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ABSTRACT

The ever-increasing large language models (LLMs), though opening a potential
path for the upcoming artificial general intelligence, sadly drops a daunting
obstacle on the way towards their on-device deployment. As one of the most well-
established pre-LLMs approaches in reducing model complexity, network pruning
appears to lag behind in the era of LLMs, due mostly to its costly fine-tuning (or
re-training) necessity under the massive volumes of model parameter and training
data. To close this industry-academia gap, we introduce Dynamic Sparse No
Training (DS○T1), a training-free fine-tuning approach that slightly updates
sparse LLMs without the expensive backpropagation and any weight updates.
Inspired by the Dynamic Sparse Training, DS○T minimizes the reconstruction
error between the dense and sparse LLMs, in the fashion of performing iterative
weight pruning-and-growing on top of sparse LLMs. To accomplish this purpose,
DS○T particularly takes into account the anticipated reduction in reconstruction
error for pruning and growing, as well as the variance w.r.t. different input data
for growing each weight. This practice can be executed efficiently in linear time
since its obviates the need of backpropagation for fine-tuning LLMs. Extensive
experiments on LLaMA-V1/V2, Vicuna, and OPT across various benchmarks
demonstrate the effectiveness of DS○T in enhancing the performance of sparse
LLMs, especially at high sparsity levels. For instance, DS○T is able to outperform
the state-of-the-art Wanda by 26.79 perplexity at 70% sparsity with LLaMA-7B.
Our paper offers fresh insights into how to fine-tune sparse LLMs in an efficient
training-free manner and open new venues to scale the great potential of sparsity
to LLMs. Codes are available at https://github.com/zyxxmu/DSnoT.

1 INTRODUCTION

Large language models (LLMs) (Zhang et al., 2022a; Touvron et al., 2023a; Brown et al., 2020)
have recently emerged as the new favorite in various domains of natural language processing
(NLP) (Wei et al., 2022b;a; Bubeck et al., 2023). Nevertheless, LLMs face a significant constraint:
their extensive parameterization and computational demands present substantial challenges in terms
of storage and deployment. For example, the GPT-175B model (Brown et al., 2020) eats up 320G
of memory to load its parameters in FP16 precision, requiring at least five A100-80G GPUs for
inference (Frantar & Alistarh, 2023). In response to this issue, there has been a surge of interest
in compressing LLMs, as it holds the promise of LLMs while remarkably reducing memory usage
and computational costs. To date, the majority of current effort for LLM compression falls into
quantization (Yao et al., 2022; Lin et al., 2023; Frantar et al., 2022; Dettmers et al., 2023; 2022;
Xiao et al., 2023; Shao et al., 2024; Ma et al., 2024), which compresses LLMs by diminishing the
number of bits employed to represent weights or hidden states.

∗†Equal contribution ‡Corresponding author: rrji@xmu.edu.cn
1Pronounced “DS No T”.
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Figure 1: Perplexity on WikiText-2 (left) and running time (right) of different methods for pruning
LLaMA-V1 model family at 60% sparsity rate. Without any training, DS○T consistently improves
the performance of sparse LLMs, all within a linear time spectrum.

On the other hand, network pruning (LeCun et al., 1989; Han et al., 2015; Mocanu et al., 2018), a
technique that removes superfluous weights to create a sparse and lightweight model, has received
relatively little attention (Frantar & Alistarh, 2023; Sun et al., 2023). The plausible reason is
that, network pruning usually appreciates at least one, usually many, iterations of fine-tuning or
re-training to guarantee top performance (Frankle & Carbin, 2019; Yin et al., 2023). This fine-tuning
step would cause a significant amount of compute and memory footprints due to the colossal model
size and massive training data of modern LLMs, which even unnerves large corporations, let alone
individual researchers.

Two previous arts have explored the possibility to scale pruning to billion-level LLMs without any
fine-tuning. SparseGPT (Frantar & Alistarh, 2023) formulates LLM pruning as a layer-wise weight
reconstruction problem, where the target falls into mitigating the output discrepancy, w.r.t., recon-
struction error, between dense and sparse LLMs. To solve the row-Hessian challenge, i.e., the need
for calculating the expensive inversion of a huge matrix for each row individually, SparseGPT itera-
tively applies OBS (Hassibi et al., 1993) to individually prune and updates weights in a column-wise
manner, ultimately reaching the same optimal solution as applying the closed-form regression recon-
struction. Wanda (Sun et al., 2023) proposes a new pruning metric that takes both weight magnitude
and their corresponding input activations into consideration, performing on part with SparseGPT
without the need for the expensive second-order information. The intuition behind Wanda lies in the
existence of emergent outlier feature dimensions in large-scale LLMs which are significantly larger
than typical features and meanwhile are essential for the optimal performance of LLMs (Dettmers
et al., 2022). While these two approaches enable LLM pruning without performing fine-tuning,
their performance is still far from satisfactory, e.g., starting to lose performance at 20% sparsity with
LLaMA-30B. Therefore, it is imperative to enable fine-tuning for sparse LLMs to fully unlock the
potential of sparsity to escalate the affordability of LLMs.

In a parallel vein, Dynamic Sparse Training (DST), as outlined in previous research (Mocanu et al.,
2018; Liu et al., 2019; Evci et al., 2020), has garnered considerable attention recently due to its
significant saving potentials in the context of neural network training. Instead of training an entire
network, DST selectively updates and maintains a subset of the network throughout the training pro-
cess, while allowing the sparse network topology to dynamically evolve via a weight operation (Mo-
canu et al., 2018). Given its demonstrated efficacy in achieving efficient training, DST seems to be
a promising candidate for efficient LLMs fine-tuning. However, it is essential to note that DST in-
trinsically requires the training of subnetworks via backpropagation, and the effectiveness of mask
adaptation highly relies on a sufficient number of weight updates (Liu et al., 2021). Moreover, prior
studies have indicated its failure when employed for fine-tuning small-scale BERT-level language
models (Liu et al., 2023).

Fortunately, it is noteworthy that the pruning-and-growing step employed in DST solely stands as
a training-free methodology, enabling sparse mask adaptation based on certain weight status, e.g.,
magnitude (Mocanu et al., 2018). This offers an alternative perspective for addressing the aforemen-
tioned challenge: While fine-tuning sparse LLMs through backpropagation can result in substantial
computational overhead, we can explore the possibility of iteratively updating sparse mask in a
training-free fashion as a viable alternative. Based on this intuition, we introduce a training-free
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fine-tuning approach – Dynamic Sparse No Training (DS○T). This approach empowers the fur-
ther refinement of sparse LLMs without any weight updates. To facilitate mask adaptation in favor
of the sparse reconstruction problem, we propose new criteria for mask pruning and growing, by
considering both the expectation and variance of the reconstruction error reduction when recovering
a specific weight. It is worth emphasizing that the DS○T functions independently of the need for
computationally intensive operations, such as gradient or Hessian matrices. Instead, it exclusively
relies on a singular matrix multiplication operation to assess the reconstruction error.

We conduct comprehensive experiments to evaluate the effectiveness of DS○T with a variety of
LLMs, including LLaMa-V1 (Touvron et al., 2023a) and LLaMa-V2 (Zhang et al., 2022a), Vi-
cuna (Chiang et al., 2023), and OPT families (Zhang et al., 2022a), from 7 billion to 70 billion
parameters. Our results demonstrate that DS○T consistently improves the performance of sparse
LLMs by a good margin, especially at high sparsity levels > 50%. For instance, DS○T is able to
improve the performance over Magnitude pruning, SparseGPT, and Wanda by 1.1e6, 4.31, and 1.87
perplexity with OPT-13B on WikiText-2 at 60% sparsity only using 7.3s on a single NVIDIA A100
GPU. Our work provides fresh insights in efficient sparse LLM fine-tune without weight updates
and we hope to encourage more research in exploring benefits of sparsity in LLMs.

2 RELATED WORK

Network Sparsification. The process of eliminating redundant weights, known as network sparsi-
fication or network pruning, has served as a practical strategy to diminish the complexity of deep
neural networks over the past decades (LeCun et al., 1989; Han et al., 2015). Despite the substantial
body of literature, network pruning can be roughly classified based on the granularity of sparsity
and the dependency of the pre-trained dense models. I. Granularity of Sparsity: The granular-
ity of sparsity varies from coarse grains to fine grains. The coarse-grained granularity can be a
group of weights (Gray et al., 2017; Ding et al., 2017), a complete neuron (Jiang et al., 2018); a
filters/channels (Li et al., 2017), or an attention head (Voita et al., 2019), etc. On the other hand,
fine-grained granularity eliminates the least important weights based on the selected criteria, regard-
less of where they are (Gale et al., 2019). The advantage of coarse-grained sparsity is its pronounced
acceleration effect, which yet typically suffers from larger performance loss. Fine-grained sparsity
enjoys performance superiority compared to other more structured forms of sparsity but receives
limited support in common hardware. Nonetheless, recent advancements of dedicated fine-grained
sparse patterns, such as N:M sparsity (Zhou et al., 2021; Zhang et al., 2022b), can be effectively
accelerated. As such, this paper focuses on fine-grained network pruning. II. Dependency of Pre-
trained Networks: In parallel, sparsification techniques can be grouped into dense-to-sparse, and
sparse-to-sparse methods based on the necessity of an over-parameterized dense network. The for-
mer entails embarking from a pre-trained dense model and discovering a sparse network (Han et al.,
2015; Wen et al., 2016; Molchanov et al., 2017; Gale et al., 2019; Kurtic et al., 2022), usually fol-
lowed by a retraining process to recover the optimal accuracy. On the other hand, sparse-to-sparse
methods aim to train sparse neural networks from scratch, omitting any preliminary steps involving
dense pre-training (Mocanu et al., 2018; Lee et al., 2019; Evci et al., 2020; Wang et al., 2020; Liu
et al., 2021). Among them, Dynamic Sparse Training (DST) (Mocanu et al., 2018; Evci et al.,
2020; Liu et al., 2021) stands out and receives upsurging interest due to its promise in saving both
training and inference phases. In contrast to the conventional practices of pre-training followed by
pruning, DST distinguishes itself by commencing with a randomly initialized sparse neural net-
work. During a single training run, it dynamically adjusts the sparse network topology by such as
pruning-and-growing, without the need for pre-training, while maintaining moderate training costs
by, for example, keeping the similar sparsity ratios across all varying masks (Mostafa & Wang, 2019;
Dettmers & Zettlemoyer, 2019; Yuan et al., 2021; Jayakumar et al., 2020).

While the crux of this paper focuses on the first category, i.e., pruning a pre-trained LLM model,
our proposed method is mainly inspired by the pruning-and-growing utilized in DST to iteratively
refine the binary masks in a training-free manner, even though we do not conduct weight training as
such. Another line of research, akin to our approach, demonstrates the existence of “supermasks”
within randomly initialized network (Zhou et al., 2019; Ramanujan et al., 2020; Huang et al., 2022)
or pre-trained networks (Mallya et al., 2018; Wortsman et al., 2020; Zhang et al., 2023), exhibiting
the capacity to achieve commendable performance solely by seeking binary masks. However, it is
imperative to note that these methods heavily rely on backpropagation, which is ill-suited for LLMs.
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Pruning of LLMs. Compared to the well-established promise of pruning in pre-LLM small-scale
models, the advancement of pruning in the context of LLMs appears to exhibit relatively modest
progress. Firstly, traditional pruning generally requires at least one iteration of re-training to recover
performance. Considering the substantial model size and massive datasets associated with LLMs,
the prospect of conducting such resource-intensive re-training becomes a formidable challenge. To
mitigate the above challenge, researchers have introduced pruning algorithms specifically devised
for LLMs compression. Ma et al. (2023) explored structured sparse LLM by applying Taylor prun-
ing (Molchanov et al., 2017) to remove entire weight rows, followed by the parameter efficient fine-
tuning (PEFT) technique (Hu et al., 2021) fine-tuning. However, the fine-tuning phase still demands
a considerable amount of data while the performance suffers a significant degradation, attributed
primarily to the coarse-grained level of sparsity. Recent research endeavours have evolved towards
the direction of unstructured pruning in one-shot without fine-tuning, demonstrating significant pro-
gresses. SparseGPT (Frantar & Alistarh, 2023) incorporates the Hessian inverse for pruning and
subsequent residual weight updates, whereas Wanda (Sun et al., 2023) directly arrives at a sparse
LLM model by a criterion depicted by the multiplication of the absolute values of weights and their
activations with the aim to preserve outliers (Dettmers et al., 2022) emerged in LLMs. DS○T serves
as an orthogonal perspective and can be organically integrated on top of them.

3 DYNAMIC SPARSE NO TRAINING – DS○T

Preliminary. LLM pruning entails the removal of a certain proportion of pre-trained weights to
obtain a sparse LLM, with the objective of achieving minimal discrepancy between the output of
the sparse and dense models (Hassibi et al., 1993). Solving this problem can be very arduous given
the immense scale of LLMs. Therefore, it is more practical to formalize LLM pruning as a layer-
wise reconstruction problem (Hubara et al., 2021; Frantar & Alistarh, 2023). Denote the weights
of one dense LLM layer as W ∈ RCout,Cin , where Cout and Cin stand for the number of output and
input channels respectively. Supposing we have N calibration samples, the input activation can be
represented as A ∈ RCin,N×L with L be the sequence length. Pruning can be viewed as devising a
binary mask M ∈ {0, 1}Cout,Cin to indicate whether weights are removed or not. Hence, the problem
of LLM pruning given a specific pruning rate p can be formalized as:

min
M,W

||W ∗A− (M⊙W) ∗A︸ ︷︷ ︸
∆

||2, s.t. 1−
∥M∥0

Cout · Cin
= p, (1)

where ∗, ⊙, || · ||2 denote matrix multiplication, dot product operation, and ℓ2 norm, respectively.

Reconstruction Error

Dense  
Weights

LLM 
Pruning

Growing Pruning

Update

Figure 2: Framework of DS○T.

Note we refer ∆ ∈ RCout,N ·L as to the reconstruction error
for ease of the following text.

Dynamic Sparse No Training. The problem defined in
Eq. (1) can be addressed from two complementary per-
spectives. Firstly, it can be resolved through the initial-
ization of sparse networks i.e., devising criteria to prune
weights that exhibit minimal impact on model output. For
instance, SparseGPT (Frantar & Alistarh, 2023) employs
second-order Hessian inverses, while Wanda (Sun et al.,
2023) considers products of weight and activation norm as
the guide for weight removal. Secondly, for the obtained
sparse networks, the remaining weights can be naturally
fine-tuned to further compensate for the reconstruction er-
ror (Han et al., 2015). Unfortunately, this requires sub-
stantial training resources, which is not practical given the
large volumes of LLMs. Therefore, SparseGPT adjusts the
remaining weights via an iterative OBS update (Hassibi &
Stork, 1992), which as a consequence remarkably reduces
the computing demands.

In this work, our focus is on the second part, i.e., how to efficiently reduce the reconstruction error of
a given pruned sparse network to its dense counterpart? Instead of fully fine-tuning (Han et al., 2015)
or partially updating the pruned LLMs (Frantar & Alistarh, 2023) to recover performance, we intro-
duce an ultra-efficient yet effective alternative to refine the sparse mask after pruning based on their
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contribution to the reconstruction error. Our approach is inspired by the pruning-and-growing opera-
tion used in Dynamic Sparse Training (Mocanu et al., 2018; Evci et al., 2020). DST incorporates the
processes of weight pruning and weight growing within the framework of sparse network training,
contributing to the discovery of improved sparse topologies. Note that this pruning-and-growing
operation solely serves as a training-free approach that is able to adapt sparse masks towards a de-
sirable perspective, e.g., loss minimization. Based on this insight, we propose DS○T, a training-free
fine-tuning method for sparse LLMs that strips weights updating in DST and keeps the pruning-and-
growing by converting the optimization objective to the reconstruction error of each weight row.
We isolate pruning-and-growing from network training, and formulate it as an iterative approach to
progressively optimize sparse masks towards the desirable ones achieving minimal reconstruction
error represented by Eq. (1).

Algorithm 1: Pseudocode of DS○T.
Input: A sparse layer with weight W⊙, maximum

cycle T , update threshold ϵ.
Workflow of DS○T:

Initialize reconstruction error ∆ via Eq. (1)
for r = 1 to Cout do

for t = 1 to T do
Obtain the growing index i via Eq. (2).
Obtain the pruning index j via Eq. (3).
Mr,i = 1
Mr,j = 0
Update reconstruction error ∆r via

Eq. (1).
if ∆r < ϵ then

break

return Fine-tuned sparse weights W ⊙M.

Specifically, DS○T starts with a sparse LLM
which can be pruned by any existing crite-
ria (Jaiswal et al., 2023; Sun et al., 2023; Fran-
tar & Alistarh, 2023). Then, it performs itera-
tive weight growing and pruning by looking at
the reconstruction error as defined in Eq. (1),
with especially-designed criteria to decrease
the output discrepancy between sparse LLMs
and their dense counterparts. The framework
of DS○T is illustrated in Figure 2 and its main
parts are detailedly described below.

Growing Criterion. As each output neu-
ron is computed independently, we use one
weight row Wr and the corresponding mask
Mr for illustration. Given sparse weight row
Mr⊙Wr, we attempt to revive pruned weight
that leads to the most decrease on ∆r across
different input activations. Therefore, our growing criterion considers both the expectation and vari-
ance of the reconstruction error change when recovering a weight back. In particular, the index i of
the revived weights is derived as follows:

i =

 argmax
k

¬Mr,k ·Wr,k · E[Ar]/Var(Ar), if E[∆r] > 0,

argmin
k

¬Mr,k ·Wr,k · E[Ar]/Var(Ar), otherwise, (2)

where E(·) and Var(·) stand for the expectation and variance of given inputs across N ×L different
tokens. To explain, E[Ar] ·Wr represents the expected influence of weight growing on ∆r. Thus,
based on the sign of the reconstruction error ∆r, we can determine which weight should be restored
to approach the decrease of ∆r. Furthermore, we consider introducing the variance of the input
activation to achieve a more robust revival. This is intuitive because if the influence of weight on ∆r

exhibits high variance across different inputs, restoring it may not result in stable error reduction.

Pruning Criterion. After choosing revived weights, we need to select another weight for pruning
in order to maintain a fixed sparsity rate. However, the circumstances here are distinct: if we prune
weights based on the impact of reconstruction error change as per Eq. (2), there is a risk of removing
weights that significantly influence the output. This concern becomes especially critical when prun-
ing LLMs due to the presence of emergent large magnitude features within them (Dettmers et al.,
2022; Wei et al., 2022a; Schaeffer et al., 2023). To alleviate this, we utilize a transformed version
of the Wanda metric (Sun et al., 2023). In addition to its standard criterion for pruning weights, we
mandate that the selected weights should also contribute positively towards the reduction of recon-
struction error when being pruned. This helps in preserving critical weights from removal without
compromising the stable decrease of reconstruction error during the training-free fine-tuning pro-
cess. Therefore, the pruning index j is obtained as follows:

j =


argmin

k,Mr,k·Wr,k·E[Ar]<0

Mr,k · |Wr,k| · ||Ar||2, if E[∆r] > 0,

argmin
k,Mr,k·Wr,k·E[Ar]>0

Mr,k · |Wr,k| · ||Ar||2, otherwise. (3)
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Table 1: WikiText-2 Perplexity comparison for pruning LLMs at 60% sparsity rate.

LLaMA-V1 LLaMA-V2 Vicuna OPT

Method 7B 13B 30B 65B 7B 13B 70B 13B 13B

Dense 5.68 5.09 4.10 3.56 5.47 4.88 3.32 5.94 10.12

Magnitude 5.6e2 2.3e2 15.97 8.18 6.9e3 10.11 13.35 14.39 1.1e6
w. DS○T 66.70 30.71 10.81 7.37 40.01 9.41 6.77 12.02 2.4e2

SparseGPT 10.41 8.43 6.81 5.83 10.14 7.88 5.10 10.02 21.23
w. DS○T 9.65 7.73 6.69 5.64 9.67 7.57 5.07 9.38 16.92

Wanda 10.69 8.75 6.56 5.90 10.79 8.40 5.25 9.54 15.88
w. DS○T 10.22 8.46 6.44 5.75 10.59 8.18 5.20 9.18 14.01

Workflow. Given the criteria depicted above, the workflow of DS○T is outlined in Algorithm 1.
In particular, it iteratively performs weight growing and pruning with respect to Eq. (2) and Eq. (3),
with the reconstruction error updated until it reaches a pre-defined threshold. Meanwhile, we set
a maximum pruning-and-growing cycle T to prevent certain rows from being unable to reach the
settled threshold ϵ.

Remark. It’s noteworthy that Algorithm,1 outlines the processing of each row in a sequential man-
ner, primarily for the sake of simplicity. However, it’s imperative to acknowledge that each row can,
in fact, undergo parallel processing by employing a binary indicator to assess whether a particular
row has satisfied the termination condition. Furthermore, the DS○T process eliminates the neces-
sity for resource-intensive procedures such as backpropagation or the computation of gradient and
Hessian matrices. Instead, it relies solely on several matrix multiplications to calculate the recon-
struction error, a task that can be executed efficiently on GPUs. Subsequently, during each iteration
of the DS○T process, the only operation is to update the reconstruction error through straightfor-
ward addition and subtraction operations during the pruning-and-growing process. This approach
effectively circumvents the introduction of additional algorithmic complexity. In summary, DS○T
preserves the simplicity associated with pruning LLMs, akin to the approaches employed in Wanda
and Magnitude pruning.

4 EXPERIMENTAL RESULTS

4.1 SETTINGS

Implementation details. The implementation details of our proposed DS○T are presented as fol-
lows, mostly conforming to the existing setups (Frantar & Alistarh, 2023; Sun et al., 2023). In
context to pruning configuration, we adhere to SparseGPT (Frantar & Alistarh, 2023), where a uni-
form sparsity is imposed for all layers with the first embedding layer and the final classification head
skipped. Meanwhile, the calibration data consists of 128 segments, each with 2048 tokens. These
segments are randomly selected from the first shard of the C4 dataset (Raffel et al., 2020). For the
hyper-parameter settings, we set the maximum cycle T = 50 and the update threshold ϵ = 0.1 in
all experiments. Given sparse LLMs, we apply DS○T to fine-tune each layer in a progressive man-
ner. We implement DS○T in PyTorch (Paszke et al., 2019) and use the HuggingFace Transformers
library (Wolf et al., 2019) for handling models and datasets. All pruning experiments are conducted
on NVIDIA A100 GPUs with 80GB of memory.

Baselines. We principally work with the LLaMA-V1 (Touvron et al., 2023a), LLaMA-V2 (Touvron
et al., 2023b), Vicuna (Chiang et al., 2023), and OPT families (Zhang et al., 2022a), from 7 billion to
70 billion parameters, which are among the most powerful and open-source Large Language Models
(LLMs) in the field today. We run DS○T on sparse LLMs pruned by various methods including (1)
Magnitude-based pruning (Han et al., 2015) that discards weights based on their magnitudes. (2)
SparseGPT (Frantar & Alistarh, 2023) that utilizes second-order Hessian inverses to ascertain unim-
portant weights. (3) Wanda (Sun et al., 2023) that removes weights with the smallest magnitudes
multiplied by the corresponding input activation norms.

Evaluation. In accordance with prior studies (Frantar et al., 2022; Dettmers et al., 2023; Yao
et al., 2022; Frantar & Alistarh, 2023), we assess the performance of pruned models by calcu-
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Table 2: WikiText-2 perplexity performance of DS○T for fine-tuning sparse LLaMA-V1-7B/65B
pruned by the Wanda metric at varying sparsity rates.

LLaMA-V1-7B LLaMA-V1-65B

Sparsity 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%

Wanda 7.26 10.69 88.84 4.80e3 6.41e5 4.57 5.90 15.24 2.06e3 3.21e4
w. DS○T 7.12 10.22 62.05 4.12e3 8.43e4 4.54 5.75 12.93 1.82e3 2.09e4

lating the perplexity of language generation experiments on separate validation sets derived from
WikiText2 (Merity et al., 2016). While perplexity has served as a stable and robust indicator of the
generative performance of models (Dettmers & Zettlemoyer, 2023), we also examined the zero-shot
capabilities of pruned models. In detail, we report the accuracy in six zero-shot tasks including
PIQA (Bisk et al., 2020), StoryCloze (Mostafazadeh et al., 2017), ARC Easy and Challenge (Clark
et al., 2018), HellaSwag (Zellers et al., 2019) and OpenBookQA (Mihaylov et al., 2018). We imple-
ment the lm-eval-harness (Gao et al., 2021) for the execution of all zero-shot tasks, with the report
including both the accuracy results on each benchmark and overall average accuracy.

4.2 LANGUAGE MODELING

Quantitative results. The results for fine-tuning sparse LLM models at a uniform sparsity rate
of 60% are presented in Table 1. Irrespective of the datasets used for evaluation, DS○T consis-
tently delivers performance improvement for sparse LLMs with their original sizes varying from
7B to 70B. For instance, when pruning LLaMA-V1 with 7B parameters, DS○T is able to enhance
the performance of Magnitude (Jaiswal et al., 2023), SparseGPT (Frantar & Alistarh, 2023), and
Wanda (Sun et al., 2023) by 4.94e2, 0.76, and 0.47 perplexity on the Wikitext-2 validation sets,
respectively. It is worth noting that, without any weight updating, DS○T consistently demonstrates
better performance than SparseGPT, which requires expensive second-order Hessian inverses to up-
date the sparse model. For larger models, the efficacy of DS○T is still hold with performance
gain from 13.35 to 6.77 perplexity when fine-tuning sparse LLaMA-V2-70B obtained by magnitude
pruning (Han et al., 2015). These findings suggest DS○T’s versatility, being adaptable to boost the
performance of sparse LLMs with different parameter budgets.

Varying Sparsity Rates. We further investigate the efficacy of DS○T when fine-tuning sparse
LLMs with varying pruning rates. Table 2 shows that DS○T offers effective performance enhance-
ment across various pruning methods at different sparsity levels. Particularly, this improvement
becomes increasingly evident as the sparsity level grows.

Table 3: Time overhead (in seconds)
for pruning LLaMA-V1 model family.

Method 7B 13B 30B 65B
SparseGPT 209 337 721 1285
Wanda 0.3 0.5 1.1 1.9

Wanda+DS○T 4.3 7.4 15.7 23.7

Table 4: Comparion with LoRA fine-
tuning using 50% sparse LLaMA-7B.

Method Time Cost Perplexity
Wanda+LoRA 4h 6.87
Wanda+DS○T 4.3s 7.12

Table 5: Wikitext-2 perplexity comparison for pruning
LLaMA-V1 model family with N:M pattern.

Method Sparsity 7B 13B 30B 65B
Dense - 5.68 5.09 4.10 3.56
SparseGPT 4:8 8.61 7.40 6.17 5.38
w. DS○T 4:8 8.32 7.05 6.10 5.12
Wanda 4:8 8.57 7.40 5.97 5.30
w. DS○T 4:8 8.45 7.25 5.91 5.26

SparseGPT 2:4 11.00 9.11 7.16 6.28
w. DS○T 2:4 10.03 8.36 6.82 5.80
Wanda 2:4 11.53 9.58 6.90 6.25
w. DS○T 2:4 10.89 9.05 6.76 6.14

Computing efficiency. We further demonstrate the efficiency of DS○T. Following Wanda, we only
report the total pruning time and exclude the forward pass process shared by all methods. Table 3
compares the quantitative wall-clock overhead evaluated on NVIDIA A100 GPUs. It is indeed
encouraging to observe that, as a fine-tuning approach, DS○T maintains a comparable computing
time to Wanda, while demonstrating significantly higher efficiency compared to SparseGPT.

Comparison with LoRA Fine-tuning. To further demonstrate the ultra efficiency of DS○T in
terms of fine-tuning, we also compare DS○T with parameter efficient fine-tuning (PEFT) method
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Table 6: Zero-shot Accuracy comparison for pruning LLaMA-V1 model family at 60% sparsity rate.

Params Method PIQA HellaSwag StoryCloze ARC-e ARC-c OBQA Mean

7B

Dense 78.7 56.9 76.8 75.3 41.8 34.0 60.6

SparseGPT 73.1 44.8 71.5 62.6 30.2 24.4 51.1
w. DS○T 73.7 47.2 72.3 62.8 30.9 29.4 52.7

Wanda 73.0 43.6 69.7 62.8 30.3 25.0 50.7
w. DS○T 73.2 43.7 70.0 63.6 30.8 25.8 51.2

13B

Dense 79.1 59.9 78.4 77.4 46.5 33.2 62.4

SparseGPT 75.6 49.0 74.8 68.4 36.2 27.6 55.2
w. DS○T 75.8 51.5 75.8 69.8 36.3 28.8 56.3

Wanda 74.9 48.9 74.5 68.9 34.9 27.6 54.9
w. DS○T 75.0 49.1 75.1 69.2 35.4 28.0 55.3

30B

Dense 81.1 63.3 79.1 80.4 52.9 36.0 65.4

SparseGPT 76.8 55.0 78.4 74.7 43.3 32.2 60.1
w. DS○T 77.3 58.0 78.8 74.8 45.6 32.8 61.2

Wanda 77.7 56.7 79.1 76.2 46.5 31.6 61.3
w. DS○T 78.1 56.7 79.7 76.8 46.6 32.6 61.7

65B

Dense 81.2 64.6 80.2 81.3 52.9 38.2 66.4

SparseGPT 79.6 58.3 80.5 77.4 46.6 33.4 62.6
w. DS○T 79.9 59.8 80.4 78.1 46.9 34.6 63.3

Wanda 79.9 58.9 80.6 78.2 47.1 34.8 63.3
w. DS○T 80.9 59.6 80.2 78.2 47.7 36.0 63.7

LoRA (Hu et al., 2021). Table 4 presents a comparison of the time and performance of both methods
in fine-tuning sparse LLaMA-7B. LoRA leverages the complete C4 dataset for a 5-hour fine-tuning
and achieved a perplexity of 6.84. In stark contrast, DS○T only requires a brief duration of 4.3s and
128 samples to deliver a comparable performance, 7.12 perplexity. Taking into consideration the
additional parameter burden incorporated by LoRA, the efficiency and practicality of DS○T is hold.

N:M Fine-grained Sparsity. Compared with unstructured sparsity, N:M fine-grained sparsity offers
more practical speedup on the NVIDIA Ampere sparse tensor core (Nvidia, 2020). Thus, we also
evaluate the effectiveness of DS○T on N:M fine-grained sparsity. Given the unique pattern of N:M
sparsity that stipulates N non-zero components within M consecutive weight block, our implemen-
tation of DS○T involves a restriction on the position of pruning-and-growing weights. In particular,
we select the pruned weight within the same block as the revived weight, thus the N:M charac-
teristic is still maintained after fine-tuning. Table 5 lists the results for pruning LLaMA-V1 model
family at 2:4 and 4:8 sparse patterns. Interestingly, even with the aforementioned extra restriction,
DS○T can achieve more significant performance improvement compared to previous methods. For
instance, when pruning LLaMA-V1 with 7B parameters, DS○T archives a perplexity of 10.89, en-
hancing Wanda (11.53) by a noticeable 0.64 ppl. Similar findings can be concluded when it comes
to other models and sparse patterns. These results highlight the effectiveness of DS○T in boosting
the performance of sparse LLMs, even with more complex sparsity constraints.

4.3 ZERO-SHOT TASKS

Following (Frantar & Alistarh, 2023; Sun et al., 2023), we also provided the accuracy performance of
the LLaMA-V1 model family pruned at 50% sparsity rate on seven downstream zero-shot tasks. Av-
eraging the accuracy over all tasks suggests DS○T’s efficacy for enhancing sparse LLMs of any size.
Particularly, DS○T improves the average accuracy of SparseGPT by 1.6% when pruning LLaMA-
V1-7B (52.7% for DS○T and 51.1% for SparseGPT). For task-wise performance, DS○T is benefi-
cial on all tasks, while there is not a fixed superiority for fine-tuning models obtained by different
pruning methods. This phenomenon may evidence the reported relatively noisy evaluation results
from these zero-shot experiments (Dettmers et al., 2022). However, the advantages of consistent
performance improvement and efficiency of DS○T for zero-shot tasks are obvious.
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Figure 3: (left) Effect of the update schedule (T, ϵ) and (right) number of calibration sequences.

4.4 PERFORMANCE ANALYSIS

Next, we investigate the influence of the components within DS○T, unfolds as its update schedule,
pruning-and-growing criteria, and robustness to calibration samples. All experimental setups are
based on the LLaMA-7B model pruned by the Wanda metric (Sun et al., 2023) with 60% sparsity.

Update schedule. In Figure 3 (left), we examine the performance of DS○T under different hyper-
parameter setting for the update schedule, including the maximum cycle C and stop threshold ϵ. The
best performance is obtained with 50 cycles and 0.1 updating threshold. To analyze, smaller C and
larger ϵ both lead to an insufficient procedure for the decrease in reconstruction error. In contrast,
running DS○T without termination conditions also resulted in poor performance, most likely due to
over-fitting of calibration data.

Robustness to calibration samples. In Figure 3 (right), we show the performance of pruning meth-
ods with varying numbers of sampled sequences for calibration. As can be observed, SparseGPT
suffers serious performance degradation when calibration samples are limited, mostly due to the
difficulty in estimating Hessian inverses in such cases. Fortunately, DS○T consistently the perfor-
mance of SparseGPT, even if only very few samples are given. These results further highlight the
robustness of DS○T for mitigating the reconstruction error.

Table 7: Effect of the pruning and growing criteria.

Pruning
Growing |Wr,k| · ||Ar||2 Eq. (3) Eq. (2)

|Wr,k| · ||Ar||2 10.72 10.49 10.27
Eq. (2) 11.24 10.61 10.84
Eq. (3) 10.52 10.37 10.22

Pruning-and-growing criteria. We further
investigate the influence on criteria for prune
and grow in Table 7. Note that when we
transfer Eq. (2) to the prune criteria, the elec-
tion of extreme values is also correspond-
ingly reversed. As for the prune criterion, it
can be seen that pruning weights that could
bring the most reduction in reconstruction
error actually led to a significant perfor-
mance decrease. This indicates that while pursuing the reduction of reconstruction error, it is also
essential to keep weights that exhibit an extremely large influence on the output, e.g., weights within
outlier channel. On the other hand, our proposed criteria based on the expectation and variance of
the reconstruction error reduction achieved the best results among all growing criteria.

5 CONCLUSION

In this work, we introduce DS○T, a training-free fine-tuning approach that enhances the perfor-
mance of sparse LLMs without the expensive backpropagation or any weight updates. Taking in-
spiration from the success of sparse training in the pre-LLM pruning age, DS○T adapts iterative
weights growing and pruning in a sparse LLM, with a transferred target for minimizing the recon-
struction error between dense and sparse LLMs outputs. To furnish guidance in the selection of
weights to be pruned and grown, we introduce novel criteria that take into account the expectation
and variance of the reconstruction error reduction by growing each weight concerning different in-
puts. Extensive experiments on pruning representative LLMs across various language benchmarks
demonstrate the efficiency and effectiveness of DS○T in boosting the performance of sparse LLMs.
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A APPENDIX

A.1 COMPLEMENTARY EXPERIMENTAL RESULTS

In this section, we supplement the main paper with more experimental outcomes, including a wider
spectrum of results at varying sparsity rates, robustness analysis under random seeds, and quantita-
tive comparison with varying numbers of calibration sequences.

Varying Sparsity Rates. This part delivers extended results of DS○T when fine-tuning sparse
LLMs at alternating sparsity rates as a supplement to Section 4. The performance of various LLMs
with sparsity rates oscillating between 10% and 90%, are presented in Table 8. Beneficial enhance-
ments are consistently observable at all examined sparsity levels when employing DS○T, with the
significance of improvements escalating concurrently with the increase in sparsity. It is notewor-
thy that the acceleration resultant from unstructured sparsity comes into play predominantly at high
sparsity levels (exceeding 60%) Gale et al. (2020), thereby accentuating the indispensable efficacy
of DS○T.

Table 8: WikiText-2 perplexity performance for fine-tuning LLMs at varying sparsity rates.

Model Method 10% 20% 30% 40% 50% 60% 70% 80% 90%

LLaMA-V1-7B Wanda 5.70 5.82 6.00 6.39 7.26 10.69 88.84 4.80e3 6.41e5
LLaMA-V1-7B w. DS○T 5.68 5.73 5.89 6.28 7.12 10.22 62.05 4.12e3 8.43e4

LLaMA-V1-13B Wanda 5.10 5.13 5.25 5.51 6.15 8.75 55.89 3.66e3 1.54e6
LLaMA-V1-13B w. DS○T 5.09 5.11 5.05 5.29 6.08 8.46 43.31 1.12e3 1.95e5

LLaMA-V2-7B Wanda 5.49 5.59 5.74 6.06 6.92 10.79 75.01 2.36e3 7.87e3
LLaMA-V2-7B w. DS○T 5.48 5.49 5.65 5.85 6.81 10.59 53.12 1.12e3 2.35e3

LLaMA-V2-13B Wanda 4.91 4.99 5.13 5.37 7.88 8.30 46.05 1.06e3 1.22e5
LLaMA-V2-13B w. DS○T 4.89 4.91 5.01 5.25 7.57 8.13 33.19 2.59e2 3.49e4

OPT-13B Wanda 10.13 10.09 10.12 10.63 11.92 15.88 55.07 13722 7.61e5
OPT-13B w. DS○T 10.12 10.08 10.11 10.41 11.28 14.01 45.10 8.43e3 2.33e5

Varying Number of Sample Sequences. Table 9 shows the quantitative results of different methods
with varying numbers of calibrated sequences in complementary with Figure 3. Indeed, SparseGPT
largely outperforms Wanda when the sample number starts to exceed 512. The performance gap gets
larger with the length of 2048. It is worth mentioning that the efficacy of DS○T is indeed obvious
when very limited numbers of calibration samples are given. Meanwhile, it is also encouraging to
see that DS○T can consistently improve the performance of SparseGPT and Wanda even with 2048
calibrated sequences. This highlights the effectiveness of DS○T even when the pruning baseline is
considerably strong, i.e., SparseGPT with long input length.

Table 9: WikiText validation perplexity for different methods in pruning LLaMA-V1-7B at 50%
sparsity with varying number of calibration sequences.

Sample Length 1 2 8 16 32 64 128 256 512 1024 2048

Wanda 13.18 12.11 11.29 11.04 10.83 10.68 10.69 10.65 10.54 10.68 10.77
w. DS○T 12.52 11.22 10.91 10.71 10.62 10.42 10.22 10.15 10.12 10.38 10.41

SparseGPT 30.23 26.04 12.92 11.87 11.45 10.79 10.40 10.41 10.39 9.93 9.99
w. DS○T 17.19 15.61 11.62 11.02 10.33 10.04 10.04 10.03 10.02 9.66 9.70
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Robustness Analysis. We further perform a robustness analysis of DS○T. Given that the results in
Table 1 is evaluated under a fixed calibration set, Table 10 show the results with different calibration
sets under 5 random seeds. The variance across random seeds is very low, suggesting the stability
of DS○T, corroborating its efficacy as a tool in fine-tuning sparse LLMs.

Table 10: WikiText validation perplexity for pruning LLaMA-V1 and LLaMA-V2 models at 60%
sparsity. We report the mean and standard deviation under 5 random seeds.

LLaMA-V1 LLaMA-V2

Method 7B 13B 7B 13B

Dense 5.68 (±0.00) 5.09 (±0.00) 5.47 (±0.00) 4.88 (±0.00)

SparseGPT 10.42(±0.04) 8.43(±0.02) 10.14 (±0.03) 7.88(±0.01)
w. DS○T 9.64(±0.03) 7.73(±0.02) 9.68(±0.03) 7.57(±0.01)

Wanda 10.69(±0.01) 8.75(±0.01) 10.79(±0.01) 8.40(±0.01)
w. DS○T(±0.01) 10.22(±0.01) 8.46(±0.01) 10.59(±0.01) 8.18(±0.01)

16


	Introduction
	Related Work
	Dynamic Sparse No Training – DS254T
	Experimental Results
	Settings
	Language Modeling
	Zero-shot Tasks
	Performance Analysis

	Conclusion
	Appendix
	Complementary experimental results


