
A PSEUDOCODE FOR FROSSL

for x in loader:
# augment the image
x_a, x_b = augment(x)

# pass through network f to get embeddings
z_a = f(x_a)
z_b = f(x_b)
N, d = Z_a.shape

# center embeddings
Z_a = Z_a - Z_a.mean(0)
Z_b = Z_b - Z_b.mean(0)

# normalize dimensions to sqrt(D) std.
Z_a = (D**0.5) * (Z_a / Z_a.norm())
Z_b = (D**0.5) * (Z_b / Z_b.norm())

# calculate invariance (MSE) term
invariance_loss = MSELoss(Z_a, Z_b)

# calculate variance (Frobenius norm) term
frobenius_a = torch.log(torch.norm(Z_a.T @ Z_a, ord=’fro’))
frobenius_b = torch.log(torch.norm(Z_b.T @ Z_b, ord=’fro’))
variance_loss = frobenius_a + frobenius_b

# FroSSL loss
loss = invariance_loss + variance_loss
loss.backward()
optimizer.step()

B EXPERIMENTAL DETAILS

B.1 STEPWISE CONVERGENCE EXPERIMENTAL DETAILS

We trained ResNet18 on STL10 using SGD with lr = 0.1 and a batch size of 256. Training occurred
for only 5 epochs because we were interested in stepwise behaviors early during training.

• Barlow Twins We used λ = 0.05 as recommended by Zbontar et al. (2021) and d = 1024.
• VICReg We used λ = 25, µ = 25, ν = 1 as recommended by Bardes et al. (2022).
• SimCLR We used temperature τ = 0.2 and d = 256.
• FroSSL We used d = 1024.

C ABLATION GRAPHS
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D TRAINING DYNAMICS OF FROSSL

D.1 GRADIENT WITH LINEAR NETWORK

Given the empirical improvements to optimization speed observed in the previous section, it is of
interest to study the theoretical training dynamics of FroSSL in comparison to other SSL criterion.
Inspired by the approach taken in Simon et al. (2023), we examine how FroSSL behaves in the linear
network regime.

First, we use a simplified variant of FroSSL given by:

L = ||ZT
1 Z1 − Id||2F + ||ZT

2 Z2 − Id||2F + ||Z1 − Z2||2F (10)
As compared to Equation (6), the main changes are: the mean-squared error is replaced with an
equivalent formulation in terms of Frobenius norms, the logs are removed because they lead to
nonlinear ODEs later that are nontrivial to solve, and batchnorm is replaced with a distance to
Id. The variance terms of Equation (10) are similar to Barlow Twins, although they are defined
on covariance matrices rather than cross-correlation matrices. Additionally, Equation (10) bears
resemblance to a VICReg variant used to study optimal SSL representations through the lens of
graph Laplacians (Balestriero & LeCun, 2022). However, the VICReg variant considers a covariance
matrix of a batch containing both Z1 and Z2, rather than treating them individually as we do.

Second, we assume our networks are a linear mapping W1,W2 ∈ Rdxm. In particular, we present
a general analysis where each branch is not restricted to share weights. Because implicitly Z1 =
f(X1), we can simplify Equation (10) as

L = ||W1Γ1W
T
1 − Id||2F + ||W2Γ2W

T
2 − Id||2F + ||X1W

T
1 −X2W

T
2 ||2F (11)

where we have defined the data covariance Γ1 = XT
1 X1 ∈ Rmxm. Because we wish to understand

the training dynamics of W1 and W2, we define their gradients as:

dW1

dt
= ∇W1

L = −2(W1Γ1 + 2W2X
T
2 X1 + 2W1Γ1W

T
1 W1Γ1) (12)

dW2

dt
= ∇W2

L = −2(W2Γ2 + 2W1X
T
1 X2 + 2W2Γ2W

T
2 W2Γ2) (13)

We show how these gradients were derived in Appendix E.3. Because of the difficulty of solving
Equations (12) and (13) for arbitrary choices of W , in the subsequent section we choose particular
W1 and W2 that aids analysis.

D.2 ALIGNING W WITH THE DATA COVARIANCE

For brevity, we describe the initialization for W1, though W2 follows identically. Because we train
with gradient descent, we parameterize W1 in terms of time t as W1(t). As described in Simon et al.
(2023), one powerful choice of W1(0) when initializing W1 = W1(0) is setting the right singular
vectors of W1 to be the top eigenvectors of the data covariance Γ1. This type of initialization is
called “aligned initialization”. One critical assumption henceforth is that for finite batch sizes the
data covariances per view, Γ1 and Γ2, share eigenvectors but perhaps have differing eigenvalues.
This is reasonable because X1 and X2 are drawn from the same distribution and are augmented
with the same random transforms. Next, we define the eigendecompositions of Γ1,Γ2, and W1(0)
as:

Γ1 = V D1V
T (14)

Γ2 = V D2V
T (15)

W1(0) = U1S1(0)V̂
≤d (16)

where U1 ∈ Rdxd are arbitrary orthonormal matrices, V̂ ≤d ∈ Rdxm are the top d eigenvectors
of Γ1 and Γ2, and S1(0) ∈ Rdxm are diagonal matrices of singular values such that S1(0) =
diag(s1,1(0), · · · , s1,d(0)) with s1,j(0) > 0. The matrices U1 and S1(0) may be thought of as
our initial random parameters, with V̂ ≤d placing constraints on the final orientation of W (0). The
matrices U2(0) and S2(0) are defined similarly for W2(0). The training dynamics of W1(0) from
Equation (12) are given by the following proposition:
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Proposition D.1 (Aligned Initialization). If W1 is initialized by (16), with W2 being initialized
similarly, then the singular vectors of W1 do not change over time. The W1 parameterized by t
given by

W1(t) = U1S(t)V̂
≤d (17)

and the singular values evolve according to

s1,j(t) =

√√√√√ 2
√

λjγj − λj

(2λ2
j −

λj−2
√

λjγj

s21,j(0)
) exp

[
8t
√

λjγj − 4λjt
]
− 2λ2

j

(18)

Proof. A full proof is given in Appendix E.4. A quick outline is that plugging (17) into (12) gives an
ordinary differential equation (ODE). Solving this ODE as an initial value problem gives (18).

Proposition D.2 (Small Initialization). If W1,W2 have initial weights drawn from N(0, σ2), for
sufficiently small σ, then they have the same training dynamics of aligned initialization as described
in Proposition D.1. This is proven in Simon et al. (2023).

E PROOFS

E.1 PROOF OF PROPOSITION 3.1

We start with rewriting the argmin of Equation (6) as such:

argmin
Z1,Z2

LFroSSL = argmin
Z1,Z2

[
log(||ZT

1 Z1||2F ) + log(||ZT
2 Z2||2F ) + LMSE(Z1, Z2)

]
= argmin

Z1,Z2

[
||ZT

1 Z1||2F + ||ZT
2 Z2||2F + LMSE(Z1, Z2)

]
Without loss of generality, assume that each dimension has unit variance. Then both covariance
matrices have 1 in each diagonal element.

= argmin
Z1,Z2

[
||ZT

1 Z1 − diag(ZT
1 Z1)||2F + ||ZT

2 Z2 − diag(ZT
2 Z2)||2F + 2D + LMSE(Z1, Z2)

]
= argmin

Z1,Z2

[Lnc(Z1) + Lnc(Z2) + 2D + LMSE(Z1, Z2)]

Thus we have that the embeddings that minimize FroSSL also minimize the non-contrastive losses
Lnc for both views.

E.2 PROOF OF PROPOSITION 3.2

With Property 2, we rewrite Equation (6) to use Gram matrices rather than covariance matrices:

LFroSSL = log(||ZT
1 Z1||2F ) + log(||ZT

2 Z2||2F ) + LMSE(Z1, Z2)

= log(||Z1Z
T
1 ||2F ) + log(||Z2Z

T
2 ||2F ) + LMSE(Z1, Z2)

Assuming that each embedding is normalized to have unit norm, then both Gram matrices have 1 in
each diagonal element. Then the rest of the proof then follows similarly to Proposition 3.1.

E.3 DERIVATION OF FROSSL VARIANT GRADIENT

We start with Equation (11) and derive each term individually.

Term 3: The third term of (11), which corresponds to the MSE invariance term of (6), can be
rewritten as:

||X1W
T
1 −X2W

T
2 ||2F = trace((X1W

T
1 −X2W

T
2 )T (X1W

T
1 −X2W

T
2 )) (19)

= trace(W1X
T
1 X1W

T
1 +W2X

T
2 X2W

T
2 − 2W2X

T
2 X1W

T
1 ) (20)

= trace(W1X
T
1 X1W

T
1 ) + trace(W2X

T
2 X2W

T
2 )− 2trace(W2X

T
2 X1W

T
1 )
(21)
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Using Equations 102 and 111 in the Matrix Cookbook (Petersen et al., 2008), we get the gradient as

∇W1 ||X1W
T
1 −X2W

T
2 ||2F = 2W1X

T
1 X1 − 2W2X

T
2 X1

= 2W1Γ1 − 2W2X
T
2 X1

(22)

∇W2
||X1W

T
1 −X2W

T
2 ||2F = 2W2X

T
2 X2 − 2W1X

T
1 X2

= 2W2Γ2 − 2W1X
T
1 X2

(23)

Term 1: The first term of (11), which corresponds to the argument of the View 1 logarithm of (6),
is derived using Equation 6 of Simon et al. (2023). In particular, we get

∇W1
||W1Γ1W

T
1 − Id||2F = −4(W1Γ1W

T
1 − Id)W1Γ1 (24)

∇W2 ||W1Γ1W
T
1 − Id||2F = 0 (25)

Term 2: The second term of (11) follows similarly to the first term.
∇W1 ||W2Γ2W

T
2 − Id||2F = 0 (26)

∇W2
||W2Γ2W

T
2 − Id||2F = −4(W2Γ1W

T
2 − Id)W2Γ2 (27)

Combining Everything We can now combine all of our gradients to find (12) and (13).

∇W1
L = 2W1Γ1 − 2W2X

T
2 X1 − 4(W1Γ1W

T
1 − Id)W1Γ1

= −2(W1Γ1 + 2W2X
T
2 X1 + 2W1Γ1W

T
1 W1Γ1)

(28)

∇W2L = 2W2Γ2 − 2W1X
T
1 X2 − 4(W2Γ2W

T
2 − Id)W2Γ2

= −2(W2Γ2 + 2W1X
T
1 X2 + 2W2Γ2W

T
2 W2Γ2)

(29)

E.4 DERIVATION OF LINEAR LAYER GRADIENT W.R.T TIME

Plugging (17) into (12), we immediately get

dW1

dt
= 2US1(t)D1V̂

⊙≤d − 4US1(t)(D
⊙ 1

2
1 ⊙D

⊙ 1
2

2 )V̂ ≤d

− 4US3
1(t)D

2
1V̂

≤d
(30)

Next, one should recognize that all terms are left-multiplied by U and right-multiplied by V̂ ≤d. This
lets us combine everything into a more compact form.

dW

dt
= 2U

[
S1(t)

(
D1 − 2(D

⊙ 1
2

1 ⊙D
⊙ 1

2
2 )− 2S2

1(t)D
2
1

)]
V̂ ≤d (31)

It can be seen in (31) that the singular vectors of W remain unchanged over time. The only changes
are the singular values which are given in the brackets. The dynamics of the singular values over
time constitute an ODE given by

s′1,j(t) = 2s1,j(t)
(
λj − 2

√
λjγj − 2s21,j(t)λ

2
j

)
(32)

where λj , γj are the j-th largest eigenvalues of D1, D2, respectively. One can find the general
solution to this ODE using their favorite ODE solver. It gives a solution in the form:

s1,j(t) =

√√√√ 2
√

λjγj − λj

exp
[
2(2

√
λjγj − λj)(c1 + 2t)

]
− 2λ2

j

(33)

where c1 is some constant. We can find c1 by solving the initial value problem given by our initial
S1 matrix. Thus (33) can be rewritten as:

s1,j(t) =

√√√√√ 2
√

λjγj − λj

(2λ2
j −

λj−2
√

λjγj

s21,j(0)
) exp

[
8t
√

λjγj − 4λjt
]
− 2λ2

j

(34)
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