌘ be the hidden multiplicative constants in
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Proof. Without loss of generality, we only show the � � " case, and the � + " case follows by
doubling the failure probability.

First, we show that, under the lemma assumption that r2
p
Ir � �"max, Lemma C.3 implies that the

second moment of the score at ��", namely Ex⇠fr [s
2

r
(x+")], is upper bounded by (1+O(1/�))Ir.

To check the precondition of Lemma C.3, note that r2
p
Ir � �"max � �" is equivalent to r/" �

�/
p
r2Ir, which implies that

r

"
� �p

r2Ir

=
�p
e

r
e

r2Ir

� �p
e

r
log

e

r2Ir

satisfying the precondition of Lemma C.3.
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Then, recalling the notation ⌘ for the explicit constant in Lemma C.3, the lemma implies that
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Next, we show that with high probability, ŝ(�� ") is upper bounded (by a quantity that we eventually
show is negative, as desired). To do so, we use the concentration bound in Corollary 3.3, combined
with the bound of Lemma C.2 on the expectation, as well the second moment bound for Ex[s2r(x+")]
we just derived. Together, they imply that for all for all 0 < " < min(|r|, "max), with probability at
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ŝ(�� ") 
✓
�1 + �

�

◆
Ir"+ (1 + ⇢̃)

s
2 log 1

�

n
Ir

By Lemma B.2, we also have that for any x

ŝ
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then, because ŝ
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An extra factor of 2 in the failure probability in the theorem statement accounts for the symmetric
case of ŝ(�+ ") > 0.

D Proof of Theorem 1.5 in Section 6

The goal of this appendix is to prove Theorem 1.5, which we restate here for the reader’s convenience.
Theorem 1.5. Suppose fr is an r-smoothed distribution with Fisher information Ir. Given failure
probability � and sample size n, no algorithm can distinguish fr and f

2"
r

with probability 1 � �,

where " = (1 � o(1))
q
2 log 1

�
/(nIr). Here, the o(1) term tends to 0 as � ! 0 and log 1

�
/n ! 0,

for a fixed r
2Ir.

We use the standard proof technique of reducing distinguishing two “close" distributions to estimation.
In particular, we show that it is statistically impossible to distinguish between fr and f

2"
r

with
probability 1� � using n samples. In order to show such an indistinguishability result, we need the
following standard fact (essentially the Neyman-Pearson lemma):
Fact D.1. Consider a game, where an adversary picks arbitrarily either distribution p or distribution
q, and we want an algorithm which, on input n independent samples from the chosen distribution,
decide whether the samples came from p or q, succeeding with probability at least 1� �. Then, there
is no algorithm A such that:

P(A returns p | adversary picked p)� P(A returns p | adversary picked q) > dTV(p
⌦n

, q
⌦n)

where p
⌦n denotes the n-fold product distribution of p. In particular, this implies that there is no

algorithm A such that both of the following hold:

• P(A returns p | adversary picked p) > 1

2
+ 1

2
dTV(p⌦n, q⌦n)

• P(A returns q | adversary picked q) > 1

2
+ 1

2
dTV(p⌦n, q⌦n)

So if dTV(p⌦n, q⌦n) < 1� 2�, there is no algorithm that will succeed in distinguishing between two
distributions with probability � 1� � using only n samples.

Thus, we need to upper bound the n-sample total variation distance between fr and f
2"
r

. Standard
inequalities for doing so involve calculating and plugging-in the single-sample KL-divergence
DKL(fr k f2"

r
) or squared Hellinger distance d

2

H
(fr, f2"

r
), however, they yield only constant factor

tightness in the exponent of 1� dTV(p⌦n, q⌦n), and hence only constant factor tightness in sample
complexity or estimation error lower bounds. As such, in this paper, we prove a new lemma
(Lemma D.2) that involves both the KL-divergence and squared Hellinger distance, as well as
assumptions on the concentration of the log-likelihood ratio between fr and f

2"
r

(which will be
satisfied by r-smoothed distributions), which allows us to bound the n-sample total variation distance
tightly. After that, we calculate the KL divergence and squared Hellinger distance of fr and f

2"
r

as
well as show the concentration of their log likelihood ratio (Appendix D.1), which when applied to
the lemma yields the lower bound result (Appendix D.2).
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Lemma D.2. Consider two arbitrary distributions p, q. Let the log-likelihood ratio be defined as
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p
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where the first inequality follows from conditions 1 and 2 in the lemma statement, and the second
inequality follows from the fact that 1� x = exp(�(1 +⇥(x))x). The above claim follows from
raising both sides to the power of n.
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
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q
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1+
(1 + x) � 1) within the range

x 2 [�1, 1.01] can be lower bounded by simply 1

2
(1 � 2)(1 + x). For the range x � 1, we

can lower bound the function by (1 � 2)
p
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By Equation 12, q⌦n(Sk)  e
�n(t0

k
)
2
/2 whenever (k + 1

2
)↵ < 1� .

We now bound q
⌦n(Sk) similar to how we bounded p

⌦n(Sk). When   0.01, the function
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
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q
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1+
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2
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p
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Summarizing, we have shown that
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The last quantities we have to bound are p
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p
nDKL(p k q), DKL(p k q))) gives the lemma statement.

D.1 Showing the conditions for Lemma D.2

In this subsection, we calculate the KL-divergence, squared Hellinger distance, as well as moment
bounds for the log-likelihood ratio for fr and f
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for a generic r-smoothed distribution fr.
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where the ⇥ result is from Lemma C.2.
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Lemma D.4. Consider the parametric family f
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The first term inside the big parentheses equals 1

4
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r
); the next two terms cancel out (since

they each integrate all the probability mass of f ); the final, cubic, term we bound now.

We start by bounding the cubic term for a Gaussian g of standard deviation r:
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where the bound is easily computed from the closed form evaluation of the integral, valid while " is
bounded by some fixed multiple of r.

Now the r-smoothed distribution f is just a convex combination of Gaussians of width r, and the

desired inequality follows from the observation that the expression fr(x)
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).
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2"
r

fr
. For "  r, we have

E
p
[|�|k]  k!

2
(30"/r)k�24"2I

 
1 +O

 
"

r

r
log

1

r2I

!!

28



Proof. Let `(x) = log fr(x). We have
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where the first three inequalities are by convexity, by Lemma B.6, and by Lemma C.3.

Lemma D.6. For an r-smoothed distribution fr, let � = log f
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. For "  r, we have
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where the first two inequalities are by convexity, and by Lemma C.3.

D.2 Proving Theorem 1.5

We are ready to prove Theorem 1.5.

Proof of Theorem 1.5. We will be applying Lemma D.2 on the distributions fr and f
2"
r

for an
appropriately chosen ", with  = O( "

r

1

r2Ir

) (note that by Lemma 3.1, Ir  1/r2 so r
2Ir  1).

Lemma D.4 combined with Lemma D.3 show condition 1 on Lemma D.2. Lemma D.3 shows
condition 2. Lemma D.6 shows condition 3 for k = 2, and an essentially identical calculation shows
condition 4 for k = 2. Lemma D.5 shows condition 3 for k � 3, and again an essentially identical
calculation shows condition 4 for k � 3.
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Thus, applying Lemma D.2 and Fact D.1, the failure probability of distinguishing p = fr and q = f
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is at least
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yields a failure probability lower bound of �, thus showing the theorem statement.
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