APPENDIX

A: Network Architectures

Entangled UnshearNet: The encoder £ compresses the input 256 x 256-pixel tactile image using
five convolutional (Conv) layers, each followed by batch normalization (BN) and rectified linear
unit (ReLU) activation layers respectively (architecture in Fig. 2). The output of the last Conv layer
(8 x 8 x 64) is passed to the decoder D which upsamples it to an output 256 x 256-pixel canonical
image PC. Similarly to the Conv layers, all transposed convolutional layers (T-Conv) were followed
by BN and ReL.U activation layers except the output layer which used sigmoid activation function
instead (see also Fig. 2).

This model was used as a baseline to evaluate the performance of proposed Disentangled UnshearNet
model on its effectiveness in removing distortion in sensor response caused by sliding-induced global
shear. For details of the training, please see Appendix B.

Disentangled UnshearNet: The encoder has the same inputs and architecture as the Entangled
UnshearNet, except the the output of the 5 Conv layer is followed by two additional Conv layers,
one each for the two latent codes: Pose (8 x 8 x 64) and Shear (8 x 8 x 64).

One decoder DC takes as input pose latent code and upsamples it to 256 x 256-pixel canonical output
tactile image PC. All T-Conv layers were followed by BN and ReLU activation layers except the
output layer which used sigmoid activation layer instead (architecture shown in Fig. 3).

The other decoder DS takes as input both pose and shear codes, merges them and upsamples to an
output 256 x 256-pixel sheared image PS (intended to match the encoder input). Apart from the above
differences, DS has the same architectures as DC. For details of the training, please see Appendix B.

PoseNet: This model takes as input 256 x 256 image, compresses it to extract features using the
Conv part which are then combined using fully connected (FC) part to predict continuous-value pose
components at the output. In total, the network consists of five convolution layers, two max pooling
(MP) layers following 2" and 4™ Conv layers; the CONV layers were followed by BN and ReLU
activation layers respectively. The 1% FC layer used ReLU activation while the output FC layer used
sigmoid activation. For details of the architecture and training see Fig. 5 and Appendix B.

O
O
— oll0|—s 2D
8 poses
64 128 128 7,
32 64 32

Convolution P M?.X Fully
(K:4x4,S:2) (Ko‘ozlilzg) Connected

Figure 5: PoseNet schematic: This network takes as input, a tapping binary sensor image, C. The
convolution part compresses input to extract relevant features which are then combined by fully
connected part to predict continuous-valued object pose parameters at output.

11

B: Training Details

All the inputs (binary 256 x 256-pixel images) and outputs (binary 256 x 256-pixel images for
image-to-image models, pose parameters for image-to-pose model) were scaled to the range [0, 1].
All networks weights were initialized from a zero-centered normal distribution with 0.02 standard
deviation. Both image-to-image models were trained on data collected from all three stimuli shapes
(Fig. 1 (c)) as discussed in section 3.2.

For image-to-image models, we used a batch size of 32. All convolutional/transposed convolutional
layers used L1/L2 regularization (10e-4) along with random image shifts, 1-2% of image size to
prevent overfitting. The L2 loss computed across the entire image and LI patch loss — computed
between 100 random crops of size 20 x 20 of generated unsheared images and corresponding
canonical images — were used to train the networks in the ratio 10:1. In case of Disentangled
UnshearNet, the encoder (E) and shear decoder (DS) were trained using reconstruction loss.

For image-to-pose model, we used a batch size of 256. Like image-to-image models, all layers
used L1/L.2 regularization (10e-4) along with random image shifts, 1-2% of image size to prevent
overfitting. The network was trained via the L2 loss computed between predicted and target pose
parameters.

We used ADAM optimizer [23] with learning rate of 0.0001, f1 = 0.5 and 32 = 0.999. We used
learning rate scheduling for training. For image-to-image models, the learning rate was reduced to
one-fifth and one-tenth after 40 and 80 epochs. The models were trained, in total, for 100 epochs. For
image-to-pose model, the learning rate was reduced to half and one-tenth after 100 and 200 epochs
respectively. The model was trained for 250 epochs. For all models, the model with best validation
accuracy was used for testing.

Finally, training and optimization of the networks was implemented in the Tensorflow 2.0 library on
a NVIDIA GTX 1660 (6 GB memory) hosted on a Ubuntu machine.

C: Control Policy for Continuous Contour Following

Local pose estimation allows a robot to maintain contact while safely moving over the object, thus
enabling complex robot-object interactions. To demonstrate continuous 2D contour following, we
used a simple control policy with following two aims: 1) keep the sensor normal to object surface
while in motion and 2) at every time step ¢, move the sensor tangentially along the surface by a
predefined step (0.5 mm in this case). To achieve these aims, a discrete-time proportional-integral
(PD) controller was implemented to output a change in the pose of the sensor (Ap(¢)) in its reference

frame
t

Ap(t) =Kpe(t) +K; Y e(!')
=0

where K, and K; are diagonal gain matrices with proportional gain of 0.5 and integral gains of 0.3 and
0.1 for translations and rotations respectively. e was error between the predicted pose and a reference
normal to the edge.

12

D: Disentanglement of Latent Representations

An ablation study was used to verify the separation of latent representations in the Disentangled
UnshearNet into pose and shear codes respectively. To do this, we passed the ‘Shear Code’ to the
unsheared reconstruction decoder (DC) instead of the ‘Pose Code’. As expected, this led to a severe
degradation in performance with mean-square error (MSE) between the ground truth images C (tap)
and unsheared images PC increasing to 0.22, an order of magnitude higher than original of 0.023.
In similar fashion, the SSIM index dropped to 2% when using the Shear Code to reconstruct the
unsheared images PC instead of the original 93% when the Pose Code was used. Likewise, asimilar
degradation was observed when the ‘Shear Code’ was replaced by the Pose Code to reconstruct the
sheared input S. The mean-squared error between S and the sheared output PS increased to 0.1, which
was 50-times the original of 0.002 when both ‘Pose and Shear Codes were used to reconstruct PS. The
SSIM index showed a similar trend with the similarity dropping from 99.5% to only 11%. This shows
that the Shear Code is indeed encoding relevant information required for successful reconstruction of
sheared input S. These results clearly demonstrate that the Disentangled UnshearNet successfully
disentangles the latent representations as desired.

13

E: High Resolution Results

Shape Contour Shape Reconstruction

Disk

Clover

Teardrop

Star

Volute

PLOOC

~ Spiral 1

©

Spiral 2

Figure 6: Contour following & Shape Reconstruction. Left: Stimuli shapes, Middle: Robust
sliding across shapes in left row post removal of shear using Disentangled UnshearNet. Red dot
shows the starting point/initial contact. Right: Full shape reconstruction post removal of shear using
Disentangled UnshearNet.

	Introduction
	Background
	Methods
	Experimental Setup
	Data Collection
	Paired Canonical and Sheared Data
	Pose-labelled Data

	Image-to-Image Models for Shear Removal

	Experimental Results
	Shear Removal from Tactile Images
	Reconstruction of Local Contact Geometry
	2D Sliding Shape Exploration
	Object Shape Reconstruction

	Discussion

