
A Omitted proofs of Section 3

A.1 Proof of Lemma 2

Proof. Assume |S| = m, for some m > 0. Then, corresponding set of incorrectly-labelled examples
is of size |S̃| = m(k − 1). Let D̃ ∈ ∆S̃ , be any distribution over m× (k − 1). We show that we can
construct a distribution D ∈ ∆S̃∪S over m× k, for which the guarantee in the Lemma holds.

First, observe that there must exist a ∈ ∆m and b1, ..., bm ∈ ∆(k−1), such that for all i, j, we have
D̃(i, j) = a(i)bi(j). For every i ∈ [m], let b′i ∈ ∆k be a distribution constructed as follows:

b′i(j) =

{
2
k if j = yi
1
k −

bi(j)
k otherwise

(9)

Then, we set D such that for all i, j, we have D(i, j) := a(i)b′i(j). Then, observe that for any h ∈ H,

PD[h(x) = y] =

m∑
i=1

k∑
j=1

a(i)b′i(j)1[h(xi) = j] (By substituting D for a, b′)

=

m∑
i=1

a(i)

(
2

k
1[h(xi) = yi] +

∑
j 6=yi

1− bi(j)
k

1[h(xi) = j]

)
(By (9))

=
2

k
PD̃[h(x) = y] +

1

k
(1− PD̃[h(x) = y])− 1

k

m∑
i=1

∑
j 6=yi

D̃(i, j)1[h(xi) = j]

(10)

=
1

k
PD̃[h(x) = y] +

1

k
− 1

k

m∑
i=1

∑
j 6=yi

D̃(i, j)1[h(xi) = j] (11)

=
1

k
+

1

k

(
PD̃[h(x) = y]−

m∑
i=1

∑
j 6=yi

D̃(i, j)1[h(xi) = j]

)
(12)

=
1

k
(1 + E(i,j)∼D̃

[
σh(xi, yi, j)

]
). (13)

By running the learnerW over mw i.i.d. examples generated byD, the algorithm returns a hypothesis
h ∈ H such that, with probability of at least 1− δw (over the sampling of the mw examples from D),
we have,

PD[h(x) = y] ≥ max
h∗∈H

PD[h∗(x) = y]− εw. (14)

Then, by applying the transformation given in (13) to (14) on both size, and re-arrange terms, we get,

E(i,`)∼D̃
[
σh(xi, yi, `)

]
≥ max
h∗∈H

E(i,`)∼D̃
[
σh∗(xi, yi, `)

]
− εwk ≥ γ − εwk,

where the last inequality follows by the assumption that S is γ-realizable with respect to H (see
Definition 1).

A.2 Proof of Theorem 3

Proof. For any x ∈ X , ` ∈ [k], we define:

F (x, `) =

T∑
t=1

αt1[ht(x) = `]. (15)
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Unraveling the recurrence in Algorithm 1 that defines D̃t+1 in terms of D̃t gives,

D̃T+1(i, `) = D̃1(i, `)× e−α1·σh1 (xi,yi,`)

Z1
× ...× e−αT ·σhT (xi,yi,`)

ZT

= D̃1(i, `)× e−
∑T
t=1 αt·σht (xi,yi,`)∏T

t=1 Zt

= D̃1(i, `)× e−
∑T
t=1 αt·

(
1[ht(xi)=yi]−1[ht(xi)=`]

)
∏T
t=1 Zt

= D̃1(i, `)× e−F (xi,yi)+F (xi,`)∏T
t=1 Zt

.

(16)

Next, note that h̄T (x) = argmax`∈[k]F (x, `). Therefore, for any i ∈ [m] and ` 6= yi, we get that if
h̄T (xi) = `, then F (xi, `) ≥ F (xi, yi). This implies that eF (xi,`)−F (xi,yi) ≥ 1. Hence, we have,
1[h̄T (xi) = `] ≤ eF (xi,`)−F (xi,yi). We can now bound the label-weighted error:

m∑
i=1

∑
` 6=yi

D̃1(i, `) · 1[h̄T (xi) = `] ≤
m∑
i=1

∑
6̀=yi

D̃1(i, `) · eF (xi,`)−F (xi,yi) (17)

=

m∑
i=1

∑
6̀=yi

D̃T+1(i, `)

T∏
t=1

Zt (18)

=

T∏
t=1

Zt, (19)

where equation (18) uses equation (16), and equation (19) uses the fact that D̃T+1 is a distribution
which sums to 1 (over all examples and their incorrect labels). Denote qt =

∑m
i=1

∑
` 6=yi D̃t(i, `) ·

1[ht(xi) = `]. Then, bounding the normalization factor,

Zt =

m∑
i=1

∑
` 6=yi

D̃t(i, `) · e−αt·σht (xi,yi,`) (20)

=

m∑
i=1

∑
` 6=yi

D̃t(i, `) ·
(
1[ht(xi) = yi] · e−αt + 1[ht(xi) = `] · eαt + 1[ht(xi) /∈ {yi, `}]

)
(21)

= (qt + γt) · e−αt + qt · eαt + (1− 2qt − γt), (22)

where equation (22) simply follows by the definition of qt and γt (step 5 of Algorithm 1). Observe
that by plugging our choice of αt in to equation (22) and re-arranging terms, we get that the coefficient
of qt is: 2√

1−γ2
t

− 2, which is a positive term for any γt ∈ (0, 1). Therefore, equation (22) is a

monotonic increasing function of qt. Moreover, since (1 − 2qt − γt) ≥ 0, we have qt ≤ 1
2 −

γt
2 .

Thus, we get,

Zt ≤ e−αt ·
(1

2
+
γt
2

)
+ eαt ·

(1

2
− γt

2

)
=
√

1− γ2
t . (23)

Lastly, plugging into equation (19) gives,

m∑
i=1

∑
6̀=yi

D̃1(i, `)1[h̄T (xi) = `] ≤
T∏
t=1

√
1− γ2

t (24)

≤ e−1/2·
∑T
t=1 γ

2
t (25)

≤ e−Tγ
2/8 (26)

≤ 1

m · k
, (27)
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where equation (25) follows by applying the approximation 1 + r ≤ er for all real r, equation (26)
follows by Lemma 2, where ε = γ/(2k), and thus γ/2 ≤ γt for all t. Equation (27) follows by
plugging T . Since D̃1 is uniform over all examples and incorrect labels, then if the label-weighted
training error of the combined classifier h̄T , which is always an integer multiple of 1/m(k − 1), is at
most 1/(m · k), then the training error must in fact be zero.

B Omitted proofs of Section 4.2

Lemma 9. LetW be an agnostic-PAC learner for the base hypothesis classH ⊆ YX . Let γ > 0, and
training set S of m labelled examples. IfH is empirically γ-weak learnable with respect to S, then
applying Algorithm 1 with T = 8(log(m)+log(k))

γ2 , outputs h̄T that is consistent with S. Furthermore,
the empirical margin of h̄T is at least γ/8.

Proof. In this proof we use the notation introduced in the proof of Theorem 3. The consistency
statement of the Lemma follows by Theorem 3. Next, we show that the empirical probability of h̄T
to have a low margin is zero. Specifically we show that,

F (x, y)−max
` 6=y

F (x, `) ≥ ᾱ · γ/8,

holds for all (x, y) ∈ S, where ᾱ =
∑T
t=1 αt denotes the normalizing factor of F . Observe that the

converse event occurs if and only if, for some (x, y) ∈ S,

exp
(
− F (x, y) + max

6̀=y
F (x, `) + ᾱ · γ/8

)
≥ 1,

which in turn occurs if,

1 ≤ eᾱγ/8 max
` 6=y

eF (x,`)−F (x,y) ≤ eᾱγ/8
∑
` 6=y

eF (x,`)−F (x,y) = eᾱγ/8
∑
` 6=y

eF (x,`)−F (x,y). (28)

Then, we get that,

P(x,y)∼S

[
F (x, y) has margin ≤ γ/8

]
=

1

m

m∑
i=1

1
[
F (x, y)−max

` 6=y
F (x, `) ≤ ᾱ · γ/8

]
(29)

≤ eᾱγ/8

m

m∑
i=1

∑
` 6=y

eF (x,`)−F (x,y) (30)

= eᾱγ/8(k − 1)
1

m(k − 1)

m∑
i=1

∑
` 6=y

eF (x,`)−F (x,y) (31)

= eᾱγ/8(k − 1)

T∏
t=1

Zt, (32)

(33)

where the first inequality follows by (28), and the last equality uses Equation (18) (and summing
D̃T+1 to 1 as in (19)). Recall that, as in the proof of Theorem 3, applying Lemma 2 with a choice of
εw = γ/(2k), we get that γ/2 ≤ γt for all t. Thus, by that, and by the definition of ᾱ, and the bound
on Zt (see (23)), we get,

P(x,y)∼S

[
F (x, y) has margin ≤ γ/8

]
≤ (k − 1)

T∏
t=1

eαtγt/4Zt, (34)

= (k − 1)

T∏
t=1

(1− γt)
1
2−

γt
4 (1 + γt)

1
2 +

γt
4 (35)

≤ (k − 1)
[
(1− γ/2)1− γ4 (1 + γ/2)1+ γ

4

]T/2
(36)
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≤ (k − 1) e−Tγ
2/8, (37)

where the first inequality holds since the inner expression of the product is a decreasing function of
γt, and (36) holds since γ/2 ≤ γt. Equation (37) follows by the the fact that the following inequality
holds for all γ ∈ (0, 1),

− γ2

2
(
(1− γ

4 ) ln(1− γ
2 ) + (1 + γ

4 ) ln(1 + γ
2 )
) < 8

Lastly, by setting T as in the Lemma and plugging into (37), we get,

P(x,y)∼S

[
F (x, y) has margin ≤ γ/8

]
≤ k − 1

m · k
, (38)

and since the empirical probability must be a multiple of 1
m , we get that it must in fact be zero.

B.1 Definitions needed for the following proofs

For the sake of the next proofs, we define the following notions of combined hypotheses. Define
H ⊆ [0, 1]X×Y be the set of all weighted hypotheses fromH, i.e.,

H =
{
h̄ : (x, `) 7→

∑
h∈H

λ(h) · 1[h(x) = `]
∣∣∣λ ∈ ∆H

}
. (39)

Observe that taking arg max` h̄(x, `) corresponds to the plurality-vote prediction (see Equation (1)).
Furthermore, observe that there exists a combined hypotheses h̄ ∈ H which corresponds to the
weighted average

∑T
t=1 αt · 1[ht(x) = `], obtained by the booster, in Algorithm 1 (and by taking

its plurality-vote prediction we get the final output predictor h̄T (x)). Assume that α = (α1, ..., αT )
is the normalized weight vector of the weights obtained by the algorithm. We overload notation by
denoting this combined, weighted, hypothesis by h̄T (x, `). Next, we defineHn ⊆ [0, 1]X×Y as the
set of all unweighted combined hypotheses of at most n elements,

Hn =
{
h̄ : (x, `) 7→ 1

n

n∑
j=1

1[hj(x) = `]
∣∣∣h1, ..., hn ∈ H

}
. (40)

Note that the same h ∈ H may appear multiple times in such a combined hypothesis. The main
idea of the proof is to approximate the (weighted) combined hypotheses h̄T , by randomly polling its
constituents from its corresponding distribution α. Towards that end, we prove a useful variation of
the uniform convergence property applied to the margin of the combined hypotheses. Denote the
margin of a combined hypotheses f , for a fixed (x, y) ∈ X × Y , as follows,

σ(f ;x, y) = f(x, y)−max
` 6=y

f(x, `). (41)

The σ uniform convergence bound given in Lemma 11 is based on the following combinatorial result.

Lemma 10. [14] For every hypothesis class F ⊆ YX , |F | ≤ |X |dN (F )|Y|2dN (F ).

Lemma 11 (σ uniform convergence). Let D be a distribution over X × Y that is γ-realizable forH
and γ > 0, and let S be a training set of m i.i.d. samples from D. Let δ > 0. Then, with probability
1− δ over the random choice of S, for all n ≥ 1, h̄ ∈ Hn,

PD

[
σ(h̄;x, y) ≤ γ

2

]
≤ PS

[
σ(h̄;x, y) ≤ γ

2

]
+ εn,

where εn =
√

32
(
4dn ln(mk) + ln(8n(n+ 1)/δ)

)
/m, and d = dN (H).

Proof. Let Z = X × Y , and for any h̄ ∈ Hn, define a low-margin subset by,

Zh̄ =
{

(x, y) ∈ Z : σ(h̄;x, y) ≤ γ/2
}
.
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Observe that any h̄ ∈ Hn is determined by some h1, . . . , hn ∈ H, and that the restriction h̄|Z of h̄ to
subset Z is determined by the restrictions h1|Z , . . . , hn|Z . Denote the collection of all low-margin
subsets of Z by, Fn =

{
Zh̄ : h̄ ∈ Hn

}
. Define the growth function of Fn as,

ΠFn(m) = sup
{
|{Z ∩ Z ′ : Z ′ ∈ Fn}| : Z ∈ Zm

}
.

That is, ΠFn(m) is the maximal number of "in-out" behaviors (dichotomies) realizable by low-margin
subsets (sets in Fn) on a finite set of m points. Observe that the number of such dichotomies is
determined by the σ margin behaviors of all h̄ ∈ Hn, which in turn can be captured by 2 values for
each h̄ per example, (i.e., h̄(x, y) and max` 6=y h̄(x, `)). Each h̄ is in turn determined by some choice
of h1, ..., hn ∈ H. Using these observations we bound the growth function,

ΠFn(m) = sup
Z∈Zm

∣∣∣{〈1[z1 ∈ Z ′], ...,1[zm ∈ Z ′]〉 : Z ′ ∈ Fn
}∣∣∣

= sup
Z∈Zm

∣∣∣{〈...,1[σ(h̄;xi, yi) ≤ γ/2], ...〉 : h̄ ∈ Hn
}∣∣∣

≤ sup
Z∈Zm

∣∣∣{〈h̄(x1, y1), ..., h̄(xm, ym)〉 : h̄ ∈ Hn
}∣∣∣2

≤ sup
Z∈Zm

∣∣∣{〈1[h(x1) = y1], ...,1[h(xm) = ym]〉 : h ∈ H
}∣∣∣2n

= sup
Z∈Zm

|H|Z |2n ≤ m2dnk4dn,

where the last inequality follows by Lemma 10. Next, we employ a bound given by a generalized
form of uniform-convergence, as in Theorem 2.6, [16], which rather than showing that the training
error generalizes to the population loss, shows the characterization of how any property, captured by
subsets of the space Z , generalizes. In particular, we get that for n ≥ 1,

P

[
∃Zh̄ ∈ Fn, Pz∼D[z ∈ Zh̄] ≥ Pz∼S [z ∈ Zh̄] + εn

]
≤ 8ΠFn(m)e−mε

2
n/32.

Therefore, by plugging in εn, we get that the statement in the Lemma occurs with probability at least
1 − δ/(n(n + 1)), for all h̄ ∈ Hn. By the union bound, this same statement holds for all n ≥ 1
simultaneously with probability at least 1− δ, proving the lemma.

B.2 Proof of Theorem 6

Proof. In this proof we consider the notation introduced above in Section B.1. First, consider a fixed
training set S, and let h̄T be the predictor outputted by Algorithm 1 applied to S. We approximate
h̄T by sampling h̃j ∼ α (i.e., set h̃j := ht w.p. αt), i.i.d. for each j = 1...n, and set,

h̃(x, `) =
1

n

n∑
j=1

1[h̃j(x) = `].

Observe that h̃ ∈ Hn (defined in Equation (40)). In this proof, we will use h̃ to approximate h̄T .
Towards that end, we first show that for a fixed x ∈ X , ` ∈ [k], γ′ > 0, n ≥ 1, we have:

Ph̃
[∣∣h̃(x, `)− h̄T (x, `)

∣∣ ≥ γ′/2] ≤ 2e−nγ
′2/2. (42)

This holds since by the definition of h̃ we have Eh̃[h̃(x, `)] = h̄T (x, `), and by applying Hoeffding’s
inequality we obtain Equation (42). Next, we show further that the margins of h̄T and of h̃ are close.
Specifically, we consider the σ notation in Equation (41), and show that for any fixed x, y, and for
any γ′ > 0, n ≥ 1, we have,

Ph̃
[∣∣σ(h̃;x, y)− σ(h̄T ;x, y)

∣∣ ≥ γ′/2] (43)

= Ph̃

[∣∣∣(h̃(x, y)−max
` 6=y

h̃(x, `)
)
−
(
h̄T (x, y)−max

6̀=y
h̄T (x, `)

)∣∣∣ ≥ γ′/2] (44)
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≤ Ph̃

[∣∣∣h̃(x, y)− h̄T (x, y)
∣∣∣+ max

` 6=y

∣∣∣h̃(x, `)− h̄T (x, `)
∣∣∣ ≥ γ′/2] (45)

≤ 2Ph̃

[
max
` 6=y

∣∣∣h̃(x, `)− h̄T (x, `)
∣∣∣ ≥ γ′/4] (46)

≤ 2
∑
` 6=y

Ph̃

[∣∣∣h̃(x, `)− h̄T (x, `)
∣∣∣ ≥ γ′/4]. (47)

Then, by combining the above with (42), we get that for any D distribution over X × Y , and for any
γ′ > 0, n ≥ 1, we have,

ED

[
Ph̃
[∣∣σ(h̃;x, y)− σ(h̄T ;x, y)

∣∣ ≥ γ′/2]] ≤ ED
[
4(k − 1)e−nγ

′2/2
]

= 4(k − 1)e−nγ
′2/2.

(48)

Next, we apply the bound in (48) to distribution D, and get that,

PD

[
σ(h̄T ;x, y) ≤ 0

]
= PD,h̃

[
σ(h̄T ;x, y) ≤ 0

]
(49)

≤ PD,h̃

[
σ(h̃;x, y) ≤ γ′

2

]
+ PD,h̃

[
σ(h̄T ;x, y) ≤ 0

∧
σ(h̃;x, y) >

γ′

2

]
(50)

≤ PD,h̃

[
σ(h̃;x, y) ≤ γ′

2

]
+ PD,h̃

[∣∣σ(h̃;x, y)− σ(h̄T ;x, y)
∣∣ > γ′

2

]
(51)

≤ PD,h̃

[
σ(h̃;x, y) ≤ γ′

2

]
+ 4(k − 1)e−nγ

′2/2, (52)

where the first inequality follows from the the simple fact that for any two events a and b, P[a] =
P[a ∧ b] + P[a ∧ ¬b] ≤ P[b] + P[a ∧ ¬b]. Using a similar derivation, applied to the empirical
distribution that is uniform over S, we obtain,

PS,h̃
[
σ(h̃;x, y) ≤ γ′

2

]
≤ PS,h̃

[
σ(h̄T ;x, y) ≤ γ′

]
+ PS,h̃

[
σ(h̃;x, y) ≤ γ′

2

∧
σ(h̄T ;x, y) > γ′

]
(53)

≤ PS,h̃
[
σ(h̄T ;x, y) ≤ γ′

]
+ PS,h̃

[∣∣∣σ(h̃;x, y)− σ(h̄T ;x, y)
∣∣∣ > γ′

2

]
(54)

≤ PS,h̃
[
σ(h̄T ;x, y) ≤ γ′

]
+ 4(k − 1)e−nγ

′2/2. (55)

Lastly, by applying Lemma 11 and using the σ uniform-convergence property, we get that with
probability at least 1− δ over the random choice of S, for any n ≥ 1, and h̄n ∈ Hn,

PD

[
σ(h̄n;x, y) ≤ γ′

2

]
≤ PS

[
σ(h̄n;x, y) ≤ γ′

2

]
+ εn, (56)

where εn = O
(√

dn log(mk)+log(1/δ)
m

)
, with d = dN (H) denoting the Natarajan dimension of H.

Observe that by using marginalization, we get that the above bound holds with respect to a random h̃,
rather than a fixed h̄n. Then, combining the above Equations (52), then (56) (using marginalization),
then (55), we get that with probability 1− δ,

PD

[
σ(h̄T ;x, y) ≤ 0

]
≤ PD,h̃

[
σ(h̃;x, y) ≤ γ′

2

]
+ 4e−nγ

′2/2 (57)

≤ PS,h̃
[
σ(h̃;x, y) ≤ γ′

2

]
+ 4e−nγ

′2/2 + εn (58)
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≤ PS,h̃
[
σ(h̄T ;x, y) ≤ γ′

]
+ 8e−nγ

′2/2 + εn. (59)

By setting n = 2
γ2 ln( 16

ε ), we get that 8e−nγ
′2/2 = ε/2. Then, by setting m as stated in the Theorem,

we get that with probability 1− δ, the overall bound is,

PD

[
σ(h̄T ;x, y) ≤ 0

]
≤ PS

[
σ(h̄T ;x, y) ≤ γ′

]
+ ε. (60)

Lastly, by Lemma 9, we get that the empirical margin probability is zero, for γ′ = γ/8, which
completes the proof.

C Lower Bound: Omitted proofs of Section 5

The proof of Theorem 7 will occupy this section. Although the intuitive idea outlined in Section 5 is
simple, there are many subtle but technical details that will need to be worked out to ensure that all
of the formal requirements of the learning model are satisfied. We consider the model definition as
detailed in Section 5, and describe the construction of the base classH below.

C.1 The construction ofH

Let X be the finite domain, with n = 1
2γ data points, and assume that 4n < k. We fix the constant

function f(x) = 1 to be the target labelling. Then, the labelled data is {(x1, 1)...(xn, 1)}, and let
the target distribution D be the uniform distribution over it. We note that our construction and the
lower bound argument hold even for the case that the boosting algorithm has full access to the data
and distribution D. However, recall that it is restricted to only output a plurality-vote of hypotheses
h1, ...hT ∈ H obtained via W . Towards defining the base class H, consider hypotheses of the
following form; for all j ∈ [n] and ` ∈ {2, ..., k}, define

hj,`(x) =

{
1 if x = xj ,

` otherwise.
(61)

We denote the set of all such hypotheses as Hall. Next, we describe the desired properties of the
constructed base class. For any hypothesis class H ⊂ Hall of size |H| = 2n−1, consider the
following two conditions:

(I) For each index j = 1, ..., n−1 there are exactly 2 distinct labels `1, `2 ∈ [k] such that
hj,`1 , hj,`2 ∈ H. For index j = n, there exists exactly 1 label ` such that, hn,` ∈ H.

(II) For each label ` = 2, ..., k, there is at most 1 index j ∈ [n] such that hj,` inH.

Lemma 12. Let H ⊂ Hall be a hypothesis class of size 2n−1, such that both (I), (II) hold. Then,
the distribution D, uniform over X × {1}, is γ/2-realizable w.r.t. H (see Definition 1).

Moreover, if only condition (I) fails such that there are q indices j ∈ [n] for each of which there is
at most 1 hypothesis of the form hj,` in H, then any plurality-vote over H incurs error of at least
2γ(q − 1) = q−1

n .

We use the probabilistic method to construct the base hypothesis class H, a subset of Hall of size
2n − 1. Specifically, we let the class H be entirely fixed, apart from a single random hypothesis,
hn−1,L, where L denotes a random variable drawn uniformly at random from the set of labels
2n, ..., k. In particular, the classH ⊂ Hall is constructed as follows. For each index j < n− 1, we
have exactly 2 fixed hypotheses hj,2j and hj,2j+1 inH; for j = n− 1, we have one fixed hypotheses
hn−1,2n−2, and the other is the random hypotheses hn−1,L. Lastly, for j = n we have a single fixed
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hypotheses hn,2n−1. The overall class is:

H =
{
h1,2, h1,3,

h2,4, h2,5,

h3,6, h3,7,

...
hn−3,2n−6, hn−3,2n−5

hn−2,2n−4, hn−2,2n−3

hn−1,2n−2, hn−1,L

hn,2n−1

}
.

(62)

Observe that the class Hall is an easy-to-learn class, and it be easily verified that it has a constant
Natarajan dimension of 2. Since H ⊂ Hall for any L, we get that H has a constant Natarajan
dimension as well. By Lemma 12, there exists a plurality-vote overH that is consistent with the data,
with margin γ/2. That is, the distribution D which is uniform over X × {1} is γ/2-realizable, with
respect toH.

We refer to the randomly chosen hypothesis hn−1,L as the hidden hypothesis. Note that if the booster
cannot "discover" the hidden hypothesis throughout its run (i.e., obtain it via the weak learner), then
by Lemma 12, it will fail to achieve a low generalization error (with error of at least 2γ). Next, we
show that indeed it will fail to obtain the hidden hypothesis.

C.2 The “finder-chooser” game

Intuitively, applying any boosting algorithm on the random classH constructed above requires the
booster to find the hidden hypothesis, which is a challenging task. This is the crucial observation
needed for proving the bound, and is demonstrated in the simpler setting of a "finder-chooser" game,
described next. Consider a setting of an iterative game in which a "chooser" player picks a "hidden"
element L out of a set of elements K, of size |K| = k, and a "finder" player iteratively attempts to
discover it. Specifically, the finder is only required to find any small subset of elements from K that
the hidden element L belongs to. Towards that end, in each round the finder queries the chooser,
and the chooser replies with a binary response, which indicates if the chooser has indeed picked the
hidden element. Concretely, we consider 2 different query-models in which the finder is allowed to
interact with the chooser; via weights, or via examples. In either case, the finder is given a binary
response in each round, of whether or not the hidden element is in the subset it picked. If the finder
failed, it continues to the next round, otherwise it succeeded to find a subset which contains L, and
the game ends. It is clear that there is a trade-off between the size of the picked subsets and the
number of rounds needed to find the containing subset. The Lemmas below formalize this trade-off
in both models, and give bounds on the probability that the finder succeeds, when the chooser is
uniform over K.

C.2.1 The “finder-chooser” game: Weighting model

Let k, T > 0, and fix a threshold θ ∈ (0, 1). The model is defined as follows. First, the element L is
sampled uniformly over the set [k] = {1, ..., k}. Next, for each round t = 1...T , letDt ∈ ∆k be some
distribution of [k] determined iteratively as the computation output of a "finder" algorithm F , defined
as follows. Formally, the finder F is a fixed and deterministic function of its previous picks Dt′ , and
previous binary responses It′ , for all t′ < t, and randomness sourceR, where It = 1

[
Dt(L) ≥ θ

]
.

Lemma 13 (Weights). For any finder F algorithm in the the weighting model, it holds that,

PL,R
[
∃ t ≤ T, Dt(`) ≥ θ

]
≤ T

θk
.

C.2.2 The “finder-chooser” game: Example model

We now consider a slight modification of the setting defined above. Let T,m, k > 0. The model
is defined as follows. As in the previous model, the element L is sampled uniformly over the set
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[k] = {1, ..., k}. Next, for each round t = 1...T , let Lt ⊂ K, be a subset of at most m elements, that
is determined iteratively via a "finder" algorithm F , defined as follows. Formally, the finder F is a
fixed and deterministic function of its previous picks Lt′ , and previous binary responses It′ , for all
t′ < t, and randomness sourceR, where It = 1

[
L ∈ Lt

]
.

Lemma 14 (Examples). For any finder F algorithm in the the example model, it holds that,

PL,R
[
∃ t ≤ T, L ∈ Lt

]
≤ Tm

k
.

Next, we are ready to prove the main result, stated in Theorem 7.

C.3 Proof of Theorem 7

Proof. Consider the randomly-constructed classH in Equation (62), and the distribution D that is
uniform over X × {1}, which as shown above is γ/2-realizable forH (see Definition 1). We use the
probabilistic method to complete the proof, for any boosting algorithm B (see the model definition in
subsection 5.1).

There are several sources of randomness that are part of either the learning process or of our
construction, namely the class H (in particular, the label L), the initial training set S, the internal
randomness of the boosterR.

We will show that with respect to all of the sources of randomness, B’s error is probable to be large.
That is, we show that,

PH,S,R
[
PD
[
h̄B(x) 6= y

]
≤ εB

]
< 1− δB . (63)

This is sufficient for the proof since it implies, PH,S,R
[
PD
[
h̄B(x) 6= y

]
> εB

]
≥ δB , which

is equivalent by marginalization to, EH
[
PS,R

[
PD
[
h̄B(x) 6= y

]
> εB

∣∣∣H]] ≥ δB . This in turn

implies that there exists a particular classH for which, PS,R
[
PD
[
h̄B(x) 6= y

]
> εB

∣∣∣H] ≥ δB , as
claimed. Therefore, it is sufficient to prove Equation (63). Next, we give a weak learnerW for both
models of Boosting-by-reweighting and Boosting-by-resampling, for which (63) holds.

Boosting-by-reweighting Let the learnerW be defined as follows: for any t, if εwt > θ, and there
exists any εwt -optimal hypothesis with respect to Dt that is not the hidden hypothesis, thenW returns
it toB. Otherwise,W returns the hidden hypothesis. DenoteHT as the set of all hypotheses observed
by the booster up to round T . Denote OPTt ⊂ H as the set of all εwt -optimal hypotheses with respect
to Dt. Then, we upper bound the probability that B succeeds to have low error,

PH,S,R
[
PD
[
h̄B(x) 6= y

]
≤ εB

]
≤ PL,S,R

[
hn−1,L ∈ HT

]
(by Lemma 12)

≤ PL,S,R
[
∃ t ≤ T, OPTt = {hn−1,L}

]
(by definition ofW)

≤ PL,S,R
[
∃ t ≤ T, Dt(L) > εwt

]
(by Lemma 15)

≤ PL,S,R
[
∃ t ≤ T, Dt(L) > θ

]
, (by assumption on εwt )

where Dt denotes the marginal distribution over labels of Dt, i.e., Dt(`) = P(x,y)∼Dt [y = `].

We next describe a reduction to the "finder-chooser" setting defined in Lemma 13. In more detail, we
will show how to convert the given boosting algorithm B, to a finder’s strategy as defined in C.2.1.
Assume we are given a boosting algorithm B as above, and consider an instance of the finder-chooser
game which we are going to solve using access to B. Towards this end, define the base classH as in
Equation (62), where the label L is determined by the secret label held by the chooser. Observe that
the probability in the last inequality above, is equivalent to the probability that the finder succeeds to
"win" the game. The reduction is obtained by substituting the sequence weights generated by the
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finder, with the marginal distributions D1, ..., DT generated by the booster, where the set K and size
k in Lemma 13 corresponds to the set of labels 2n...k, and size k−2n−1.

In particular, whenever the boosting algorithm submits a distribution Dt to the weak learner, our
finder submits the corresponding marginal distribution Dt to the chooser. Observe that the binary
responses of the chooser correspond to the binary alternative cases for the booster It = [Dt(L) ≥ θ].
Note that for the task of finding the hidden label L (i.e., the probability that the booster finds the
hidden hypothesis hn−1,L), can by upper bounded by the setting in which it is only answered with
binary responses, since no additional information of L is gained by the booster for different responses
of non-hidden hypotheses 4. Then, we get,

PH,S,R
[
PD
[
h̄B(x) 6= y

]
≤ εB

]
≤ PL,S,R

[
∃ t ≤ T, Dt(L) > θ

]
(by last inequality)

≤ T · 1

θ
· 1

k − 2n− 1
(by Lemma 13)

< 1/2 ≤ 1− δB ,

where the last inequality follows by the definition of θ, and by the assumption that δB ≤ 1/2.

Boosting-by-resampling Let the learnerW be an ERM learner such that for any t, when given
mw
t < 1/θ labelled examples, all of which are not labelled with the hidden label L, return any

optimal hypothesis that minimizes the number of sample errors, other than the hidden hypothesis.
Otherwise, return any optimal hypothesis. Note that the sample complexity required for the ERM
W to agnostically-PAC learn H is at most mw

t (ε, δ) ≤ O
(

log(k)+log(1/δ)
ε2

)
(see Equation 7, and

recall that H has a constant dimension). However, below we show that when mw
t is too small

(mw
t < 1/θ ≈ O(k/T )), then the booster B fails. DenoteHT as the set of all hypotheses observed

by the booster up to round T . Let Lt denote the set of all labels for which a labelled example was is
fed toW at time t. Then, we upper bound the probability that B succeeds to have low error,

PH,S,R
[
PD
[
h̄B(x) 6= y

]
≤ εB

]
≤ PL,S,R

[
hn−1,L ∈ HT

]
(by Lemma 12)

≤ PL,S,R
[
∃ t ≤ T, L ∈ Lt

]
. (by definition ofW)

Recall that the "hidden label" L ∼ U(2n, ..., k) is chosen uniformly at random. As in the previous
model, we apply the reduction to the "finder-chooser" setting defined in Lemma 14, by replacing
the sequence of subsets L1, ...,LT picked by the booster, with the subset of elements generated by
the finder, where the set K and size k in Lemma 14 corresponds to the set of labels 2n...k, and size
k−2n−1. Then, we get,

PH,S,R
[
PD
[
h̄B(x) 6= y

]
≤ εB

]
≤ T ·m · 1

k − 2n− 1
<

T/θ

k − 2n− 1
< 1/2 ≤ 1− δB ,

where the last inequalities follow by the assumption that mw
t < 1/θ for all t, by the definition of θ,

and by the assumption that δB ≤ 1/2.

Lemma 15. Let H be defined as in Equation (62), for some fixed label L ∈ {2n, ..., k}. LetW be
an agnostic PAC learner forH. Let D be any distribution over X × Y , and εw > 0. Then, if the only
ε-optimal hypothesis inH with respect to D is the hypothesis hn−1,L, i.e., if it holds that,

max
j≤n
`<2n

PD[hj,`(x) = y] < max
h∗∈H

PD[h∗(x) = y]− εw,

then, for the corresponding marginal distribution over labels D, it holds that,

D(L) =

n∑
j=1

D(xj , L) > εw.

4That is, for different `′, `′′ < 2n, and any t1, t0 such that t1 > t0, it holds that P[Dt1(L) ≥ θ|ht0 =
hj,`′ ] = P[Dt1(L) ≥ θ|ht0 = hj,`′′ ].
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Proof. Observe that by the assumption, hn−1,L = arg maxh∗∈H PD[h∗(x) = y]. Then, we have,

D(xn−1, 1) ≤ max
j≤n
D(xj , 1)

≤ max
j≤n
`<2n

(
D(xj , 1) +

∑
j′ 6=j

D(xj′ , `)

)
= PD[hj,`(x) = y]

< PD[hn−1,L(x) = y]− εw

= D(xn−1, 1) +
∑

j′ 6=n−1

D(xj′ , L)− εw,

where the last inequality follows from the assumption. By re-arranging terms we get that,

εw <
∑

j′ 6=n−1

D(xj′ , L) ≤
n∑
j=1

D(xj , L) = D(L),

as claimed.

C.4 Proof of Lemma 12

Proof. We define λ a distribution over the 2n−1 hypotheses of a classH satisfying the conditions
of the lemma, and show that it induces a consistent plurality-vote with margin γ/2. Denote each
hypotheses in H by an index i, and assume w.l.o.g that hypothesis i = 2n−1 corresponds to the
single hypotheses hn,` as defined in condition (I). Set ξ = 1

4n . For all i < 2n−1, set λ(i) = 1−ξ
2n−1 ,

and set λ(2n− 1) = 1
2n−1 + 2n−2

2n−1ξ. Then, a point xj , for any j ≤ n− 1, corresponds to exactly 2
hypotheses with indices i1, i2 that predict its label correctly, and the corresponding weight of that
prediction is λ(i1) + λ(i2), and any incorrect label will have weight of at most λ(2n − 1). For a
point xn, the corresponding correct and incorrect weights are λ(2n−1) and λ(i) for some i < 2n−1.
Overall, the plurality-vote induced by λ has a margin of,

min{2λ(i)− λ(2n−1), λ(2n−1)− λ(i)} = min
{1− 2nξ

2n− 1
, ξ
}

= min
{1

2
· 1

2n− 1
, ξ
}

≥ 1

4n
= γ/2.

To prove the second statement in the Lemma, assume that for a class H of size 2n − q, condition
(II) holds, but condition (I) fails, i.e., there are j1, ..., jq ∈ [n] distinct indices such that for each
such j, there is exactly 1 hypotheses of the form hj,` ∈ H, for some unique `, denoted `j . Denote
each hypothesis in H by an index i = 1, ..., (2n−q), and assume w.l.o.g that for all i ≤ q, the i-th
hypothesis hi corresponds to hji,`ji . Let λ be any distribution overH.

Then, let i∗ ∈ [2n−q] be the index of a hypothesis in H, such that for all other i ≤ q, i 6= i∗,
λ(i∗) > λ(i) (if the inequality is not strict, plurality-vote breaks ties arbitrarily, pick i∗ maximal by
it). Since for each xi with i ≤ q, the correct label 1 will get λ(i) of the votes, whereas some incorrect
label corresponding to hypothesis i∗ will get λ(i∗) of the votes. If i∗ > q, then for all i ≤ q, the
plurality-vote induced by λ will err on xi. Otherwise, if i∗ ≤ q, then it will err on exactly q − 1 such
points.

Overall, the plurality-vote will err for at least q− 1 such i’s. Each such error corresponds to a portion
of 1/n = 2γ of the population loss. Therefore, the plurality-vote induced by λ overH incurs error of
at least 2γ(q − 1).

C.5 Proof of Lemma 13

Proof. Let It = 1
[
∃t′ ≤ t, It′ = 1

]
. Define I0 = 0. Fix an algorithm F and its randomness, and

observe that when simulated with any fixed sequence of binary responses, IF1 , ..., I
F
t−1, it outputs
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a sequence v1, ..., vt that is deterministic. This follows by definition, as the output sequence vt is
a deterministic function of the random bits of F and the binary responses it observes IF1 , ..., I

F
t−1,

and if those are fixed, then so is the output. next, for any t, simulate F with a response sequence of
all zeros, IF1 = 0, ..., IFt−1 = 0, which then outputs vt, and let L0

t = {` ∈ [k] | Dt(`) ≥ θ}. First,
observe that |L0

t | ≤ 1/θ, and | ∪Tt=1 L0
t | ≤ T/θ. Moreover, notice that for a fixed F , the set ∪Tt=1L0

t
is deterministic. Thus,

PL,R
[
∃ t ≤ T, Dt(L) ≥ θ

]
= PL,R

[ T∨
t=1

It−1 = 0 ∧ It = 1
]

(64)

= ER
[
PL
[ T∨
t=1

It−1 = 0 ∧ It = 1
∣∣∣R]] (65)

= ER
[
PL
[ T∨
t=1

L ∈ L0
t

∣∣∣R]] (66)

= ER
[
PL
[
L ∈

T⋃
t=1

L0
t

∣∣∣R]] (67)

≤ T

θk
. (68)

C.6 Proof of Lemma 14

Proof. Let It = 1
[
∃t′ ≤ t, It′ = 1

]
. Define I0 = 0. Fix R, and for any t, simulate F with a

response sequence of all zeros, I1 = 0, ..., It−1 = 0, which then outputs vt, and let L0
t denote the set

Lt obtained by the simulation. note that | ∪Tt=1 L0
t | ≤ Tm. Thus,

PL,R
[
∃ t ≤ T, ` ∈ Lt

]
= PL,R

[ T∨
t=1

It−1 = 0 ∧ It = 1
]

(69)

= ER
[
PL
[ T∨
t=1

It−1 = 0 ∧ It = 1
∣∣∣R]] (70)

= ER
[
PL
[ T∨
t=1

` ∈ L0
t

∣∣∣R]] (71)

= ER
[
PL
[
` ∈

T⋃
t=1

L0
t

∣∣∣R]] (72)

≤ Tm

k
. (73)
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