
Probabilistic Flow Circuits:
Towards Unified Deep Models for Tractable Probabilistic Inference

Supplementary Material

Sahil Sidheekh1 Kristian Kersting2,3 Sriraam Natarajan1

1Erik Jonsson School of Engineering & Computer Science, The University of Texas at Dallas
2Department of Computer Science , TU Darmstadt

3 Centre for Cognitive Science, TU Darmstadt, and Hessian Center for AI

In this supplementary material, we furnish further details
pertaining to the theory and implementation that was left
out in the main paper due to space constraints.

1 THEORETICAL RESULTS

Lemma 2. τ-decomposability is a necessary condition for
an SPTN to be decomposable.

Proof. Let CSPT N be a decomposable sum-product trans-
form the network. =⇒ ∀P ∈ CSPT N ,P is decompos-
able =⇒ ∀Ni,Nj ∈ ch(P), i ̸= j, ψNi

∩ ψNj
= ∅.

Now, let T ∈ CSPT N be a transform node (and g be its
associated transformation) that is not τ-decomposable. i.e.
when defined over a product node P , there exists at least
one pair ψi′ , ψj′ ∈ {ψNi}Ni∈ch(P), i

′ ̸= j
′
, such that for

x ∈ R|ψP | and y = g(x),yψ
i
′ ̸⊥ xψ

j
′ =⇒ Πψ

i
′ (y) =

f(xψ
j
′) for some function f . Thus, we have,

T (P(x)) = P(g(x))|det Jg|

=
∏

Ni∈ch(P)

Ni(ΠψNi
(g(x)))|det Jg|

Thus the child Ni′ of P computes a function over xψ
j
′ =⇒

ψN
i
′ ⊃ ψN

j
′ =⇒ ψN

i
′ ∩ψN

j
′ ̸= ∅ =⇒ P is not decom-

posable, thus resulting in a contradiction. Thus, for a sum
product transform network CSPT N to be decomposable, all
transform nodes must be τ-decomposable.

Lemma 3. A PFC (CF) with leaf distributions defined us-
ing glrs transformations and a Student’s-t distribution with
ν = 3 as the base distribution is a tractable model for (a)
evidential inference if CF is smooth, (b) Marginal and condi-
tional inference if CF is smooth and decomposable, (c) MAP
inference if CF is smooth, decomposable, and deterministic.

Proof. The tractability of evidential, marginal and condi-
tional inference for CF follows trivially from the fact that CF
is a probabilistic circuit and hence inherits the tractability
offered by the circuit properties of a PC under the structural
constraints of smoothness an decomposability. We elaborate
this further below.

(a) Evidential inference: In order to tractably perform evi-
dential inference, CF requires that the leaf nodes compute
a valid probability density over its scope. A normalizing
flow supports exact density evaluation using the change of
variables formula and hence enables tractable evidential
inference. Smoothness of CF further ensures that its sum
nodes compute valid mixture densities. However, note that
smoothness is not a necessary condition, as a non smooth
PC can, in polynomial time, be converted to a smooth PC
(Choi et al. [2020]).

(b) Marginal and Conditional inference: For a smooth
and decomposable CF , marginalizing out a variableXi from
its modeled density reduces to marginalizing out the corre-
sponding leaf distribution. This is because marginalization
of Xi involves integrating the model density over val(Xi),
and as proved in Choi et al. [2020], the integral over the
circuit reduces to integrals over the leaf distributions having
Xi in their scope, when the circuit is smooth and decompos-
able. Note that each leaf nodes in CF represents a probability
distribution over a single variable and marginalizing it out
is equivalent to setting the corresponding leaf density to 1.
Thus, CF supports tractable marginal inference. Also, the
tractability of conditional inference naturally follows from
the tractability of evidential and marginal inference.

(b) MAP inference: Along the same lines, computation of
MAP queries for CF reduces to computing argmax over leaf
densities if CF is smooth, decomposable and determinis-
tic Choi et al. [2020]. Thus, if we can compute the mode
of the distribution modeled by the leaf nodes, we can en-
sure tractability for MAP inference. For x ∈ [xi, xi+1], let
ϕ = (x−xi+1)

xi+1−xi , and let g denote the linear rational spline
transformation associated with the bin, which has the form

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<sahil.sidheekh@utdallas.edu>?Subject=Your UAI 2023 paper

g(ϕ) = q(ϕ)
r(ϕ) = a1ϕ+b1

a2ϕ+b2
. Let St denote a Student’s-t distri-

bution with 3 degrees of freedom. The pdf of a Student’s-t
distribution with ν degrees of freedom is given by:

p(x; ν) =
Γ
(
ν+1
2

)
√
νπ Γ

(
ν
2

) (1 + x2

ν

)−(ν+1
2)

Thus, we have the following form for the density modeled
at the leaf distributions,

p(x) = St(g(ϕ)).|
∂g(ϕ)

∂x
|

=
1

(xi+1 − xi)
St(g(ϕ)).|

∂g(ϕ)

∂ϕ
|

= C1St

(
q(ϕ)

r(ϕ)

)
(r(ϕ))−2

=
C1Γ(2)√
3πΓ(32)

[
1 +

1

3

(
q(ϕ)

r(ϕ)

)2
]−2

(r(ϕ))−2

= C2 [3r(ϕ) + q(ϕ)g(ϕ)]
−2

Where, C1, C2 are constants. Thus, we have log p(x) =
logC2 − 2 log(3r(ϕ) + q(ϕ)g(ϕ)). Now, log p(x) is maxi-
mized when f(ϕ) = 3r(ϕ) + q(ϕ)g(ϕ) is minimized. Dif-
ferentiating and equating to zero, we have,

3r′(ϕ) + q′(ϕ)g(ϕ) + q(ϕ)g′(ϕ) = 0

=⇒ 3a2r(ϕ)
2 + a1q(ϕ)r(ϕ) + (b2a1 − a2b1)q(ϕ) = 0

Note that as q(ϕ), r(ϕ) are linear in ϕ, the above equation
is quadratic in ϕ. Thus, we can check if any of its real roots
lie within the interval [0, 1]. If it does, then the maximum
density within that bin is given by the density at the root.
If not, then the maximum occurs at either of the interval
boundaries. Thus, we can compute the maximum within
each bin analytically. The maximum density across all the
bins gives the mode of the distribution.

Note that the above analysis also extends to compositions
of LRS transformations as a composition of linear ratio-
nal functions is a linear rational function .i.e for g1(ϕ) =
a1ϕ+b1
a2ϕ+b2

and g2(ϕ) = c1ϕ+d1
c2ϕ+d2

, we have,

g2(g1(ϕ)) =
c1

(
a1ϕ+b1
a2ϕ+b2

)
+ d1

c2

(
a1ϕ+b1
a2ϕ+b2

)
+ d2

=
(c1a1 + d1a2)ϕ+ c1b1 + d1b2
(c2a1 + d2a2)ϕ+ c2b1 + d2b2

is also a linear rational function.

2 IMPLEMENTATION DETAILS

We implemented our code using pytorch, adapting from
Peharz et al. [2020]. We used the Pyro probabilistic pro-
gramming language Bingham et al. [2019] package that

is built on top of pytorch to implement the linear rational
spline transformations. The hyper parameters defining the
structure of the PC in einsum networks [Peharz et al., 2020]
are - the depth (D) of the circuit, the number of vector com-
ponents (K) (i.e. the no. of leaf distributions per variable
and the no. sum nodes in an einsum-layer) and the num-
ber of replica (R). We use the same PC architecture for
both the EinsumNet and EinsumNet+LRS. There are two
hyper parameters associated with the linear rational spline
transformation - the no. of of intervals (I), the bounds (B)
within which it is defined. Outside of [−B,B] the transfor-
mation is defined to be identity. For a dataset with n features,
we set depth D = max (1, ⌊log2(n)⌋). We use end-to-end
backpropagation and train all our models using an Adam
optimizer, with a learning rate of 1e − 3. Further dataset
specific details are summarized below:

3D Manifold Data We sampled 20, 000 data points for
each of the 6 3D datasets, 10, 000 of which we used for
training and 5, 000 each for validation and testing. We used
K = 10, R = 10 as the underlying PC structure for each
model on the 3D datasets. We used a single linear rational
spline transformation with I = 16, B = 20 at the leaves of
EinsumNet+LRS. We used a batch size of 100 and trained
all models for 200 epochs. The learning curves of the models
on the 3D datasets left out in the main paper is given in
Figure 1.

UCI Tabular Datasets We used K = 20, R = 20 as the un-
derlying PC structure for all models on the tabular datasets.
We used a single linear rational spline transformation with
I = 16, B = 16 at the leaves of EinsumNet+LRS. We used
a batch size of 200 for the GAS, MINIBOONE and HEP-
MASS datasets, and a batch size of 500 for the POWER
dataset. We trained all models for 100 epochs, early stopping
if there is no improvement in the validation performance
for over 5 epochs. The details regarding the no. of features,
and no. of datapoints within in each split of the 4 UCI tabu-
lar datasets considered can be found in Papamakarios et al.
[2017]. We also followed the same preprocessing for the
datasets as given by Papamakarios et al. [2017].

Image Datasets We used the PD structure [Poon and Domin-
gos, 2011, Peharz et al., 2020] with △ = [7, 28] and
K = 20, R = 20 to define the underlying PC structure
for all the models on the two image datasets - MNIST
and Fashion-MNIST. We used two linear rational spline
transformations with I = 16, B = 16 at the leaves of Ein-
sumNet+LRS. We used a batch size of 100 and trained all
models for 50 epochs. As we consider continuous leaf dis-
tributions, we applied the logit transformations as done in
Papamakarios et al. [2017] to make the data continuous.

0 25 50 75 100 125 150 175
Epochs

24

23

22

21

Lo
g

Li
ke

lih
oo

d

HELIX

EinsumNet
EinsumNet+Affine
EinsumNet+LRS (ours)

0 25 50 75 100 125 150 175
Epochs

23

22

21

Lo
g

Li
ke

lih
oo

d

DisjointCIRCLES

EinsumNet
EinsumNet+Affine
EinsumNet+LRS (ours)

0 25 50 75 100 125 150 175
Epochs

23

22

Lo
g

Li
ke

lih
oo

d

InterlockedCIRCLES

EinsumNet
EinsumNet+Affine
EinsumNet+LRS (ours)

0 25 50 75 100 125 150 175
Epochs

24

23

22

Lo
g

Li
ke

lih
oo

d

KNOTTED

EinsumNet
EinsumNet+Affine
EinsumNet+LRS (ours)

0 25 50 75 100 125 150 175
Epochs

23

22
Lo

g
Li

ke
lih

oo
d

TwistedEIGHT

EinsumNet
EinsumNet+Affine
EinsumNet+LRS (ours)

0 25 50 75 100 125 150 175
Epochs

23

22

Lo
g

Li
ke

lih
oo

d

BentLISSAJOUS

EinsumNet
EinsumNet+Affine
EinsumNet+LRS (ours)

Figure 1: Learning curves of - (a) Einsum Network (b) Einsum Network + Affine transformations at the leaves and (c)
Einsum Network + LRS transformations at the leaves on the 3D datasets, in terms of average log-likelihood (higher the
better) on the validation set across training epochs. The shaded regions depict the standard deviation across 3 independent
trials. We can observe that Einsum Network + LRS achieves superior performance much faster than the other two models on
all datasets.

Figure 2: Controlled Sample Generation Using an EinsumNet+LRS trained on the Helix dataset. The tractability of
EinsumNet+LRS allows generating data with certain properties, for e.g. the second, third and fourth subfigures show data
generated such that its projection onto the XY plane is the black curve plotted.

References

Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz
Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit
Singh, Paul Szerlip, Paul Horsfall, and Noah D Goodman.
Pyro: Deep universal probabilistic programming. The
Journal of Machine Learning Research, 20(1), 2019.

YooJung Choi, Antonio Vergari, and Guy Van den Broeck.
Probabilistic circuits: A unifying framework for tractable
probabilistic models. 2020.

George Papamakarios, Theo Pavlakou, and Iain Murray.
Masked autoregressive flow for density estimation. Ad-

vances in neural information processing systems, 30,
2017.

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner,
Alejandro Molina, Martin Trapp, Guy Van den Broeck,
Kristian Kersting, and Zoubin Ghahramani. Einsum net-
works: Fast and scalable learning of tractable probabilistic
circuits. In ICML, 2020.

Hoifung Poon and Pedro Domingos. Sum-product networks:
A new deep architecture. In 2011 IEEE International
Conference on Computer Vision Workshops (ICCV Work-
shops), pages 689–690. IEEE, 2011.

	Theoretical Results
	Implementation Details

