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A Previous work: more detailed discussion

Domain adaptation with a single source domain and a target domain has been widely studied (Ben-
David et al., 2007; Blitzer et al., 2008; Mansour et al., 2009b; Ben-David et al., 2010; Cortes and
Mohri, 2014; Cortes et al., 2015; Wang et al., 2019b) and has applications to several fields ranging
from acoustic modelling (Liao, 2013) to object recognition (Torralba and Efros, 2011). It has been
studied in unsupervised settings with unlabeled target domain examples (Gong et al., 2012; Long
et al., 2015; Ganin and Lempitsky, 2015), in supervised settings with the aid of labeled target domain
examples (Yang et al., 2007; Hoffman et al., 2013; Girshick et al., 2014; Motiian et al., 2017b), and
in semi-supervised settings where both labeled and unlabeled target examples are available (Tzeng
et al., 2015; Saito et al., 2019).

In a wide variety of applications, the learner has access to information from multiple sources. Such
problems are often referred to as multiple-source adaptation. Multiple-source adaptation problems,
where the learner has access to unlabeled source data together with predictors that are trained for each
particular domain has been formalized in Mansour et al. (2008, 2009a); Hoffman et al. (2018). There
are other multiple-source adaptation scenarios, where labeled examples are available from multiple
sources and unlabeled or labeled examples are available from the target domain. This includes
adversarial training, which has been studied by Motiian et al. (2017a); Pei et al. (2018); Zhao et al.
(2018); Xu et al. (2018). Algorithms for learning from multiple untrusted sources have been proposed
by Konstantinov and Lampert (2019). Another related problem is domain generalization (Pan and
Yang, 2009; Muandet et al., 2013; Xu et al., 2014), where information from multiple sources is used
to obtain a predictor that generalizes to a previously unseen domain.

There are various algorithms, successfully applying boosting with multiple sources to domain
adaptation and transfer learning problems, that have inspired our analysis. The TRADABOOST (Dai
et al., 2007) algorithm, having a set of weak learners trained on the source domain, at every boosting
round selects those that minimize the error on the target domain. In case of multiple sources and
a single target, Yao and Doretto (2010) developed MULTISOURCETRADABOOST algorithm that
trains weak learners on the union of each of the sources and the target, thus reducing the negative
knowledge transfer effect. These algorithms have been further improved and widely adopted in
practice (Yuan et al., 2017; Cheng et al., 2013; Zhang et al., 2014). Another approach that uses
multi-view ADABOOST for single and multi-source domain adaptation was proposed by Xu and Sun
(2012, 2011). They divide the feature space into two views based on the source and target; at each
boosting step, two weak learners are trained on these views and the sample distribution is updated
according to the errors on the target domain.

A number of experimental studies have shown the benefits of having an ensemble of weak learners
for multi-task learning and domain adaptation problems. Moreover, in certain cases the boosting
approach can outperform traditional methods. For example, Huang et al. (2010, 2012) showed that
by selecting a weak learner jointly with a feature that is predictive across multiple domains at every
boosting step, one can achieve higher accuracy than standard transfer learning methods. Moreover,
the margin provided by boosting-style algorithms can aid in transfer learning where target domain is
unlabelled. Habrard et al. (2013) have developed an algorithm that jointly minimizes the the source
domain error and margin violation proportion on the target domain.

Wang et al. (2019a) have demonstrated that boosting classifiers from different domains can be done
online and showed efficient algorithm for the ADABOOST-style sample distribution updates. For
certain types of high-dimensional data, such as images and text, boosting may be not as efficient as
other multi-task learning methods. However, a number of works such as Taherkhani et al. (2020)
and Becker et al. (2013) have shown that multi-source boosting can be combined with Deep Neural
Networks for multi-task learning on large scale datasets.

In the context of neural networks, the idea of using domain probabilities when combining experts,
also termed gating networks, goes back to Hampshire and Waibel (1992) and Jacobs et al. (1991).

Agnostic loss has been used in several machine learning problems. Namkoong and Duchi (2016); Levy
et al. (2020) proposed efficient algorithms to minimize agnostic loss in the context of distributionally
robust optimization. Agnostic loss in federated learning has been studied by Mohri et al. (2019);
Hamer et al. (2020); Ro et al. (2021), who provided theoretical guarantees and algorithms. Lahoti
et al. (2020) used agnostic loss to achieve fairness in machine learning models.
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B Proof of the Propositions 1 and 2

This section contains the proofs for Proposition 1 and Proposition 2 discussed in Section 2.
Proposition 1. There exist distributions D1 and D2 and hypotheses h1 and h2 with L(D1, h1) = 0
and L(D2, h2) = 0 such that L

(
1
2 (D1 + D2), αh1 + (1− α)h2

)
≥ 1

2 for any α ∈ [0, 1],

Proof. Consider the case where X is reduced to two elements, X = {a1, a2}, where D1 is the
point mass on a1, D2 the point mass on a2, and where the target labeling function is f defined
by f(a1) = +1, f(a2) = −1. Let h1 be defined by h1(a1) = h1(a2) = +1 and and h2 by
h2(a1) = h2(a2) = −1.

Then, h1 is a perfect predictor for the first domain since L(D1, h1) = I(h1(a1)f(a1) ≤ 0) = 0,
and h2 is a perfect predictor for the second domain since L(D2, h2) = I(h2(a2)f(a2) ≤ 0) = 0.
However, for any α ∈ [0, 1], we have

L
(

1

2
(D1 + D2), αh1 + (1− α)h2

)
=

1

2
I(2α− 1 ≤ 0) +

1

2
I(1− 2α ≤ 0) ≥ 1

2
.

This concludes the proof of Proposition 1.

Proposition 2. For the same distributions D1 and D2 and hypotheses h1 and h2 as in Proposition 1,
the equality L(Dλ, (αQ(1|·)h1 + (1− α)Q(2|·)h2)) = 0 holds for any λ ∈ ∆ and any α ∈ (0, 1).

Proof. For the counterexample of Proposition 1, for any α ∈ (0, 1), the Q-ensemble f(x) =
(αQ(1|x)h1(x) + (1− α)Q(2|x)h2(x)) admits no loss with respect to any target distribution Dλ:

L(Dλ, f) = (λ I(f(a1) ≤ 0) + (1− λ) I(−f(a2) ≤ 0))

= λ(I(α ≤ 0) + (1− λ) I((1− α) ≤ 0)) = 0,

since Q(1|a1) = Q(2|a2) = 1 and Q(2|a1) = Q(1|a2) = 0.

This concludes the proof of Proposition 2.

C Proof of Lemma 1

Lemma 1. For any k ∈ [p], the following upper bound holds when Φ is the exponential or the logistic
function:

F (αt−1 + ηek,r) ≤ max
l∈[p]

Zt,l
ml

[
(1− εt,l,k,r)e−η + εt,l,k,re

η
]
,

where εt,l,k,r = 1
2

[
1− Ei∼Dt(l,·)[yl,iQ(k|xl,i)hk,r(xl,i)]

]
.

Proof. In the special case where Φ = exp, we have:
Φ(−yl,ift−1(xl,i)− η yl,iQ(k|xl,i)hk,r(xl,i))

≤ 1 + yl,iQ(k|xl,i)hk,r(xl,i)
2

e−yl,ift−1(xl,i)e−η +
1− yl,iQ(k|xl,i)hk,r(xl,i)

2
e−yl,ift−1(xl,i)eη

=
1 + yl,iQ(k|xl,i)hk,r(xl,i)

2
Dt(l, i)Zt,le

−η +
1− yl,iQ(k|xl,i)hk,r(xl,i)

2
Dt(l, i)Zt,le

η.

Thus, we have:

F (αt−1 + ηek,r) = max
l∈[p]

1

ml

ml∑
i=1

Φ(−yl,ift−1(xl,i)− η yl,iQ(k|xl,i)hk,r(xl,i))

≤ max
l∈[p]

Zt,l
ml

ml∑
i=1

1

ml

ml∑
i=1

1 + yl,iQ(k|xl,i)hk,r(xl,i)
2

Dt(l, i)e
−η

+
1− yl,iQ(k|xl,i)hk,r(xl,i)

2
Dt(l, i)e

η

= max
l∈[p]

Zt,l
ml

[
(1− εt,l,k,r)e−η + εt,l,k,re

η
]
.

The proof is similar in the case of the logistic function.

18



D Other variants of MULTIBOOST

As already mentioned, instead of the maximum, the softmax function (x1, . . . , xk) 7→
1
µ log(

∑p
k=1 e

µxk) can be used in the definition of the algorithm, modulo an approximation that can
be controlled via the parameter µ > 0. Using the softmax not only leads to a differentiable objective,
but also makes the algorithm focus on several top most difficult domains instead of the single most
difficult one, thereby offering a useful trade-off in some applications.

Another variant of the algorithm with also a differentiable objective function consists of simply
upper-bounding the maximum by a sum:

Fsum(α) =

p∑
k=1

1

mk

mk∑
i=1

Φ

(
−yk,i

p∑
l=1

Nl∑
j=1

αl,jQ(l|xk,i)hl,j(xk,i)

)
. (8)

It is straightforward to show that, as with the maximum-based objective, our weak learning assumption
implies that, at each round, there exists a coordinate direction along which each active function Fk
decreases. Furthermore, our comments and analysis in the maximum case regarding the Q-function
and lower bounds on the edge similarly hold here.

In the following, we present convergence guarantees for the Fsum objective. A similar guarantee with
the same proof holds for the softmax variant of MULTIBOOST.

Theorem 3. Assume that Φ is twice differentiable and Φ′′(u) ≥ 0 for all u ∈ R. Let F = Fsum, then,
projected coordinate descent applied to F (α) converges to the optimal solution α∗ of minα≥0 F (α).
If further Φ is strongly convex on the path of the iterates αt, then there exist τ > 0 and γ > 0 such
that for all t > τ :

F (αt+1)− F (α∗) ≤
(

1− 1
γ

)
(F (αt)− F (α∗)). (9)

Proof. We show that Fsum can be represented as Fsum(α) = G(Hα), such that ∇2G(Hα) is
positive definite for all α and apply Theorem 2.1 in Luo and Tseng (1992) to obtain the convergence
guarantees. Let H be the matrix whose row indexes are {(k, i) : k ∈ [p], i ∈ [mk]} and whose column
indexes are {(l, j) : l ∈ [p], j ∈ [Nk]}. Define matrix H by H(k,i),(l,j) = −yk,iQ(l|xk,i)hl,j(xk,i).
Let e(k,i) be the (k, i)-th unit vector, then for any α:

e>(k,i)Hα = −yk,i
p∑
l=1

Nl∑
j=1

αl,jQ(l|xk,i)hl,j(xk,i). (10)

Define the function G as follows for all u:

G(u) =

p∑
k=1

1

mk

mk∑
i=1

Φ
(
−e>(k,i)u

)
. (11)

By definition, we have Fsum(α) = G(Hα). Moreover, G is twice differentiable and ∇2G(u) is a
diagonal matrix with diagonal entries 1

mk
Φ′′(−e>(k,i)u) ≥ 0. Thus, ∇2G(u) is positive definite for

all α ≥ 0. Thus, Theorem 2.1 in Luo and Tseng (1992) holds for the optimization problem

min
α≥0

G(Hα), (12)

which guarantees the convergence rate of the coordinate descent for Fsum. If further F is is strongly
convex over the sequence of αts, then, by Luo and Tseng (1992)[page 26], the inequality:

F (αt+1)− F (α∗) ≤
(

1− 1
γ

)
(F (αt)− F (α∗))

holds for the projected coordinate method based on the best direction at each round, as with the
Gauss-Southwell method.

Note, that the proof can be extended straightforwardly to a regularized Fsum objective, simply by
considering Fsum(α) = G(Hα) + β>α in the proof for some β ≥ 0.
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E Proofs of Theorem 1 and Theorem 4

Theorem 1. Fix ρ > 0. Then, for any δ > 0, with probability at least 1−δ over the draw of a sample
S = (S1, . . . , Sp) ∼ Dm1

1 ⊗ · · · ⊗D
mp
p , the following inequality holds for all ensemble functions

f =
∑T
t=1 αtQ(kt|·)ht ∈ F and all λ ∈ ∆:

L(Dλ, f) ≤ Lρ(Dλ, f) +

p∑
k=1

λk

2

ρ
max
l∈[p]

Rmk(Hl) +

√
log p

δ

2mk

. (5)

Proof. Fix λ ∈ ∆ and δ > 0. For any k ∈ [p], by the standard Rademacher complexity margin bound
for F (Mohri et al., 2018)[Theorem 5.8], with probability at least 1 − δ, the following inequality
holds for all f ∈ F:

L(Dk, f) ≤ Lρ(D̂k, f) +
2

ρ
Rmk(F) +

√
log 1

δ

2mk
.

By the union bound, the following inequalities hold simultaneously for all k ∈ [p]:

L(Dk, f) ≤ Lρ(D̂k, f) +
2

ρ
Rmk(F) +

√
log p

δ

2mk
.

Multiplying each by λk and summing them up yields:

L(Dλ, f) ≤ Lρ(Dλ, f) +

p∑
k=1

λk

2

ρ
Rmk(F) +

√
log p

δ

2mk

.
Since the Rademacher of a family coincides with that of its convex hull (Mohri et al., 2018), we
have Rmk(F) = Rmk(

⋃p
k=1 Gk) ≤ maxl∈[p] Rmk(Gl). We will show that the following inequality

holds for any k ∈ p: Rmk(Gl) ≤ 2Rmk(Hl). Note that we can write for any h ∈ Hk: Q(l|·)h =
1
4

[
(Q(l|·) + h)2 − (Q(l|·)− h)2

]
. Thus, since the Rademacher complexity of a sum can be bounded

by the sum of the Rademacher complexities, we have:

Rmk(Gl) ≤
1

4
Rmk

({
(Q(l|·) + h)2 : h ∈ Hl

})
+

1

4
Rmk

({
(Q(l|·)− h)2 : h ∈ Hl

})
.

Now, functions Q(l|·) + h and Q(l|·)− h both take values in [−1, 2] and the function x 7→ 1
4x

2 is
1-Lipschitz on [−1, 2] since the absolute value of its derivative |x|/2 reaches it maximum at x = 2.
Thus, by Talagrand’s contraction lemma (Ledoux and Talagrand, 1991), we have

Rmk(Gl) ≤ Rmk({(Q(l|·) + h) : h ∈ Hl}) + Rmk({(Q(l|·)− h) : h ∈ Hl}).

Now, these Rademacher complexities can be straightforwardly analyzed as follows:

Rmk({(Q(l|·) + h) : h ∈ Hl}) = E
S∼Dm

σ

[
sup
h∈Hl

mk∑
i=1

σi[h(xi) + Q(l|xi)]

]

= E
S∼Dm

σ

[
sup
h∈Hl

mk∑
i=1

σih(xi)

]
+ E
S∼Dm

σ

[
mk∑
i=1

σiQ(l|xi)

]

= E
S∼Dm

σ

[
sup
h∈Hl

mk∑
i=1

σih(xi)

]
+ E
S∼Dm

[
mk∑
i=1

E
σ

[σi]Q(l|xi)

]

= E
S∼Dm

σ

[
sup
h∈Hl

mk∑
i=1

σih(xi)

]
= Rmk(Hl).

Similarly, we have Rmk({(Q(l|·)− h) : h ∈ Hl}) = Rmk(Hl). This completes the proof.
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Figure 4: Illustration of the set Λ, vertices of simplices(in blue). The area in green represents the set Λ. The
small area in pink shows an ε-ball in l1-distance (and hence a lozenge) around a vertex.

Theorem 4. For any δ > 0, with probability at least 1 − δ over the draw of a sample S =
(S1, . . . , Sp) ∼ Dm1

1 ⊗ · · · ⊗D
mp
p , the following inequality holds for all ensemble functions f =∑T

t=1 αtQ(kt|·)ht ∈ F and all ρ ∈ (0, 1) and λ ∈ ∆:

L(Dλ, f) ≤ Lρ(Dλ, f) +

p∑
k=1

λk

2

ρ
max
l∈[p]

Rmk(Hl) +

√
log log2

2
ρ

mk
+

√
log p

δ

2mk

. (13)

Proof. By the uniform margin bound (Mohri et al., 2018, Theorem 5.9), for any k ∈ [p], with
probability at least 1− δ the following inequality holds for all f ∈ F and ρ ∈ (0, 1]:

L(Dk, f) ≤ Lρ(D̂k, f) +
2

ρ
Rmk(F) +

√
log log2

2
ρ

mk
+

√
log 1

δ

2mk
.

The rest of the proof is similar to that of Theorem 1.

F Finer margin-based learning guarantees

In this section, we give finer margin-based generalization bounds for the family of ensemble F . These
learning bounds are particularly more relevant in the case where Λ is a strict subset of the simplex ∆.
Λ may be in fact a much smaller set, motivated by prior knowledge about the task and thus possible
target mixtures. In some instances, it may even be a finite subset, which corresponds to only a finite
set of mixtures.

For any family of real-valued functions G, define the weighted Rademacher complexity of G for the
vector of samples Sk = (zk,1, . . . , zk,mk) of sizes m = (m1, . . . ,mp) as follows:

Rm(G, λ) = E
Sk∼D

mk
k ,σ

[
sup
g∈G

p∑
k=1

λk
mk

mk∑
i=1

σk,i g(zk,i)

]
. (14)

Fix λ ∈ Λ and define Ψ(S) for the vector of training samples S = (S1, . . . , Sp) as follows:

Ψ(S) = sup
h∈G

{
E

z∼Dλ

[g(z)]− E
z∼Dλ

[g(z)]

}
,

where Dλ =
∑p
k=1 λkD̂k, with D̂k the empirical distribution associated with the sample Sk. Assume

that functions in G take values in [0, 1]. For any vector of samples S′ differing from S only by point
z′k,i in S′k and zk,i in Sk, we have

Ψ(S′)−Ψ(S) ≤ sup
g∈G

{{
E

z∼Dλ

[g(z)]− E
z∼D′λ

[g(z)]

}
−
{

E
z∼Dλ

[g(z)]− E
z∼Dλ

[g(z)]

}}

= sup
g∈G

{
E

z∼Dλ

[g(z)]− E
z∼D′λ

[g(z)]

}
= sup

g∈G

λk
mk

[
g(zk,i)− g(z′k,i)

]
≤ λk
mk

.

Furthermore, as with the standard Rademacher complexity (Mohri et al., 2018), the
expectation can be upper bounded in terms of the weighted Rademacher complexity:

21



ESk∼Dmk
k

[
supg∈G Ez∼Dλ

[g(z)]− Ez∼Dλ
[g(z)]

]
≤ 2Rm(G, λ). Thus, by McDiarmid’s inequality,

for any δ > 0, with probability at least 1− δ,

E
z∼Dλ

[g(z)] ≤ E
z∼Dλ

[g(z)] + 2Rm(G, λ) +

√√√√ p∑
k=1

λ2
k

2mk
log

1

δ
.

Let Λ be the set of vertices of a subsimplicial cover of Λ, that is a decomposition of a cover of Λ into
subsimplices. When the subsimples are formed by vertices that are ε-close in `1-distance, then Λ is
an ε-cover of Λ for the `1-distance. Figure 4 illustrates the sets λ and Λ. By the union bound, with
probability at least 1− δ, the following holds for all λ ∈ Λ:

E
z∼Dλ

[g(z)] ≤ E
z∼Dλ

[g(z)] + 2Rm(G, λ) +

√√√√ p∑
k=1

λ2
k

2mk
log
|Λ|
δ
.

Now, fix ρ > 0. Let H be a hypothesis set of real-valued functions and let φρ denote the ρ-ramp loss.
Let G be the family of ρ-ramp losses of functions in H: G = {z = (x, y) 7→ φρ(yh(x)) : h ∈ H}.
Then, proceeding as with the derivation of margin-based Rademacher complexity bounds in the
standard case and using the 1

ρ -Lipschitzness of the ρ-ramp loss (Mohri et al., 2018), we obtained that,
with probability at least 1− δ, the following holds for all λ ∈ Λ:

L(Dλ, h) ≤ Lρ(Dλ, h) +
2

ρ
Rm(H, λ) +

√√√√ p∑
k=1

λ2
k

2mk
log
|Λ|
δ
.

Now, for any λ, λ′ ∈ ∆ with ‖λ− λ′‖1 ≤ ε, we have:

p∑
k=1

λ
′2
k

2mk
=

p∑
k=1

(λ′k − λk + λk)2

2mk

=

p∑
k=1

λ2
k + 2(λ′k − λk)λk + (λ′k − λk)2

2mk

=

p∑
k=1

λ2
k

2mk
+

p∑
k=1

2|λ′k − λk|λk + (λ′k − λk)2

2mk

≤
p∑
k=1

λ2
k

2mk
+ εmax

k∈[p]

λk
mk

+
ε2

2
max
k∈[p]

1

mk
(Hölder’s inequality)

≤
p∑
k=1

λ2
k

2mk
+

3ε

2
.

Let Λε denote the family of λs that are ε-close to Λ in `1-distance, then, for any λ ∈ Λε we have:

L(Dλ, h) ≤ Lρ(Dλ, h) +
2

ρ
Rm(H, λ) +

3ε

2
+

√√√√ p∑
k=1

λ2
k

2mk
log
|Λ|
δ
.

Also, for any λ in a subsimplex formed by elements of Λ, there exist µ = (µ1, . . . , µp) and β1, . . . , βp
in Λ such that λ =

∑p
k=1 µkβk. Thus, for any such λ, we have

L(Dλ, h) ≤ Lρ(Dλ, h) +
2

ρ

p∑
l=1

µkRm(H, βl) +

p∑
k=1

µk

√√√√ p∑
l=1

β2
l,k

2mk
log
|Λ|
δ
.

Applying these results to the analysis of the Q-ensembles we are interested yields the following
margin-based generalization bounds.
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Theorem 2. Fix ρ > 0 and ε > 0. Then, for any δ > 0, with probability at least 1− δ over the draw
of a sample S = (S1, . . . , Sp) ∼ Dm1

1 ⊗ · · · ⊗D
mp
p , each of the following inequalities holds:

1. for all ensemble functions f =
∑T
t=1 αtQ(kt|·)ht ∈ F and all λ ∈ Λε:

L(Dλ, h) ≤ Lρ(Dλ, h) +
2

ρ
max
r∈[p]

Rm(Hr, λ) +
3ε

2
+

√√√√ p∑
k=1

λ2
k

2mk
log
|Λ|
δ
. (6)

2. for all ensemble functions f =
∑T
t=1 αtQ(kt|·)ht ∈ F and all λ =

∑p
k=1 µkβk ∈ conv(Λ):

L(Dλ, h) ≤ Lρ(Dλ, h) +
2

ρ

p∑
l=1

µk max
r∈[p]

Rm(Hr, βl) +

p∑
k=1

µk

√√√√ p∑
l=1

β2
l,k

2mk
log
|Λ|
δ
. (7)

Note that, for a given λ ∈ Λ, the most favorable of the two statements of the theorem can be
used. Observe also that the second learning bound coincides with that of Theorem 1 when Λ is
chosen to be the vertices of the simplex ∆ since in that case |Λ| = p, conv(Λ) = ∆, and since
Rm(Hr, βl) = Rm(Hr, βl) then coincides with Rml(Hr). Choosing the best statement of the
theorem therefore always provides a finer guarantee than that of Theorem 1.

When Λ is a small set, for example the set of λs ε-close to a finite set of discrete elements Λ, then the
last term of the learning bound of the first statement can be more favorable that of Theorem 1 since
|Λ| can then be in the same order as p or smaller while, by the sub-additivity of the square-root, the

following inequality holds:
√∑p

k=1
λ2
k

mk
≤
∑p
k=1

√
λ2
k

mk
=
∑p
k=1 λk

√
1
mk

.

The theorem suggests a regularization term of the form
∑p
k=1

λ2
k

mk
, especially in the case where Λ is

a small subset of the simplex, which can lead to better algorithms in that case.

G FEDMULTIBOOST: related work and experiments

Following MULTIBOOST, we propose a boosting-style approach with the agnostic loss. Boosting in
federated learning was first studied by Hamer et al. (2020). The authors proposed a communication-
efficient algorithm for minimizing the standard empirical risk and agnostic loss, based on mirror
descent. However, their algorithm is optimal only for density estimation (Hamer et al., 2020, Section
3.2) and is sub-optimal for general classification tasks such as in Proposition 1. Furthermore, their
mirror descent solution is inadequate for the boosting framework in this paper, where a (block)
coordinate descent approach for learning sparser solutions is critical. Recently, Shen et al. (2021)
proposed a functional gradient boosting algorithm for federated learning. Their algorithm iteratively
determines base classifiers and mixing weights to compute a convex combination in a distributed
manner. However, their algorithm minimizes the uniform loss over all samples. In contrast, we
propose to minimize the agnostic loss over multiple domains, which is more risk-averse, and seek
Q-ensembles which are more adequate than convex combinations in a multiple-source scenario.

Federated learning experiments. We used the EMNIST dataset (Caldas et al., 2018; Bonawitz et al.,
2019), which contains 32x32 pixel handwritten digits images annotated by users. The images are
divided into p = 2 sources based on the group of writers that provided the annotation: high school
(k = 1) and census (k = 2). We compared algorithms on two binary classification problems: digits
4 vs. 9 and digits 1 vs. 7. The results are presented in Table 2. The error bars are obtained from
breaking the set of clients into 10 random folds.

We compared FEDMULTIBOOST with three benchmarks, FEDADABOOST-k for k ∈ [p] and FEDAD-
ABOOST-all. The former is a federated version of ADABOOST algorithm trained only on a single
source k and the latter is federated ADABOOST trained on both the sources. In the federated AD-
ABOOST versions, at each boosting step we randomly select 20 clients and train weak learners on
each of those clients, next, the server selects the weak learner with the smallest weighted error and
adds it to the ensemble. For the FEDMULTIBOOST algorithm, we randomly select 20 clients per
round. Since the number of clients sampled at each round is small, we run each algorithm for 500
boosting steps.

As can be seen from Table 2, FEDMULTIBOOST provides agnostic and uniform errors that are
significantly better than the baselines on both the datasets.
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Table 2: Test errors for multiple benchmarks in the federated setting.

Algorithm Error-1 Error-2 Error-Uniform Error-Agnostic

EMNIST (4 vs. 9)

FEDADABOOST-1 0.075 ± 0.008 0.133 ± 0.014 0.104 ± 0.009 0.133 ± 0.014
FEDADABOOST-2 0.095 ± 0.009 0.096 ± 0.014 0.095 ± 0.012 0.096 ± 0.014
FEDADABOOST-all 0.076 ± 0.006 0.125 ± 0.016 0.101 ± 0.011 0.125 ± 0.007
FEDMULTIBOOST 0.064 ± 0.013 0.076 ± 0.008 0.070 ± 0.009 0.076 ± 0.016

EMNIST (1 vs. 7)

FEDADABOOST-1 0.029 ± 0.010 0.050 ± 0.009 0.039 ± 0.011 0.050 ± 0.009
FEDADABOOST-2 0.062 ± 0.014 0.030 ± 0.007 0.046 ± 0.014 0.062 ± 0.007
FEDADABOOST-all 0.032 ± 0.007 0.043 ± 0.006 0.037 ± 0.007 0.043 ± 0.014
FEDMULTIBOOST 0.030 ± 0.008 0.035 ± 0.006 0.032 ± 0.008 0.035 ± 0.010

H Dataset references and details

• MNIST: http://yann.lecun.com/exdb/mnist/
• SVHN: http://ufldl.stanford.edu/housenumbers/
• MNIST-M: http://yaroslav.ganin.net/
• SENTIMENT: https://www.cs.jhu.edu/~mdredze/datasets/sentiment
• FASHION-MNIST: https://github.com/zalandoresearch/fashion-mnist
• ADULT: https://archive.ics.uci.edu/ml/datasets/adult

Table 3: Number of examples per domain for each classification problem.

Problem Source k=1 Source k=2 Source k=3 Total

Sentiment Analysis 2,000 2,000 2,000 6,000
Digit Classification (1 vs 7) 15,170 26,574 14,728 56,472
Digit Classification (4 vs 9) 13,782 16,235 13,406 43,423
Object Recognition 21,000 21,000 28,000 70,000
Tabular Data (Adult Data) 10,628 14,783 19,811 45,222
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I Supplementary plots

This section contains additional plots illustrating the performance of the proposed MULTIBOOST
algorithm. We illustrate convergence characteristics, Figure 7, Q(k|·k) functions, Figure 5, and
α-mass distributions over the domains and Q(k|·k) functions, Figure 6.

Figure 5: Mean values of Q(k|·k) for the three domains of the data projected on the first principal component
of the joint data.
Top, left: Adult data. Source k = 1 consists of individuals with a university degree (BSc, MS or PhD), source
k = 2 those with only a High School diploma, and source k = 3, none of the above.
Top, right: Fashion-MNIST data. Source k = 1 consists of t-shirts, pullovers, trousers; k = 2
consists of dresses, coats, sandals; k = 3 consists of shirts, bags, sneakers, ankle boots.
Bottom, left: Digits (4 vs. 9), where pixel handwritten digits images are taken from sources: MNIST (k = 1),
SVHN (k = 2), MNIST-M (k = 3).
Bottom, right: Digits (1 vs. 7), where pixel handwritten digits images are taken from sources: MNIST (k = 1),
SVHN (k = 2), MNIST-M (k = 3).
Note that for the two bottom plots domain k = 1 is significantly further separated from the other two domains,
since the pixels for k = 1 are black and white and those for k = 2, 3 are grayscale.

Figure 6: The ratio of ensemble weights αk,j after training that corresponds to each source k = 1, 2, 3. For
each dataset and fixed k, the bar corresponds to

∑Nk
j=1 αk,j/

∑p
k=1

∑Nk
j=1 αk,j .
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Figure 7: Left: The evolution of surrogate losses Φ for sources k = 1, 2, 3 during MULTIBOOST training on
object recognition problem (Fashion-MNIST). Line k corresponds to 1

mk

∑mk
i=1 Φ(yi, ft(xi)) as a function of t,

where ft is the MULTIBOOST ensemble of weak learners obtained at round t. Right: The evolution of the step
size ηt during MULTIBOOST training on object recognition problem (Fashion-MNIST).

J Comparison with multiple-source adaptation

In this section, we compare our results with an alternative solution based on using a multiple-source
adaptation algorithm (Cortes, Mohri, Suresh, and Zhang, 2021; Mansour, Mohri, and Rostamizadeh,
2008, 2009a; Hoffman, Mohri, and Zhang, 2018, 2021). Let us emphasize first that these algorithms
are designed for a distinct scenario than the one studied in this paper. They assume no access to
labeled data and instead only to a good predictor and unlabeled data for each domain.

The method consists of first training AdaBoost on each domain, which provides an accurate predictor
fk for each domain k. Next, we can use the discriminative technique for multiple-source adaptation
(DMSA algorithm) recently presented by Cortes, Mohri, Suresh, and Zhang (2021) to combine these
predictors to derive a solution that is robust for any target mixture distribution of the source domains.
This algorithm was shown to outperform the GMSA algorithm of Hoffman, Mohri, and Zhang (2018)
and Hoffman, Mohri, and Zhang (2021), which is based on density estimation (note that previous
work by Mansour, Mohri, and Rostamizadeh (2008, 2009a) did not provide an actual algorithm for
this problem), which itself was shown to surpass other existing algorithms for this scenario.

As mentioned earlier, the idea of Q-ensembles in our boosting context is inspired by the distribution-
weighted combinations of Mansour, Mohri, and Rostamizadeh (2008, 2009a) or Hoffman, Mohri, and
Zhang (2018, 2021) or the domain-classifier based combinations of Cortes, Mohri, Suresh, and Zhang
(2021). Our basic motivation via Propositions 1 and 2 are also similar. However, the main technical
content of this work and the contributions are all novel. Our formulation of the multiple-source
boosting problem, including our weak learning assumption, our algorithmic solutions, including an
extension to the Federated Learning setting, and our theoretical analysis of the problem, including
finer margin-based learning bounds, our extensive experimental results, are all novel and unrelated to
that previous work.

In Section 6, we report experimental results for this AdaBoost and DMSA-based algorithm, and
compare them with MULTIBOOST. Note that, as already mentioned, DMSA is designed for a
different scenario from the one studied in this paper where no access to labeled data is assumed. The
empirical results suggest that MULTIBOOST outperforms DMSA, although DMSA often achieves a
competitive performance in the tasks examined.

Let us emphasize, however, that the predictor for the DMSA algorithm (or GMSA) in general does
not benefit from informative guarantees in our scenario, for the following reasons.

Target labeling function assumption: the main analysis and results in (Mansour, Mohri, and
Rostamizadeh, 2008, 2009a; Hoffman, Mohri, and Zhang, 2018, 2021; Cortes, Mohri, Suresh, and
Zhang, 2021) require that the target labeling function (or conditional probability of Y given X for an
extension of that analysis) be the same for all domains. This is a strong condition that may not hold
in practice and that is not required for our learning guarantees for MULTIBOOST.
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Loss function: the guarantees in (Mansour, Mohri, and Rostamizadeh, 2008, 2009a; Hoffman, Mohri,
and Zhang, 2018, 2021; Cortes, Mohri, Suresh, and Zhang, 2021) hold only for a continuous loss
function, since they rely on Brouwer’s fixed-point theorem. In particular, they do not hold for the
binary or multi-class mis-classification losses considered here.

One can resort instead to a convex surrogate loss (such a guarantee would be then in terms of
the convex loss of the predictors to combine and not their more favorable zero-one loss). But the
guarantees in (Mansour, Mohri, and Rostamizadeh, 2008, 2009a; Hoffman, Mohri, and Zhang, 2018,
2021; Cortes, Mohri, Suresh, and Zhang, 2021) also require the loss to be bounded, which would not
hold for an unbounded domain. Even for a bounded domain, the bound could be large and the value
of the convex loss on the boundary even larger (exponentially larger for AdaBoost) thereby making
the desired guarantee essentially vacuous. In contrast, our guarantees hold for the zero-one loss.

Algorithms: the technique of Mansour, Mohri, and Rostamizadeh (2008, 2009a) and Hoffman, Mohri,
and Zhang (2018, 2021) requires density estimation for each domain. With estimated densities, the
guarantee becomes somewhat looser. Furthermore, the algorithmic solutions of (Hoffman, Mohri, and
Zhang, 2018, 2021; Cortes, Mohri, Suresh, and Zhang, 2021) are not based on a convex optimization
and thus cannot directly benefit from the theoretical bound, even if it could be applicable (see above).

Hypothesis set: ignoring the normalization, which does not affect the definition of the classifier, the
DMSA solution is a specific element of the family of ensembles our algorithm and learning bounds
consider. Our algorithm seeks the most favorable ensemble using all the available labeled data, which
in general could be quite different and more favorable than the predictor obtained by combining
Adaboost and DMSA.

More generally, our algorithm is not restricted to deriving intermediate predictors for each domain
and instead directly exploits the labeled training samples from all the sources simultaneously to find
a single good predictor. Consider the extreme case where all sources follow the same distribution
and all training sets have the same size. The AdaBoost and DMSA-based algorithm consists of
first training one AdaBoost model for each source. Assuming perfect density estimation or domain
classification, DMSA would then return the uniform average 1

p

∑p
k=1 fk with each fk trained on

m/p samples. Instead, MULTIBOOST returns a single model trained on all m samples that, in general,
can be far superior. To further illustrate this, we ran this experiment on the SVHN dataset with 3
sources defined by sub-samples from an original training sample. This led to an error of 26.1% for
the predictor obtained via DMSA and only 22.8% for MULTIBOOST.

K The impact of domain classifier Q

We here present results illustrating the importance of selecting a high-accuracy domain classifier Q in
the MULTIBOOST algorithm. We experimented with different Q functions by varying the number of
steps, C = 2, 5, 10, 1000, in training the logistic regression optimizer used to obtain Q. The lower
the number of steps in the logistic regression optimizer, the lower the quality of the domain classifier
Q, and thus the higher the classification error on the underlying task. In the original MULTIBOOST
implementation, the maximum number of L-BFGS steps for the domain classifier Q is set to 1000 by
default.

Table 4: Test errors for original MULTIBOOST and MULTIBOOST-C, where C is the maximum number of
steps in the L-BFGS optimizer used to fit the multinomial logistic regression as domain classifier Q. In the
original MULTIBOOST implementation, the maximum number of L-BFGS steps for the domain classifier Q is
set to 1000 by default.

Algorithm-C Error-1 Error-2 Error-3 Error-Uniform Error-Agnostic

Digits Recognition (1 vs. 7)

MULTIBOOST 0.026 ± 0.004 0.261 ± 0.013 0.257 ± 0.015 0.181 ± 0.005 0.261 ± 0.011
MULTIBOOST-10 0.029 ± 0.005 0.262 ± 0.013 0.299 ± 0.015 0.197 ± 0.010 0.299 ± 0.011
MULTIBOOST-5 0.032 ± 0.005 0.277 ± 0.012 0.323 ± 0.017 0.211 ± 0.012 0.323 ± 0.015
MULTIBOOST-2 0.127 ± 0.009 0.281 ± 0.015 0.351 ± 0.021 0.253 ± 0.017 0.351 ± 0.019
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L Multi-Class extension of MULTIBOOST

Here, we briefly describe the extension of MULTIBOOST to the multi-class setting, MCMULTIBOOST

We denote by Y the set of output labels or categories. The label associated by a hypothesis f : X×Y→
R to input x ∈ X is given by argmaxy∈Y f(x, y). The margin ρf (x, y) of the function f for a labeled
example (x, y) ∈ X× Y is defined by

ρf (x, y) = f(x, y)−max
y′ 6=y

f(x, y′). (15)

Thus, f misclassifies (x, y) when ρf (x, y) ≤ 0.

As in the binary classification case, we consider a scenario where the learner receives labeled samples
from p source domains, each defined by a distribution Dk over X × Y, k ∈ [p]. We denote by
Sk = ((xk,1, yk,1), . . . . , (xk,mk , yk,mk)) ∈

(
X×Y

)mk the labeled sample of size mk received from
source k, which is drawn i.i.d. from Dk. For any function f : X× Y→ R and distribution D over
X× Y, let L(D, f) be the expected loss of f , that is L(D, f) = E(x,y)∼D[`(f, x, y)], where ` is the
multi-class loss `(f(x), y) = I(ρf (x, y) ≤ 0).

For any k ∈ [p], let Hk denote a hypothesis set of functions mapping from X × Y to the interval
[−1,+1], |Hk| = Nk. The objective of the learner is to find an accurate predictor f for any target
distribution Dλ that is a mixture of the source distributions, where λ may be in a subset Λ of the
simplex.

L.1 Form of solution

In the multi-class setting, the general form of our Q-ensemble predictor is the following:

∀(x, y) ∈ X× Y, f(x, y) =

p∑
l=1

Nl∑
j=1

αl,jQ(l|x)hl,j(x, y), (16)

where hl,j ∈ Hl, αl,j ≥ 0 and
∑Nl
j=1 αl,j = 1 and where Q(l|x) denotes the conditional probability

of domain l given x.

L.2 Weak learning assumption

As in the binary classification scenario, we will adopt a weak-learning assumption. Unlike the
standard single source, our assumption here must hold for each source domain: for each domain
k ∈ [p] and any distribution D over Sk × Y, there exists a base classifier h ∈ Hk such that the
weighted loss of h is γ-better than random: 1

2 [1− E(i,y)∼D[h(xk,i, yk,i)− h(xk,i, y)] ≤ 1
2 − γ, for

some edge value γ > 0. This is equivalent to the existence of a weak-learning for a each domain,
which is a mild assumption. As in the standard boosting scenario, this suggests that there exists a
good rule of thumb for each domain. The key difference from the standard learning scenario, however,
is that here we seek a Q-ensemble and further require it to be accurate for any target mixture Dλ,
λ ∈ Λ. In the next subsection, we present an algorithm, MCMULTIBOOST, for deriving an accurate
Q-ensemble for any target mixture domain that belongs to the convex combination of the source
domains.

L.3 Algorithm

Let Φ be a convex, increasing and differentiable function such that u 7→ Φ(−u) upper-bounds the
binary loss u 7→ 1u≤0. Φ could be the exponential function as in ADABOOST or the logistic function,
as in logistic regression. Using Φ to upper-bound the agnostic loss leads to the following objective
function for an ensemble f defined by (16) for any α = (αl,j)(l,j)∈[p]×[Nl] ≥ 0:

F (α) = max
λ∈Λ

p∑
k=1

λk
mk

mk∑
i=1

∑
y∈Y

Φ

(
−

p∑
l=1

Nl∑
j=1

αl,jQ(l|xk,i)hl,j(xk,i, yk,i, y)

)
, (17)

where hl,j(xk,i, yk,i, y) = hl,j(xk,i, yk,i)− hl,j(xk,i, y).
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Here, we will consider the case where the set Λ coincides with the full simplex, that is Λ =
∆. F can then be expressed more straightforwardly as F = maxpk=1 Fk, with Fk(α) =

1
mk

∑mk
i=1

∑
y∈Y Φ

(
−
∑p
l=1

∑Nl
j=1 αl,jQ(l|xk,i)hl,j(xk,i, yk,i, y)

)
.

Since a convex function composed with an affine function is convex and a sum of convex functions
is convex, F is convex as the maximum of a set of convex functions. While convex, F is not
differentiable and, in general, coordinate descent may not succeed in such cases (Tseng, 2001; Luo
and Tseng, 1992). This is because the algorithm may be stuck at a point where no progress is possible
along any of the axis directions, while there exists a favorable descent along some other direction.
However, we will show that, under the weak-learning assumption we adopted, at any point α and
for each active function Fk, that is Fk such that Fk(α) = F (α), there exists a coordinate direction
along which a descent progress is possible for each Fk. We will assume that these directions are
also descent directions for F . More generally, it suffices in fact that one such direction admits this
guarantee. Alternatively, as in the binary classification setting, one can replace the maximum with
a soft-max, that is the (x1, . . . , xk) 7→ 1

µ log(
∑p
k=1 e

µxk) for µ > 0, which leads to a continuously
differentiable function with a close approximation for µ sufficiently large.

Description. Let αt−1 denote the value of the parameter vector α = (αl,j) at the end of the (t− 1)th
iteration and let ft−1 be defined by ft−1 =

∑p
l=1

∑Nl
j=1 αt−1,l,jQ(l|·) hl,j . Coordinate descent at

iteration t consists of choosing a direction eq,r corresponding to base classifier hq,r and a step value
η > 0 to minimize F (αt−1 +η eq,r). To select a direction, we consider the subdifferential of F along
any eq,r. Since functions Fk are differentiable, by the subdifferential calculus for the maximum of
functions, the subdifferential of F at αt−1 along the direction eq,r is given by:

∂F (αt−1, eq,r) = conv{F ′k(αt−1, eq,r) : k ∈ Kt},

where F ′k(αt−1, eq,r) is the directional derivative of Fk at αt−1 along the direction eq,r and where
Kt = {k ∈ [p] : Fk(αt−1) = F (αt−1)}. We will therefore consider the direction eq,r with the
largest absolute directional derivative value |F ′k(αt−1, eq,r)|, k ∈ Kt, but will restrict ourselves to
q = k since, as we shall see, that will be sufficient to guarantee a non-zero directional gradient. To
do so, we will express F ′k(αt−1, ek,r) in terms of the distribution Dt(k, ·, ·) over Sk × Y defined
by Dt(k, i, y) =

Φ′(−ft−1(xk,i,yk,i,y))
Zt,k

, with Zt,k =
∑mk
i=1

∑
y∈Y Φ′(−ft−1(xk,i, yk,i, y)), for all

i ∈ [mk] and y ∈ Y:

F ′k(αt−1, hk,r) =
1

mk

mk∑
i=1

∑
y∈Y

−Q(k|xk,i)hk,r(xk,i, yk,i, y)Φ′
(
−ft−1(xk,i, yk,i, y)

)
=
Zt,k
mk

[2εt,k,r − 1],

where εt,k,r = 1
2

[
1− E(i,y)∼Dt(k,·,·)[Q(k|xk,i)hk,r(xk,i, yk,i, y)]

]
denotes the weighted error of

Q(k|·)hk,r. For any s ∈ [mk], since xk,s is a sample drawn from Dk, we have Q(k|xk,s) >

0 and therefore we have: Qt,k =
∑mk
s=1

∑
y∈Y Dt(k, s, y)Q(k|xk,s) > 0. Thus, we can write

E(i,y)∼Dt(k,·,·)[Q(k|xk,i)hk,r(xk,i, yk,i, y)] as

mk∑
i=1

∑
y∈Y

Dt(k, i, y)Q(k|xk,i)hk,r(xk,i, yk,i, y)

Qt,k
Qt,k,= E

(i,y)∼D′t(k,·,·)
[hk,r(xk,i, yk,i, y)]Qt,k,

where D′t(k, i, y) =
Dt(k,i,y)Q(k|xk,i)

Qt,k
. By our weak-learning assumption, there exists r ∈ Nk such

that E(i,y)∼D′t(k,·,·)[hk,r(xk,i, yk,i, y)] ≥ γ > 0. For that choice of r, we have εt,k,r < 1
2 − γ, with

γ = γQt,k > 0. In view of that, it suffices for us to search along the directions hk,r and we do not
need to consider the directional derivative of Fk along directions hq,r with q 6= k.

The direction chosen by our coordinate descent algorithm is thus defined by:
argmaxk∈Kt,r∈[Nk]

Zt,k
mk

[1− 2εt,k,r]. Given the direction ek,r, the optimal step value η is
argminη>0 F (αt−1 + ηek,r). The pseudocode of our algorithm, MCMULTIBOOST, is provided in
Figure 8. In the most general case, η can be found via a line search or other numerical methods.
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Step size. In some special cases, the line search can be executed using a simpler expression by using
an upper bound on F (αt−1 + ηek,r). Denoting zl,i = (xl,i, yl,i, y) and using the convexity of Φ,
since Q(k|xl,i)hk,r(zl,i) =

1+Q(k|xl,i)hk,r(zl,i)
2 · (+1) +

1−Q(k|xl,i)hk,r(zl,i)
2 · (−1), the following

holds for all η ∈ R:

Φ(−ft−1(zl,i)− ηQ(k|xl,i)hk,r(zl,i)) ≤ 1+Q(k|xl,i)hk,r(zl,i)
2 Φ(−ft−1(zl,i)− η)

+
1−Q(k|xl,i)hk,r(zl,i)

2 Φ(−ft−1(zl,i) + η).

In the case of exponential and logistic functions, the following upper bounds can then be derived.

Lemma 2. For any k ∈ [p], the following upper bound holds when Φ is the exponential or the logistic
function:

F (αt−1 + ηek,r) ≤ max
l∈[p]

Zt,l
ml

[
(1− εt,l,k,r)e−η + εt,l,k,re

η
]
,

where εt,l,k,r = 1
2

[
1− E(i,y)∼Dt(l,·,·)[Q(k|xl,i)hk,r(xl,i, yl,i, y)]

]
.

For any k, function η 7→ (1− εt,l,k,r)e−η + εt,l,k,re
η reaches its minimum for η = 1

2 log
1−εt,l,k,r
εt,l,k,r

.
When the maximum is achieved for l = k, the solution coincides with the familiar expression of the
step size ηt = 1

2 log
1−εt,k,r
εt,k,r

used in ADABOOST.

MCMULTIBOOST(S1, . . . , Sp)

1 α0 ← 0
2 for t← 1 to T do
3 ft−1 ←

∑p
l=1

∑Nl
j=1 αt−1,l,jQ(l|·) hl,j

4 Φ̃k ← 1
mk

∑mk
i=1

∑
y∈Y Φ(−ft−1(xk,i, yk,i, y))

5 Kt ←
{
k : k ∈ argmaxk∈[p] Φ̃k

}
6 for k ∈ Kt do
7 Zt,k ←

∑mk
i=1

∑
y∈Y Φ′

(
−ft−1(xk,i, yk,i, y)

)
8 for i← 1 to mk, y ∈ Y do
9 Dt(k, i, y)← Φ′(−ft−1(xk,i,yk,i,y))

Zt,k

10 (k, r)← argmax
k∈Kt,r∈[Nk]

Zt,k
mk

[1− 2εt,k,r]

11 ηt ← argminη>0 F (αt−1 + ηek,r)
12 αt ← αt−1 + ηtek,r
13 f ←

∑p
l=1

∑Nl
j=1 αT,l,jQ(l|·)hl,j

14 return f

Figure 8: Pseudocode of the MCMULTIBOOST algorithm.
εt,k,r = 1

2

[
1− E(i,y)∼Dt(k,·,·)[Q(k|xk,i)hk,r(xk,i, yk,i, y)]

]
de-

notes the weighted error of Q(k|·)hk,r .

Q-function. As discussed in the
binary classification setting, the
conditional probability functions
Q(k|·) are crucial to the definition of
our algorithm. As pointed out earlier,
Q-ensembles can help achieve
accurate solutions in some cases
that cannot be realized using convex
combinations. Furthermore, for
any k ∈ [p], since Dt(k, ·, ·) is a
distribution over the Sk × Y, it is
natural to assume that for any j 6= k
we have E(s,y)∼Dt(k,·)[Q(k|xk,s)] ≥
E(s,y)∼Dt(k,·)[Q(j|xk,s)]. This
implies the following lower bound:
E(s,y)∼Dt(k,·)[Q(k|xk,s)] ≥ 1

p ,
which in turn implies γ ≥ γ

p , since
for any x ∈ X,

∑p
j=1 Q(j|x) = 1.

In the special case where all domains
coincide, we have Q(k|xk,s) = 1

p

for all s and this lower bound is
reached. At another extreme, when
all domains admit distinct supports,
we have Q(k|xk,s) = 1 for all
s ∈ [mk] and thus γ = γ.

In practice, we do not have access to the true conditional probabilities Q(k|·). Instead, as in the
binary classification setting, we can derive accurate estimates Q̂(k|·) using large unlabeled samples
from the source domains, the label used for training being simply the domain index. This can be done
using algorithms such as conditional maximum entropy models (Berger et al., 1996) (or multinomial
logistic regression), which benefit from strong theoretical guarantees (Mohri et al., 2018, Chapter 13),
or other rich models based on neural networks.

Other variants of MCMULTIBOOST. Other variants of MCMULTIBOOST, such as the one where,
instead of the maximum, the softmax function or the sum is used can be defined and analyzed as in
the binary setting (Appendix D).
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Table 5: Test errors for multi-class problems with RandomForest.

Algorithm Error-1 Error-2 Error-3 Error-Uniform Error-Agnostic

Fashion-MNIST

ADABOOST.MR-1 0.131 ± 0.019 0.185 ± 0.008 0.193 ± 0.017 0.169 ± 0.017 0.193 ± 0.019
ADABOOST.MR-2 0.157 ± 0.020 0.152 ± 0.009 0.159 ± 0.023 0.156 ± 0.019 0.159 ± 0.019
ADABOOST.MR-3 0.158 ± 0.015 0.173 ± 0.008 0.155 ± 0.015 0.162 ± 0.016 0.173 ± 0.018
ADABOOST.MR-all 0.141 ± 0.020 0.166 ± 0.011 0.163 ± 0.022 0.156 ± 0.021 0.166 ± 0.016
MCMULTIBOOST 0.132 ± 0.027 0.161 ± 0.018 0.155 ± 0.027 0.149 ± 0.027 0.161 ± 0.024

Table 6: Test errors for multi-class problems with CNNs.

Algorithm Error-1 Error-2 Error-3 Error-Uniform Error-Agnostic

ADABOOST.MR-1 0.083 ± 0.007 0.098 ± 0.006 0.104 ± 0.006 0.095 ± 0.006 0.104 ± 0.006
ADABOOST.MR-2 0.104 ± 0.007 0.090 ± 0.003 0.099 ± 0.006 0.097 ± 0.003 0.104 ± 0.004
ADABOOST.MR-3 0.098 ± 0.005 0.106 ± 0.003 0.092 ± 0.003 0.099 ± 0.005 0.106 ± 0.004
ADABOOST.MR-all 0.093 ± 0.005 0.096 ± 0.007 0.098 ± 0.007 0.095 ± 0.004 0.098 ± 0.007
MCMULTIBOOST 0.086 ± 0.006 0.090 ± 0.003 0.093 ± 0.005 0.089 ± 0.003 0.091 ± 0.006

L.4 Experiments

Here, we report the results of several experiments with the MCMULTIBOOST algorithm on a multiple-
source dataset with multiple classes. We present two sets of experiments: one where we used as
base predictors random forest classifiersHRF, and another one where we used convolutional neural
networks (CNNs).

We use multi-source data based on images of clothes items from the Fashion-MNIST (Xiao et al.,
2017) dataset. We defined 3 domains: the first domain (k = 1) coincides with the original Fashion-
MNIST; the second and third domains (k = 2, 3) are both defined as in Fashion-MNIST but with
additive noise, with a different type of noise for k = 2 and k = 3.

As in Section 6, the probabilities Q(k|·), k ∈ [p], are estimated using multinomial logistic regression
(or conditional maximum entropy models). We compared MCMULTIBOOST with a set of multi-
class extensions of ADABOOST that operate on the same hypotheses class HRF, which include
ADABOOST-k for k ∈ [p] and ADABOOST-all.

Tables 5 and 6 report our empirical results. The results show that, as in the binary classification
setting, the extension of our algorithm to the multi-class setting, MCMULTIBOOST, outperforms all
baselines for both sets of experiments (using Random forests or CNNs).
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