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Abstract

Anti-money laundering (AML) is a critical challenge
for the global financial sector, and deep neural networks
have become an essential tool for AML monitoring.
However, existing black-box models often lack explain-
ability and fail to provide in-depth analysis of the intent
behind behaviors. The method proposed in this paper
constructs a Bayesian network for the AML problem
by injecting counterfactual examples into the dataset to
explain the black-box model through inference. In addi-
tion, the method use backward inference to uncover the
intent behind anomalous transaction behaviors. Experi-
ments conducted on various AML models and datasets
show that our approach provides model-agnostic expla-
nations and can infer the intrinsic intent of money laun-
derers, providing valuable insights for decision-makers.

Introduction

The issue of money laundering has consistently represented
a substantial challenge within the financial sectors of coun-
tries across the globe. The United Nations defined money
laundering in the 1988 Vienna Convention as the process
of transferring or transmitting property with the knowledge
that it is derived from illegal sources, in order to conceal
or disguise its illicit origin, or to assist any person involved
in criminal behavior in evading legal consequences.(Al-
Suwaidi and Nobanee| 2020) A report by the World Bank
indicates that approximately 2 to 5 percent of global GDP
(equivalent to approximately $800 billion to $2 trillion) is
laundered annually through illicit means. Money launder-
ing is frequently associated with criminal activities such as
drug trafficking, terrorism financing, and human traffick-
ing.(Corselli, 2020) The United Nations Office on Drugs and
Crime (UNODC) estimates that the global income from the
transnational drug trade reaches several hundred billion dol-
lars annually, with these funds often flowing into the formal
financial system through money laundering behaviors.

The advent of Al technology has led to the emergence of
Al predictors as a key tool for the monitoring of money laun-
dering anomalies.(de Jesus Rocha-Salazar, Segovia-Vargas,
and del Mar Camacho-Minano, |2021)) Nevertheless, the reli-
abilty of these predictors has become a significant financial
concern, given the heightened security and privacy concerns
surrounding their use. This is the explainability problem

faced by many black-box models, or XAI. Because black-
box models are often not transparent, even if they perform
well, decision makers do not have access to the decision-
making mechanisms within the model, which can raise se-
rious safety or fairness issues if the model fails. Like figure
[[] One potential solution to the XAI problem is to utilise
Al models that are inherently explainable, such as linear re-
gression models or decision trees.However, for tasks that use
black-box models, it is necessary to explain the results af-
ter the decision is made. Using model-agnostic explanation
methods allows for interpreting different models perform-
ing the same task. By using counterfactuals and probabilis-
tic graphs, the existing model can be abstracted, allowing for
an understanding of the impact of each input on the decision
outcome.
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Figure 1: Black-box model is a "wall”

Another problem in detecting money laundering is that
criminals are very few in number compared to the general
population, which makes money laundering transactions and
accounts very rare and difficult to identify in all the data. Ob-
viously, a large transaction can easily attract the attention of
banks, but criminals today have many ways to deceive regu-
lators, such as replacing a single large transaction with many
scattered small transactions, which can be checked by pat-
tern matching, like Figure [2] but the large volume and com-
plexity of transaction data make it difficult to try to identify
money laundering patterns. By combining domain knowl-
edge and causal reasoning, our method can not only explain
the model’s decisions but also infer the criminal’s money
laundering intent from the behavioral data.
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Figure 2: Money laundering patterns

Related Work

There are many machine learning anomaly detection meth-
ods for anti-money laundering, as summarized in (Chen
et al., 2018), including decision trees, random forests,
and support vector machines. Recent studies have increas-
ingly focused on graph-based and neural network ap-
proaches(Pourhabibi et al., |2020), such as (Weber et al.,
2019), which uses graph neural networks to address Bit-
coin money laundering, and (Lo et al.,2023)), which employs
self-supervised graph neural networks for money laundering
analysis. However, these high-performance models are often
opaque black-box models that lack explainability.

In the field of explainable artificial intelligence (XAI),
models such as decision trees provide inherent explainabil-
ity. For black-box models, post hoc explanation methods
have been proposed, such as (Ribeiro, Singh, and Guestrin,
2016), which suggests using LIME to explain different clas-
sification models, and (Lundberg and Lee, |2017), which de-
fines a game-theoretic explanation framework, SHAP. Ad-
ditionally, (Wachter, Mittelstadt, and Russell, |2017b)) intro-
duces the use of counterfactual explanations, which describe
the minimal changes required to achieve a desired outcome,
a concept that forms one of the theoretical foundations of
this paper. The explainability of money laundering models
has also garnered attention from researchers. For example,
(Konstantinidis and Gegov,|2024) combines deep neural net-
works (DNNs) with SHAP to improve the transparency of
anti-money laundering tasks, while (Li et al.,2024)) employs
a similar approach, using SHAP for post hoc explanations in
anti-money laundering tasks.

Methodology
Overview

In the methodology of this paper, we first process the data.
On the one hand, we adapt it to the probabilistic graph
through discretization. On the other hand, we select anoma-
lous or near-anomalous data from it, which will be used
to generate counterfactual samples with different levels of
intervention according to the statute. (Schulam and Saria,
2017)The reason for using counterfactual samples to inter-
act with the model is that starting from the anomalies allows
us to obtain the decision boundaries more efficiently and re-
duces the interference of a large amount of invalid data in
PGM. At the same time, the PGM adds knowledge of money
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Figure 3: Counterfactual based probabilistic graphs for ex-
plainable money laundering detection

laundering strategies based on causal structure and domain
knowledge and uses this to infer the intent hidden behind the
transaction behavior.

Counterfactual

The main question of Counterfactual is: "How would the
model’s prediction change if certain features of the in-
put were different?” (Wachter, Mittelstadt, and Russell,
2017a)Counterfactual explanations are part of causal infer-
ence methods,We define the counterfactual as follow:
Given a trained black-box model f : X — Y, where X is
the input space and Y is the output space, let xo € X be a
specific input instance, and yp = f(xg) be the model’s pre-
diction for that input. The goal of counterfactual generation
is to find a new input x* such that:

f(x™) # f(xo) and d(x*,xp) is minimized
Where d(x’, xp) is the distance between the original instance
xo and the counterfactual instance x’.The primary objective
of counterfactual generation is to minimize the difference
d(xg,x*) between the original instance xo and the generated
counterfactual instance x*, while ensuring that the model’s
prediction changes, i.e., f(x*) # f(xo). This can be formu-
lated as the following optimization problem:

X" = arg min (d(x’,x0) + 4 - I(f(x) # f(x0)))

Where:d(x’, xo) is the distance between the original instance
xo and the counterfactual instance x’.

* A is a regularization parameter that controls the trade-off
between the distance and the prediction change.

« I(f(x") # f(x0)) is an indicator function that is 1 if
f(&x’) # f(xo), ensuring that the counterfactual instance
leads to a different model prediction.

Consider a money laundering detection model f(x),
where xo represents a customer’s account behavior data.
The model predicts whether the customer is involved in
money laundering. If the model predicts that a customer
Xo is involved in money laundering (i.e., f(xg) = 1), we
might want to generate a counterfactual instance x* such
that f(x*) = 0 (i.e., the model predicts the customer is not
involved in money laundering), while minimizing the differ-
ence between x* and xg. The generated counterfactual in-
stance x* helps the PGM understand which account behav-
iors are critical in causing the model to change its predic-
tion.



Probabilistic Graphical Models

Probabilistic Graphical Models (PGMs) are models that rep-
resent and reason about variables and their dependencies or
causal relationships using a graph structure. PGMs include
both directed and undirected graphs, where directed graphs
can express causal relationships, while undirected graphs
only represent dependencies. In cases where the structure
is not well-defined, generating a PGM requires structural
learning. In the task of anti-money laundering, we combine
expert knowledge and data classification to construct a di-
rected acyclic Bayesian network(Heckerman, Geiger, and
Chickeringl [1995), which serves as the structure for our
probabilistic graphical model.
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Figure 4: Causal model of money laundering

In this graph structure, X represents the user’s transac-
tion behavior, and Y represents the money laundering detec-
tion outcome. There exists a direct causal relationship be-
tween these two variables. H represents the account’s his-
tory of violations and warnings, indicating the risk level of
the account based on its past activities, which serves as a
reference for the money laundering detection outcome. E de-
notes the transaction environment, such as the currency and
the and countries involved in transactions. Different trans-
action environments can influence the detection results, as
varying levels of regulatory control in different regions can
affect user transaction patterns. Z represents the evasion in-
tent, which refers to whether the trader intentionally seeks
to engage in money laundering while avoiding regulatory
oversight through their transaction behavior. The intent is
typically not observable in the data, but through the coun-
terfactual sample generation method mentioned earlier, we
can infer it. Since “avoiding regulation” aligns with the goal
of generating counterfactual examples, it is reasonable to
treat the counterfactual samples as “money laundering ac-
tivities that successfully evade regulation.” This approach
distinguishes counterfactual data from regular transactions,
providing a meaningful way to capture the intent.

In the case of a known structure, the parameters of the
probabilistic graphical model are learned, which involves
obtaining the conditional probability distributions (CPD).
Since we have discretized data such as total transaction
amounts (e.g., using transaction volume binning), the ini-
tial distribution of the conditional probability table can
be directly derived using the frequency counting method,

ie.,P(X|Pa(X)) = %. However, for continu-

ous data that has not been discretized or when there is in-
sufficient data, maximum likelihood estimation (MLE) or
Bayesian estimation should be used for computation, though

these are not discussed further here.After constructing the
probabilistic graphical model, inference can be performed
based on the CPD and domain knowledge. In forward infer-
ence, the probability distribution of the result nodes can be
directly observed. For nodes requiring backward inference,
Bayesian inference is applied, i.e.,P(A|B) = %.
This allows the inference of the confidence of parent nodes
using the observable data. In the structure proposed in this
paper, this path is used to compute the intent.

Experiments and Results

In the absence of an intuitive evaluation criterion for the XAl
problem, the experiments presented in this paper combine
the project with the selection of multiple datasets and clas-
sification models to demonstrate the validity of the method
and the model-agnostict ability. Classification experiments
are also conducted based on synthetic data to verify the abil-
ity to uncover ML intent.

Dataset and model

The data used in this study comes from two open-source
AML task datasets and two confidential datasets provided
by a partner bank. A significant portion of the data is de-
rived from transactions. Therefore, the first step is to extract
account-level features from these transactions. For each spe-
cific account, we collect its warning records as historical risk
indicators, transaction currency and bank as environmen-
tal influences, and transaction frequency, average transac-
tion amount, and maximum transaction value as transaction
details. Additionally, to construct the probabilistic graph,
the data is discretized (e.g., classifying transaction amounts
based on their magnitude). For intent inference, labels are
derived from expert-verified anomalous accounts and coun-
terfactual samples.

Table 1: Anti-money laundering dataset

Dataset Transactions Laundering  Rate
IBM-AML SM 5.1k 0.1%
SAML-D M 9.8K 0.1%
BANK-sim 251k 15k 6.32%

BANK-real 9.6k 97 1%

Two of the selected datasets are publicly accessi-
ble, namely IBM-AML(Altman et al 2023) and SAML-
D(Oztas et al.|[2023)). The remaining two BANK datasets are
proprietary and have been provided by the project’s partner
banks. The money laundering rate indicates that the AML
problem is a classical sample imbalance problem. Even
when a targeted selection is made during the generation of
the dataset, the frequency of money laundering anomalies is
significantly lower than that of common classification and
anomaly detection problems. Consequently, further screen-
ing is necessary when explaining the model to obtain mean-
ingful results and avoid ineffective learning time.



The models selected for the experiment were provided
by the project’s partner bank. These models have been pre-
trained on a variety of datasets and have demonstrated robust
performance in anti-money laundering tasks. The mean test
results for the two models across the four datasets are pre-
sented in the table. It is important to acknowledge that, due
to the class imbalance inherent in the money laundering task,
greater emphasis should be placed on recall metrics when
evaluating model performance. This is because the core task
of anti-money laundering is to identify all anomalous sam-
ples, rather than to achieve high accuracy in classifying a
large number of normal samples. The two models used in the
experiment are different black-box models, and this exper-
iment aims to illustrate that our method is model-agnostic.

Table 2: Anti-money laundering model
Dataset Precision Recall FI Score ACC
MODEL-1 90% 94% 92.0% 98%
MODEL-2 90.5% 95% 92.7% 99%

Explainability

In the experiment, we injected counterfactual samples into
the dataset, using 80% of the data for training, 10% for val-
idation, and 10% for model evaluation. The obtained classi-
fication results are presented below. To demonstrate the Ex-
plainability of the model’s decisions, the classification re-
sults here are compared to those of the prediction model,
without considering the actual labels of the samples.

Table 3: The confidence of black-box model
IBM-AML SAML-D BANK-sim BANK-real

MODEL1 0.6143 0.6720 0.7053 0.7497
MODEL2 0.6265 0.6609 0.7275 0.7608

The experimental results in the table [3] demonstrate that
our method can provide explanations for the prediction out-
comes of different models across various datasets. This ca-
pability allows our method to offer interpretable insights into
the model’s predictions, aiding decision-makers. However,
due to the limited number and dimensions of input features,
achieving a 100% explanation is challenging, which is one
of the common issues faced in the field of Explainable Al
(XAD.

Intent Prediction

To test the method’s ability to infer the money laundering
evasion intent, we used a mixture of normal samples and
counterfactual samples (i.e., samples that successfully evade
detection). These samples were classified as normal by the
anti-money laundering model. A standard threshold was de-
fined, and by comparing the threshold with the probability
inferred from the behavior, the output was converted into
a binary classification. The figure|shows the confusion ma-
trix of the classifier’s test results. It can be observed that even
when the transaction behavior was modified to successfully

deceive the detection model, the proposed method was still
able to identify the underlying intent from the behavior.
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Figure 5: Intent prediction result

Limitations

This proposed model also has several limitations:Unlike the
SHAP method, which can provide a unique explanation,
the approach proposed in this paper provides explanations
based on a probabilistic graphical model structure. Depend-
ing on the underlying structure and the method used to gen-
erate counterfactuals, different explanations can be derived.
Furthermore, due to the nature of the probabilistic graph-
ical model, it can only model a small subset of the ex-
tracted features. When faced with a large number of input
features, computational difficulties arise as the problem is
NP-hard(Chickering, Heckerman, and Meekl, 2004).

Conclusion and Future Work

Recent studies have demonstrated the increasing variety of
money laundering methods, with strategies now capable of
evading Al-driven regulation. The method proposed in this
paper can explain existing anti-money laundering (AML)
black-box models and analyze their prediction results. With
the support of causal inference and domain knowledge, it
further infers criminal intent. Our method has been tested
on multiple datasets and AML models, providing effective
explanations for these models. Additionally, by reasoning
intent, it can distinguish between intentional money laun-
dering evasion strategies and unintentional behavior by or-
dinary users. Future work includes: (1) constructing an anti-
money laundering knowledge graph by integrating domain
knowledge, enabling more detailed classification and anal-
ysis of laundering behaviors; (2) expanding transaction and
account features to uncover high-dimensional risk causal re-
lationships.
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