
Published as a conference paper at ICLR 2024

A CALCULATING DISEASE PREVALENCE

To implement the prevalence constraint, we assume that the disease prevalence, or average value of
Y across the population, is at least approximately known. This assumption is plausible in medical
settings because estimating prevalence is the focus of substantial public health research. Methods to
calculate prevalence include serology, where blood samples are used to detect specific antibodies or
antigens of a disease (Joseph et al., 1995); stool or wastewater testing for disease markers (Joseph
et al., 1995; McMahan et al., 2021); genetic methods, where genomic registries can be analyzed to
calculate allele frequency and estimate disease prevalence (Schrodi et al., 2015); autopsy reports for
a particular disease (Bell et al., 2015); and administrative data collected by primary, outpatient, and
inpatient care centers (Wiréhn et al., 2007). Additionally, our Bayesian formulation can incorporate
approximate prevalence estimates (e.g. bounded estimates), and these bounds can be estimated using
the sensitivity and specificity of the prevalence estimation method (Manski & Molinari, 2021; Manski,
2020; Mullahy et al., 2021).

B PROOFS

Proof outline: In this section, we provide three proofs to show why domain constraints improve
parameter inference. We start by showing that the well-studied Heckman correction model (Heckman,
1976; 1979) is a special case of the general model in equation 1 (Proposition 3.1). It is known that
placing constraints on the Heckman model can improve parameter inference (Lewbel, 2019). We
show that our proposed prevalence and expertise constraints have a similar effect by proving that our
proposed constraints never worsen the precision of parameter inference (Proposition 3.2). We then
provide conditions under which our constraints strictly improve precision (Proposition B.2).

Notation and assumptions: Below, we use Φ to denote the normal CDF, ϕ the normal PDF, and
βT = αβY + β∆. Let X be the matrix of observable features. We assume that the first column of
X corresponds to the intercept; X is zero mean for all columns except the intercept; and the standard
identifiability condition that our data matrix is full rank, i.e., XTX is invertible. We also assume that
α > 0.

We start by defining the Heckman correction model.

Definition 1 (Heckman correction model). The Heckman model can be written in the following
form (Hicks, 2021):

Ti = 1[XT
i β̃T + ui > 0]

Yi = XT
i β̃Y + Zi[

ui

Zi

]
∼ Normal

([
0
0

]
,

[
1 ρ̃
ρ̃ σ̃2

])
.

(2)

In other words, Ti = 1 if a linear function of Xi plus some unit normal noise ui exceeds zero. Yi is
a linear function of Xi plus normal noise Zi with variance σ̃2. Importantly, the noise terms Zi and
ui are correlated, with covariance ρ̃. The model parameters are θ̃ ≜ (ρ̃, σ̃2, β̃T , β̃Y ). We use tildes
over the Heckman model parameters to distinguish them from the parameters in our original model
in equation 1. We now prove Proposition 3.1.

Proposition 3.1. The Heckman model (Definition 1) is equivalent to the following special case of the
general model in equation 1:

Zi ∼ N (0, σ2)

ri = XT
i βY + Zi

Yi = ri

Ti ∼ Bernoulli(Φ(αri +XT
i β∆)) .

(3)

Proof. If we substitute in the value of ri, the equation for Yi is equivalent to that in the Heckman
model. So it remains only to show that Ti in equation 3 can be rewritten in the form in equation 2.
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We first rewrite equation 3 in slightly more convenient form:

Ti ∼ Bernoulli(Φ(αri +XT
i β∆)) →

Ti ∼ Bernoulli(Φ(α(XT
i βY + Zi) +XT

i β∆)) →
Ti ∼ Bernoulli(Φ(XT

i (αβY + β∆) + αZi)) →
Ti ∼ Bernoulli(Φ(XT

i βT + αZi)) .

We then apply the latent variable formulation of the probit link:

Ti ∼ Bernoulli(Φ(XT
i βT + αZi)) →

Ti = 1[XT
i βT + αZi + ϵi > 0], ϵi ∼ N (0, 1) ,

where αZi + ϵi is a normal random variable with standard deviation
√
α2σ2 + 1. We divide through

by this factor to rewrite the equation for Ti:

Ti = 1[XT
i β̃T + ui > 0] ,

which is equivalent to equation 2. Here, β̃T = βT√
α2σ2+1

and ui =
αZi+ϵi√
α2σ2+1

is a unit-scale normal
random variable whose covariance with Zi is

cov
(

αZi + ϵi√
α2σ2 + 1

, Zi

)
= E

(
αZi + ϵi√
α2σ2 + 1

· Zi

)
− E

(
αZi + ϵi√
α2σ2 + 1

)
E (Zi)

=
αE

(
Z2
i

)
√
α2σ2 + 1

=
ασ2

√
α2σ2 + 1

.

Thus, the special case of our model in equation 3 is equivalent to the Heckman model, where the
mapping between the parameters is:

β̃Y = βY

σ̃2 = σ2

β̃T =
βT√

α2σ2 + 1

ρ̃ =
ασ2

√
α2σ2 + 1

.

(5)

As described in Lewbel (2019), the Heckman correction model is identified without any further
assumptions. It then follows that the special case of our model in equation 3 is identified without
further constraints. One can simply estimate the Heckman model, which by the mapping in equation 5
immediately yields estimates of βY and σ2. Then, the equation for ρ̃ can be solved for α, yielding a
unique value since α > 0. Similarly the equation for β̃T yields the estimate for βT (and thus β∆).

While the Heckman model is identified without further constraints, this identification is known to be
very weak, relying on functional form assumptions (Lewbel, 2019). To mitigate this problem, when
the Heckman model is used in the econometrics literature it is typically estimated with constraints on
the parameters. In particular, a frequently used constraint is an exclusion restriction: there must be at
least one feature with a non-zero coefficient in the equation for T but not Y . While this constraint
differs from the ones we propose, one might expect our proposed prevalence and expertise constraints
to have a similar effect and improve the precision of parameter inference. We make this precise
through Proposition 3.2.

Throughout the results below, we analyze the posterior distribution of model parameters given the
observed data: g(θ) ≜ p(θ|X,T, Y ). We show that constraining the value of any one parameter
(through the prevalence or expertise constraint) will not worsen the posterior variance of the other
parameters. In particular, constraining a parameter θcon to a value drawn from its posterior distribution
will not in expectation increase the posterior variance of any other unconstrained parameters θunc. To
formalize this, we define the expected conditional variance:
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Definition 2 (Expected conditional variance). Let the distribution over model parameters g(θ) ≜
p(θ|X,T, Y ) be the posterior distribution of the parameters θ given the observed data {X,T, Y }.
We define the expected conditional variance of an unconstrained parameter θunc, conditioned on the
value of a constrained parameter θcon, to be E[Var(θunc|θcon)] ≜ Eθ∗

con∼g[Var(θunc|θcon = θ∗con)].
Proposition 3.2. In expectation, constraining the parameter θcon does not increase the variance of
any other parameter θunc. In other words, E[Var(θunc|θcon)] ≤ Var(θunc). Moreover, the inequality is
strict as long as E[θunc|θcon] is non-constant in θcon (i.e., Var(E[θunc|θcon]) > 0).

Proof. The proof follows from applying the law of total variance to the posterior distribution g. The
law of total variance states that:

Var(θunc) = E[Var(θunc|θcon)] + Var(E[θunc|θcon]) .

Since Var(E[θunc|θcon]) is non-negative,
E[Var(θunc|θcon)] ≤ Var(θunc) .

Additionally, if E[θunc|θcon] is non-constant in θcon then Var(E[θunc|θcon]) is strictly positive. Thus the
strict inequality follows.

We now discuss how Proposition 3.2 applies to our proposed constraints and the Heckman model.
Both the prevalence and expertise constraints fix the value of at least one parameter. The prevalence
constraint fixes the value of βY 0 and the expertise constraint fixes the value of β∆d for some d.
Thus by Proposition 3.2, we know that the prevalence and expertise constraints will not increase the
variance of any model parameters, and will strictly reduce them as long as the posterior expectations
of the unconstrained parameters are non-constant in the constrained parameters.

We now show that when β̃T is known, the prevalence constraint strictly reduces variance. The setting
where β̃T is known is a natural one because β̃T can be immediately estimated from the observed
data X and T , and previous work in both econometrics and statistics thus have also considered this
setting (Heckman, 1976; Ilyas et al., 2020). With additional assumptions, we also show that the
expertise constraint strictly reduces variance. We derive these results in the setting with flat priors for
algebraic simplicity. However, analogous results also hold under other natural choices of prior (e.g.,
standard conjugate priors for Bayesian linear regression (Jackman, 2009)). In the results below, we
analyze the conditional mean of Y conditioned on T = 1. Thus, we start by defining this value.
Lemma B.1 (Conditional mean of Y conditioned on T = 1). Past work has shown that the expected
value of Yi when Ti = 1 is (Hicks, 2021):

E[Yi|Ti = 1] = E[Yi|XT
i β̃T + u > 0]

= Xiβ̃Y + ρ̃σ̃
ϕ(Xiβ̃T )

Φ(Xiβ̃T )
,

where Φ denotes the normal CDF, ϕ the normal PDF, and ϕ(Xβ̃T )

Φ(Xβ̃T )
the inverse Mills ratio. This can

be more succinctly represented in matrix notation as
E[Yi|Ti = 1] = Mθ ,

where M = [XT=1;
ϕ(XT=1β̃T )

Φ(XT=1β̃T )
] ∈ RNT=1×(d+1), θ = [β̃Y , ρ̃σ̃] ∈ Rd+1, XT=1 denotes the rows

of X corresponding to T = 1, and NT=1 is the number of rows of X for which T = 1.

Proposition B.2. Assume β̃T is fixed and flat priors on all parameters. Additionally, assume the
standard identifiability condition that the matrix M = [XT=1;

ϕ(XT=1β̃T )

Φ(XT=1β̃T )
] is full rank. Then, in

expectation, constraining a component of β̃Y in the Heckman correction model strictly reduces the
posterior variance of the other model parameters. The prevalence constraint does this without any
further assumptions, and the expertise constraint does this if ρ̃ and σ̃2 are fixed.

Proof. We will start by showing that when β̃T is fixed, constraining a component of β̃Y strictly
reduces the variance of the other model parameters. From the definition of the conditional mean of Y
conditioned on T = 1 (Lemma B.1), we get

E[Yi|Ti = 1] = Mθ .
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Figure S1: Results using synthetic data from the Heckman model. The prevalence and expertise
constraints each produce more precise and accurate inferences on this synthetic data. We plot the
median across 200 synthetic datasets. Errorbars denote the bootstrapped 95% confidence interval on
the median.

Under flat priors on all parameters, the posterior expectation of the model parameters given the
observed data {X,T, Y } is simply the standard ordinary least squares solution given by the normal
equation (Jackman, 2009):

E[θ|X,T, Y ] = (MTM)−1MTY .

By assumption, M is full rank, so MTM is invertible.

When β̃Yd
is constrained to equal to β̃∗

Yd
for some component d, the equation instead becomes:

E[θ−d|β̃Yd
= β̃∗

Yd
, X, T, Y ] = (MT

−dM−d)
−1MT

−d(Y −XT=1d β̃
∗
Yd

) .

We use the subscript −d notation to indicate that we no longer estimate the component d. Here,
M−d = [XT=1−d

; ϕ(XT=1β̃T )

Φ(XT=1β̃T )
] ∈ RNT=1×d and θ−d = [β̃Y−d

, ρ̃σ̃] ∈ Rd. Since XT=1d is nonzero

and M is full rank, it follows that E[θ−d|β̃Yd
= β̃∗

Yd
, X, T, Y ] is not constant in β̃∗

Yd
. Thus by

Proposition 3.2, constraining β̃Yd
reduces the variance of the parameters in θ−d (β̃Y ′

d
for d′ ̸= d and

ρ̃σ̃).

We will now show that both the prevalence and expertise constraints constrain a component of β̃Y .
Assuming the standard condition that columns of X are zero-mean except for an intercept column of
ones, the prevalance constraint fixes

EY [Y ] = EY [EX [EZ [Y |X,Z]]]

= EX [EZ [X
TβY + Z]]

= βY 0 ,

where βY 0 is the 0th index (intercept term) of βY . The expertise constraint also fixes a component
of β̃Y if ρ̃ and σ̃2 are fixed. This can be shown by algebraically rearranging equation 5 to yield

β̃Y = β̃T
σ̃2

ρ̃
− β∆

σ̃
√

σ̃2 − ρ̃2

ρ̃
.

While we derive our theoretical results for the Heckman correction model, in both our synthetic
experiments (§4) and our real-world case study (§5) we validate that our constraints improve parameter
inference beyond the special Heckman case.

C DERIVATION OF THE CLOSED-FORM UNIFORM UNOBSERVABLES MODEL

Conducting sampling for our general model described by equation 1 is faster if the distribution of
unobservables f and link functions hY and hT allow one to marginalize out Zi through closed-form
integrals, since otherwise Zi must be sampled for each datapoint i, producing a high-dimensional
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Figure S2: Results using synthetic data from the Bernoulli-sigmoid model with normal unobservables
and fixed σ2. The prevalence and expertise constraints each produce more precise and accurate
inferences on this synthetic data. We plot the median across 200 synthetic datasets. Errorbars denote
the bootstrapped 95% confidence interval on the median.

latent variable which slows computation and convergence. Many distributions do not produce closed-
form integrals when combined with a sigmoid or probit link function, which are two of the most
commonly used links with binary variables.5 However, we can derive closed forms for the special
uniform unobservables case described by equation 4.

Below, we leave the i subscript implicit to keep the notation concise. When computing the log
likelihood of the data, to marginalize out Z, we must be able to derive closed forms for the following
three integrals:

p(Y = 1, T = 1|X) =

∫
Z

p(Y = 1, T = 1|X,Z)f(Z)dZ

p(Y = 0, T = 1|X) =

∫
Z

p(Y = 0, T = 1|X,Z)f(Z)dZ

p(T = 0|X) =

∫
Z

p(T = 0|X,Z)f(Z)dZ ,

since the three possibilities for an individual datapoint are {Y = 1, T = 1}, {Y = 0, T = 1},
{T = 0}. To implement the prevalence constraint (which fixes the E[Y ]), we also need a closed form
for the following integral:

p(Y = 1|X) =

∫
Z

p(Y = 1|X,Z)f(Z)dZ .

For the uniform unobservables model with α = 1, the four integrals have the following closed forms,
where below we define A = eX

TβT and B = eX
TβY :

p(Y = 1, T = 1|X) =
1

σ (A−B)

(
σ (A−B)−A log

(
(B + 1)A−1

)
+A log

(
(Beσ + 1)A−1e−σ

)
+B log

(
(A+ 1)A−1

)
−B log

(
(Aeσ + 1)A−1e−σ

))
p(Y = 0, T = 1|X) =

1

σ (A−B)

((
− log

(
(A+ 1)A−1

)
+ log

(
(B + 1)A−1

)
+ log

(
(Aeσ + 1)A−1e−σ

)
− log

(
(Beσ + 1)A−1e−σ

))
A

)
p(T = 0|X) =

log
(
1 +A−1

)
− log

(
A−1e−σ + 1

)
σ

p(Y = 1|X) =
σ − log

(
1 +B−1

)
+ log

(
B−1e−σ + 1

)
σ

.

The integrals also have closed forms for other integer values of α (e.g., α = 2) allowing one to
perform robustness checks with alternate model specifications (see Appendix F.2 Figure S8).

5Specifically, we search over the distributions in McLaughlin (2001), combined with logit or probit links,
and find that most combinations do not yield closed forms.
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Figure S3: Results using synthetic data from the Bernoulli-sigmoid model with normal unobservables
and fixed α. The prevalence and expertise constraints each produce more precise and accurate
inferences on this synthetic data. We plot the median across 200 synthetic datasets. Errorbars denote
the bootstrapped 95% confidence interval on the median.

D SYNTHETIC EXPERIMENTS

We first validate that the prevalence and expertise constraints improve the precision and accuracy
of parameter inference for the Heckman model described in equation 2. We then extend beyond
this special case and examine various Bernoulli-sigmoid instantiations of our general model in
equation 1, which assume a binary outcome variable Y . With a binary outcome, models are known
to be more challenging to fit: for example, one cannot simultaneously estimate both α and σ2

(so we must fix either α or σ2), and models fit without constraints may fail to recover the correct
parameters (StataCorp, 2023; Van de Ven & Van Praag, 1981; Toomet & Henningsen, 2008). We
assess whether our proposed constraints improve model estimation even in this more challenging
case. Specifically, we extend beyond the Heckman model to the following data generating settings: (i)
uniform unobservables and fixed α, (ii) normal unobservables and fixed σ2; (iii) normal unobservables
and fixed α; and (iv) other more complex models. For the uniform model, we conduct experiments
only with fixed α (not fixed σ2) because, as discussed above, this allows us to marginalize out Z.

In all models, to incorporate the prevalence constraint into the model, we add a quadratic penalty to
the model penalizing it for inferences that produce an inferred E[Y ] that deviates from the true E[Y ].
To incorporate the expertise constraint into the model, we set the model parameters β∆d

to be equal
to 0 for all dimensions d to which the expertise constraint applies.

D.1 HECKMAN MODEL

We first conduct synthetic experiments using the Heckman model defined in equation 2. This model
is identifiable without any further constraints, thus we estimate parameters θ ≜ (ρ̃, σ̃2, β̃T , β̃Y ).

In the simulation, we use 5000 datapoints; 5 features (including the intercept column of 1s); X ,
βY , and βT drawn from unit normal distributions; and σ ∼ N (2, 0.1). We draw the intercept
terms βY0 ∼ N (−2, 0.1) and βT0 ∼ N (2, 0.1). We assume the expertise constraint applies to
β∆2 = β∆3 = β∆4 = 0. Thus, by rearranging equation 5, we fix β̃Y = β̃T

σ̃2

ρ̃ . When calculating

the results for β̃T and β̃Y , we do not include the dimensions along which we assume expertise since
these dimensions are assumed to be fixed for the model with the expertise constraint.

We show results in Figure S1. Both constraints generally produce more precise and accurate inferences
for all parameters relative to the unconstrained model. The only exception is β̃T , for which both
models produce equivalently accurate and precise inferences. This is consistent with our theoretical
results, which do not imply that the precision of inference for β̃T should improve.

D.2 UNIFORM UNOBSERVABLES MODEL

We now discuss our synthetic experiments using the Bernoulli-sigmoid model with uniform unob-
servables and α = 1 in equation 4. Our simulation parameters are similar to the Heckman model
experiments. We use 5000 datapoints; 5 features (including the intercept column of 1s); X , βY ,
and β∆ drawn from unit normal distributions; and σ ∼ N (2, 0.1). We draw the intercept terms
βY0 ∼ N (−2, 0.1) and β∆0 ∼ N (2, 0.1) to approximately match p(Y ) and p(T ) in realistic medical
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Figure S4: The prevalence and expertise constraints still improve parameter inference when qua-
drupling the number of features relative to Figure 2. Results are shown using synthetic data from
the Bernoulli-sigmoid model with uniform unobservables. Both constraints produce more precise
and accurate inferences on this synthetic data. We plot the median across 200 synthetic datasets.
Errorbars denote the bootstrapped 95% confidence interval on the median.

settings, where disease prevalence is relatively low, but a large fraction of the population is tested
because false negatives are more costly than false positives. We assume the expertise constraint
applies to β∆2

= β∆3
= β∆4

= 0. We show results in Figure 2. When calculating the results for
β∆, we do not include the dimensions along which we assume expertise since these dimensions are
assumed to be fixed for the model with the expertise constraint.

D.3 NORMAL UNOBSERVABLES MODEL

We also conduct synthetic experiments using the following Bernoulli-sigmoid model with normal
unobservables:

Zi ∼ N (0, σ2)

ri = XT
i βY + Zi

Yi ∼ Bernoulli(sigmoid(ri))

Ti ∼ Bernoulli(sigmoid(αri +XT
i β∆)) .

(6)

We show results for two cases: when σ2 is fixed and when α is fixed. Because this distribution of
unobservables does not allow us to marginalize out Z, it converges more slowly than the uniform
unobservables model and we must use a smaller sample size for computational tractability.

Fixed σ2: We use the same simulation parameters as the uniform model. We fix σ2 = 2 and we
draw α ∼ N(1, 0.1). We show results in Figure S2. Both the prevalence and expertise constraints
produce more precise and accurate inferences for all parameters relative to the unconstrained model.

Fixed α: We use the same simulation parameters as the uniform model, except we reduce the
number of datapoints to 200. We fix α = 1 and we draw σ2 ∼ N(2, 0.1). We show results in Figure
S3. Both the prevalence and expertise constraints produce more precise and accurate inferences for
all parameters relative to the unconstrained model.

D.4 MORE COMPLEX MODELS

To show our constraints are useful with more complex models, we ran two additional synthetic
experiments on the Bernoulli-sigmoid model with uniform unobservables. First, we demonstrated
applicability to higher-dimensional features. We show results in Figure S4. Even after quadrupling the
number of features (which increases the runtime by a factor of three), both constraints still improve
precision and accuracy. Secondly, we evaluate a more complex model with pairwise nonlinear
interactions between features. We show results in Figure S5. Again both constraints generally
improve precision and accuracy. We note our implementation relies on MCMC which is known to
be less scalable than approaches like variational inference (Wainwright & Jordan, 2008) and would
likely not scale to very high-dimensional features. However, our approach does not intrinsically rely
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Figure S5: The prevalence and expertise constraints still improve parameter inference even when
using pairwise nonlinear interactions between features (rather than only linear terms, as shown in
Figure 2). Results are shown using synthetic data from the Bernoulli-sigmoid model with uniform
unobservables. Both constraints generally produce more precise and accurate inferences on this
synthetic data. We plot the median across 200 synthetic datasets. Errorbars denote the bootstrapped
95% confidence interval on the median.

on MCMC, and incorporating more scalable estimation methods is a natural direction for future
work.6

E UK BIOBANK DATA

Label processing: In the UK Biobank (UKBB), each person’s data is collected at their baseline
visit. The time period we study is the 10 years preceding each person’s baseline visit. Ti ∈ {0, 1}
denotes whether the person receives a mammogram in the 10 year period. Yi ∈ {0, 1} denotes
whether the person receives a breast cancer diagnosis in the 10 year period. We verify that very
few people in the dataset have T = 0 and Y = 1 (i.e., are diagnosed with no record of a test):
p(Y = 1|T = 0) = 0.0005. We group these people with the untested T = 0 population, since they
did not receive a breast cancer test.

Feature processing: We include features which satisfy two desiderata. First, we use features that
previous work has found to be predictive of breast cancer (NIH National Cancer Institute, 2017;
Komen, 2023; Yanes et al., 2020). Second, since features are designed to be used in predicting Ti and
Yi, they must be measured prior to Ti and Yi (i.e., at the beginning of the 10 year study period). Since
the start of our 10 year study period occurs before the date of data collection, we choose features that
are either largely time invariant (e.g. polygenic risk score) or that can be recalculated at different
points in time (e.g. age). The full list of features that we include is: breast cancer polygenic risk
score, previous biopsy procedure (based on OPCS4 operation codes), age at first period (menarche),
height, Townsend deprivation index7, race (White, Black/mixed Black, and Asian/mixed Asian), and
age at the beginning of the study period (<35, 35-39, and 40-45). We normalize all features to have
mean 0 and standard deviation 1.

Sample filtering: We filtered our sample based on four conditions. (i) We removed everyone
without data on whether or not they received breast cancer testing, which automatically removed all
men because UKBB does not have any recorded data on breast cancer tests for men. (ii) We removed
everyone who was missing data (e.g. responded “do not know”) for breast cancer polygenic risk
score; previous biopsy procedure; menarche; height; Townsend deprivation index; race; age; duration
of moderate physical activity; cooked, salad, and raw vegetable intake; weight; use of the following
medication: aspirin, ibuprofen, celebrex, and naproxen; family history of breast cancer; and previous
detection of carcinoma in breast. (iii) We removed everyone who did not self report being of White,
Black/mixed Black, or Asian/mixed Asian race. (iv) We remove patients who were diagnosed with
breast cancer before the start of our 10 year study period, as is standard in previous work (Zink et al.,
2023). (v) We removed everyone above the age of 45 at the beginning of the observation period, since

6We use the same simulation parameters as our standard uniform model experiments. We set the expertise
constraint to apply to a random subset of 60% of the features to match the standard uniform model experiments
where expertise is assumed for 3 out of the 5 features.

7The Townsend deprivation index is a measure of material deprivation that incorporates unemployment,
non-car ownership, non-home ownership, and household overcrowding (Townsend et al., 1988).
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the purpose of our case study is to assess how the model performs in the presence of the distribution
shift induced by the fact that young women tested for breast cancer are non-representative.8

Model fitting: We divide the data into train and test sets with a 70-30 split. We use the train set to
fit our model. We use the test set to validate our risk predictions on the tested population (T = 1).
We validate our risk predictions for the T = 1 population on a test set because the model is provided
both Y and X for the train set, so using a test set replicates standard machine learning practice.
We do not run the other validations (predicting risk among the T = 0 population and inference of
unobservables) on a test set because in all these cases the target variable is unseen by the model
during training. Overfitting concerns are minimal because we use a large dataset and few features.

Inferred risk predicts breast cancer diagnoses among the untested population: When verifying
that inferred risk predicts future cancer diagnoses for the people who were untested (Ti = 0) at the
baseline, we use data from the three UKBB follow-up visits. We only consider the subset of people
who attended at least one of the follow-up visits. We mark a person as having a future breast cancer
diagnosis if they report receiving a breast cancer diagnosis at a date after their baseline visit.

Inferred unobservables correlate with known unobservables: We verify that across people, our
inferred posterior mean of unobservables correlates with a true unobservable—whether the person
has a family history of breast cancer. We define a family history of breast cancer as either the person’s
mother or sisters having breast cancer. We do not include this data as a feature because we cannot be
sure that the measurement of family history precedes the measurement of Ti and Yi. This allows us
to hold out this feature as a validation.

IRB: Our institution’s IRB determined that our research did not meet the regulatory definition of
human subjects research. Therefore, no IRB approval or exemption was required.

F ADDITIONAL EXPERIMENTS ON CANCER DATA

Here we provide additional sets of experiments. We provide a comparison to various baseline models
(Appendix F.1) and robustness experiments (Appendix F.2).

F.1 COMPARISON TO BASELINE MODELS

We provide comparisons to three different types of baseline models: (i) a model trained solely on the
tested population, (ii) a model which assumes the untested group is negative, and (iii) other selective
labels baselines.

Comparison to models trained solely on the tested population: The first baseline that we
consider is a model which estimates p(Yi = 1|Ti = 1, Xi): i.e., a model which predicts outcomes
without unobservables using only the tested population.9 This is a widely used approach in medicine
and other selective labels settings. In medicine, it has been used to predict COVID-19 test results
among people who were tested (Jehi et al., 2020; McDonald et al., 2021); to predict hypertrophic
cardiomyopathy among people who received gold-standard imaging tests (Farahani et al., 2020);
and to predict discharge outcomes among people deemed ready for ICU discharge (McWilliams
et al., 2019). It has also been used in the settings of policing (Lakkaraju et al., 2017), government
inspections (Laufer et al.), and lending (Björkegren & Grissen, 2020).

8To confirm that our predictive performance remains good when looking at patients of all ages, we conduct
an additional analysis fitting our model on a dataset without the age filter, but keeping the other filters. (For
computational tractability, we downsample this dataset to approximately match the size of the original age-
filtered dataset.) We fit this dataset using the same model as that used in our main analyses, but add features to
capture the additional age categories (the full list of age categories are: <35, 35-39, 40-44, 45-49, 50-54, ≥55).
We find that if anything, predictive performance when using the full cohort is better than when using only the
younger cohort from our main analyses in §5.2. Specifically, the model’s quintile ratio is 4.6 among the tested
population (Ti = 1) and 7.0 among the untested population (Ti = 0) that attended a follow-up visit.

9We estimate this using a logistic regression model, which is linear in the features. To confirm that non-linear
methods yield similar results, we also fit random forest and gradient boosting classifiers. These methods achieve
similar predictive performance to the linear model and they also predict an implausible age trend.

26



Published as a conference paper at ICLR 2024

As shown in Figure S6, we find that the model trained solely on the tested population learns that
cancer risk first increases with age and then falls sharply, contradicting prior epidemiological and
physiological evidence (Komen, 2023; Cancer Research UK; US Cancer Statistics Working Group
et al., 2013; Campisi, 2013). We see this same trend for a model fit without a prevalence constraint in
§5.4. This indicates that these models do not predict plausible inferences consistent with prior work.
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Figure S6: We run three sets of baseline mod-
els: (i) models trained solely on the tested pop-
ulation, estimating p(Yi = 1|Ti = 1, Xi); (ii)
models which treat the untested group as nega-
tive, estimating p(Ti = 1, Yi = 1|Xi); and (iii)
other selective labels baselines (IPW and hard
pseudo labels). Both IPW and the model estimat-
ing p(Yi = 1|Ti = 1, Xi) learn that cancer risk
first increases and then decreases with age, contra-
dicting prior literature. This implausible inference
occurs because the tested population has the same
misleading age trend (right plot). In contrast, our
Bayesian model learns a more plausible age trend
(left plot, blue line). Hard pseudo labels and the
model estimating p(Ti = 1, Yi = 1|Xi) also learn
plausible age trends, but they underperform our
Bayesian model in predictive performance.

Comparison to a model which treats the
untested group as negative: We also con-
sider a baseline model which treats the untested
group as negative; this is equivalent to predict-
ing p(Ti = 1, Yi = 1|Xi), an approach used in
prior selective labels work (Shen et al., 2021;
Ko et al., 2020; Rastogi et al., 2023). We find
that, though this baseline no longer learns an im-
plausible age trend, it underperforms our model
in terms of AUC (AUC is 0.60 on the tested pop-
ulation vs. 0.63 for our model; AUC is 0.60 on
the untested population vs. 0.63 for our model)
and quintile ratio (quintile ratio on the tested
population is 2.4 vs. 3.3 for our model; quin-
tile ratio for both models is 2.5 on the untested
population). This baseline is a special case of
our model with the prevalence constraint set to
p(Y = 1|T = 0) = 0, an implausibly low
prevalence constraint. In light of this, it makes
sense that this baseline learns a more plausible
age trend, but underperforms our model overall.

Comparison to other selective labels base-
lines: We also consider two other common
selective labels baselines (Rastogi et al., 2023).
First, we predict hard pseudo labels for the
untested population (Lee, 2013): i.e., we train a
classifier on the tested population and use its out-
puts as pseudo labels for the untested population.
Due to the low prevalence of breast cancer in
our dataset, the pseudo labels are all Yi = 0, so
this model is equivalent to treating the untested
group as negative and similarly underperforms our model in predictive performance. Second, we
use inverse propensity weighting (IPW) (Shimodaira, 2000): i.e., we train a classifier on the tested
population but reweight each sample by the inverse propensity weight 1

p(Ti=1|Xi)
.10 As shown in

Figure S6, this baseline also learns the implausible age trend that cancer risk first increases and
then decreases with age: this is because merely reweighting the sample, without encoding that the
untested patients are less likely to have cancer via a prevalence constraint, is insufficient to correct
the misleading age trend.

F.2 ROBUSTNESS CHECKS FOR THE BREAST CANCER CASE STUDY

Our primary breast cancer results (§5) are computed using the Bernoulli-sigmoid model in equation 4.
In this model, unobservables are drawn from a uniform distribution, α is set to 1, and the prevalence
constraint is set to p(Y = 1) = 0.02 based on previously reported breast cancer incidence statis-
tics (Cancer Research UK). In order to assess the robustness of our results, we show that they remain
consistent when altering all three of these aspects to plausible alternative specifications.

Consistency across different distributions of unobservables: We compare the uniform unobserv-
ables model (equation 4) to the normal unobservables model (equation 6). As described in Appendix

10We clip p(Ti = 1|Xi) to be between [0.05, 0.95], consistent with previous work.
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Figure S7: We compare the results from the uniform unobservable model in equation 4 (black)
and the normal unobservable model in equation 6 (blue). Figure S7a: The estimated βY and β∆

coefficients remain similar for both models, with similar trends in the point estimates and overlapping
confidence intervals. Figure S7b: Both models predict highly correlated values for p(Yi|Xi) and
p(Ti|Xi). Perfect correlation is represented by the dashed line.
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Figure S8: We compare the results from the uniform unobservable model with α = 1 (black) and
α = 2 (blue). Figure S8a: The inferred βY and β∆ coefficients are generally very similar, with
similar trends in the point estimates and overlapping confidence intervals. The only exception is the
estimate of β∆ for genetic risk, which is explained by the fact that the prediction of β∆ depends on
the value of α. Figure S8b: Both models predict highly correlated values for p(Yi|Xi) and p(Ti|Xi).
Perfect correlation is represented by the dashed line.
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Figure S9: We compare the results from the uniform unobservables model with a prevalence constraint
of E[Y ] = 0.02 informed by cancer statistics (Cancer Research UK) (black), a prevalence constraint
which corresponds to 50% less of the untested population having the disease (blue), and a prevalence
constraint which corresponds to 50% more of the untested population having the disease (orange).
Figure S9a: The predictions for all three models are similar as seen by the similar trends in the point
estimates and overlapping confidence intervals. Figure S9b: All three models predict correlated
values for p(Yi|Xi) and p(Ti|Xi). Perfect correlation is represented by the dashed line.
D, the normal unobservables model does not allow us to marginalize out Zi and thus converges more
slowly. Hence, for computational tractability, we run the model on a random subset of 1

8 of the full
dataset. In Figure S7a, we see that the estimated coefficients for both models remain similar, with
similar trends in the point estimates and overlapping confidence intervals. Figure S7b shows that the
inferred values of p(Yi|Xi) and p(Ti|Xi) for each data point also remain correlated, indicating that
the models infer similar testing probabilities and disease risks for each person.

Consistency across different α: We compare the uniform unobservables model with α = 1 to a
uniform unobservables model with α = 2. In Figure S8a, we see that the inferred coefficients for
both models are generally very similar, with similar trends in the point estimates and overlapping
confidence intervals. The only exception is β∆ for the genetic risk score. While both models find a
negative β∆ for the genetic risk score, indicating genetic information is underused, the coefficient
is less negative when α = 1. This difference occurs because altering α changes the assumed
relationship between the risk score and the testing probability under purely risk-based allocation, and
thus changes the estimated deviations from this relationship (which β∆ captures). Past work also
makes assumptions about the relationship between risk and human decision-making (Pierson, 2020;
Simoiu et al., 2017; Pierson et al., 2018; 2020). We can restrict the plausible values of α, and thus
β∆, using the following approaches: (i) restricting α to a range of reasonable values based on domain
knowledge; (ii) setting α to the value predicted by a model with σ2 pinned; or (iii) fitting α and σ2 in
a model with non-binary Yi outcomes when both parameters can be simultaneously identified.

To confirm model consistency, we compare the inferred values of p(Yi|Xi) and p(Ti|Xi) for each
data point. As shown in Figure S8b, these estimates remain highly correlated across both models,
indicating that the models infer similar testing probabilities and disease risks for each person.

Consistency across different prevalence constraints: The prevalence constraint fixes the estimate
of p(Y = 1). Because the proportion of tested individuals who have the disease, p(Y = 1|T = 1),
is known from the observed data, fixing p(Y = 1) is equivalent to fixing the proportion of untested
individuals with the disease, p(Y = 1|T = 0). For the model in §5, we set the prevalence constraint
to 0.02 based on cancer incidence statistics (Cancer Research UK). However, disease prevalence may
not be exactly known (Manski & Molinari, 2021; Manski, 2020; Mullahy et al., 2021). To check the
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robustness of our results to plausible variations in the prevalence constraint, we compare to two other
prevalence constraints that correspond to 50% lower and 50% higher values of p(Y = 1|T = 0).11

This yields overall prevalence constraints of E[Y ] ≈ 0.018 and 0.022, respectively. In Figure S9a,
we compare the βY and β∆ coefficients for these three different prevalence constraints. Across all
three models, the estimated coefficients remain similar, with similar trends in the point estimates
and overlapping confidence intervals. In particular, the age trends also remain similar in all three
models, in contrast to the model fit without a prevalence constraint (§5.4). In Figure S9b, we compare
the inferred values of p(Yi|Xi) and p(Ti|Xi) for each data point and confirm that these estimates
remain highly correlated across all three models, indicating that the models infer very similar testing
probabilities and disease risks for each person.

11While our results are robust to significant alterations of the prevalence constraint, we do note that if the
model is run with a wildly misspecified prevalence constraint — for example, p(Y = 1|T = 0) = 0 — it
could produce incorrect results. To avoid this issue, our Bayesian framework also accommodates approximate
constraints, if the prevalence is only approximately known.
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