
Supplemental Material for:
“Asymptotics of representation learning

in finite Bayesian neural networks”

Jacob A. Zavatone-Veth1,2, Abdulkadir Canatar1,2, Benjamin S. Ruben3,
Cengiz Pehlevan2,4

1Department of Physics, 2Center for Brain Science, 3Biophysics Graduate Program,
4John A. Paulson School of Engineering and Applied Sciences

Harvard University
Cambridge, MA 02138

{jzavatoneveth,canatara,benruben}@g.harvard.edu
cpehlevan@seas.harvard.edu

Contents

A Preliminary technical results S2

A.1 Isserlis’ theorem for Gaussian moments . S2

A.2 Neumann series for matrix inverses near the identity S2

A.3 Series expansion of the log-determinant near the identity S2

B Perturbation theory for wide Bayesian neural networks with linear readout S3

B.1 Integrating out the readout layer . S4

B.2 Perturbative expansion . S5

C Explicit covariance computations in deep linear networks S6

C.1 Fully-connected linear networks . S7

C.2 Convolutional linear networks . S8

D Direct computation of the average hidden layer kernels of a deep linear MLP S11

D.1 The cumulant generating function of learned features for a MLP S11

D.2 General form of the perturbative layer integrals for a deep linear network S12

D.3 Perturbative computation of the partition function of a deep linear network S16

D.4 Computing the average hidden layer kernels of a deep linear network S18

E Average kernels in a deep feedforward linear network with skip connections S19

E.1 Perturbative computation of the partition function S19

E.2 Computing the average hidden layer kernels . S22

F Comparison to the results of Aitchison (2020) and Li & Sompolinsky (2020) S23

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

F.1 Comparison to the results of Aitchison (2020) . S23

F.2 Comparison to the results of Li and Sompolinsky (2020) S24

G Predictor statistics and generalization in deep linear networks S25

G.1 Predictor statistics . S26

G.2 Bias-variance decompositions and the low-temperature limit S26

G.3 Effects of alternative regularization temperature-dependence S27

H Derivation of the average kernels for a depth-two network S28

I Numerical methods S29

Checklist S31

A Preliminary technical results

In this appendix, we review useful technical results upon which our calculations rely.

A.1 Isserlis’ theorem for Gaussian moments

Let (x1, x2, . . . , xn) be a zero-mean Gaussian random vector. Then, Isserlis’ theorem [1] states that

E[x1x2 · · ·xn] =

{∑
p∈P 2

n

∏
(i,j)∈p cov(xi, xj) n even

0 n odd,
(A.1)

where the sum is over all pairings p of {1, 2, . . . , n} and the product is over all pairs contained in p.
In particular, for n = 4, we have

E[x1x2x3x4] = cov(x1, x2) cov(x3, x4) + cov(x1, x3) cov(x2, x4) + cov(x1, x4) cov(x2, x3).
(A.2)

In physics, Isserlis’ theorem is often known as Wick’s probability theorem [2].

A.2 Neumann series for matrix inverses near the identity

The Neumann series is the generalization of the geometric series to bounded linear operators,
including square matrices. In particular, let A be a p× p square matrix. Then, we have

(Ip −A)−1 =

∞∑
k=0

Ak (A.3)

provided that the series converges in the operator norm [3]. We will use this result without concern
for rigorous convergence conditions, as we are interested only in asymptotic expansions.

A.3 Series expansion of the log-determinant near the identity

Let A be a p× p square matrix, and let t be a small parameter. Then, we have

log det(Ip + tA) =

∞∑
k=1

(−1)k+1

k
tr(Ak)tk (A.4)

assuming that the series converges. We will not concern ourselves with rigorous convergence
conditions, as we will use this expansion formally.

This result follows from the fact that
∂k

∂tk
log det(Ip + tA) = (−1)k+1(k − 1)! tr((Ip + tA)−kAk) (k = 1, 2, . . .). (A.5)

S2

The base case k = 1 is given by Jacobi’s formula [3]:

∂

∂t
log det(Ip + tA) = tr((Ip + tA)−1A). (A.6)

Then, using the identity

∂

∂t
(Ip + tA)−1 = −(Ip + tA)−1A(Ip + tA)−1 (A.7)

and the fact that A commutes with (Ip + tA)−1, we find that the claim holds by induction. As
log det(Ip + tA)|t=0 = 0, this implies the desired Maclaurin series.

B Perturbation theory for wide Bayesian neural networks with linear
readout

In this appendix, we derive Conjecture 1. As outlined in the main text, we consider a depth-d neural
network f : Rn0 → Rnd with linear readout, written as

f(x;W d,W) =
1

√
nd−1

W (d)ψ(x;W) (B.1)

in terms of the hidden layer feature map ψ(·;W) : Rn0 → Rnd−1 . The full set of trainable
parameters is then Θ = {W (d),W}, where W is the set of feature map parameters. We assume
isotropic Gaussian priors over these parameters, with, for instance,

W
(d)
ij ∼

i.i.d.
N (0, σ2

d). (B.2)

We fix an arbitrary training dataset D = {(xµ,yµ)}pµ=1 of p examples, and use a Gaussian likelihood
p(D |Θ) ∝ exp(−βE), where

E(Θ;D) =
1

2

p∑
µ=1

‖f(xµ)− yµ‖2 (B.3)

is a quadratic cost. We then introduce the Bayes posterior

p(Θ | D) =
p(D |Θ)p(Θ)

p(D)
; (B.4)

averages with respect to this distribution will be denoted by 〈·〉.
We define the postactivation feature map kernel

K(d−1)(x,x′) ≡ n−1
d−1ψ(x,W) ·ψ(x′,W), (B.5)

and write [K(d−1)]µν ≡ K(d−1)(xµ,xν) for the kernel evaluated on the training set. For brevity, we
will frequently abbreviate K ≡ K(d−1) throughout this appendix.

We denote expectation by E, and prior expectation by EW . We also introduce the joint cumulant
operator K and its prior counterpart KW . We will only require the second and third joint cumulants,
which, for random variables A, B, and C, are given as

K(A,B) = E[(A− EA)(B − EB)] (B.6)

and

K(A,B,C) = E[(A− EA)(B − EB)(C − EC)], (B.7)

respectively.

Our starting point is the partition function Z of the Bayes posterior (B.4) for the network (B.1),
including a source term for the (generically matrix-valued) observable O:

Z(J) = EW (d)EW exp
(
−βE + tr(J>O)

)
, (B.8)

S3

whereW denotes all of the parameters except for the readout weight matrix W (d) and expectation
is taken with respect to the Gaussian prior. The logarithm of the partition function is the posterior
cumulant generating function of the observable O, with

〈O〉 =
δ logZ

δJ

∣∣∣∣
J=0

(B.9)

and covariance

cov(Oργ , Oωχ) =
∂2 logZ

∂Jργ∂Jωχ

∣∣∣∣
J=0

. (B.10)

B.1 Integrating out the readout layer

We first show that the readout layer can be integrated out exactly. As the source term is independent
of W (d), Fubini’s theorem yields

Z = EW
[

exp(tr(J>O)) EW (d) exp(−βE)

]
. (B.11)

The expectation over W d is a Gaussian integral, hence it is easy to evaluate exactly:
EW (d) exp(−βE) (B.12)

= EW (d) exp

(
−1

2
β

p∑
µ=1

∥∥∥∥ 1
√
nd−1

W (d)ψµ − yµ

∥∥∥∥2
)

(B.13)

= exp

(
−1

2
β tr(Y >Y)

)
×

nd∏
j=1

[∫
dwj

(2πσ2
d)nd−1/2

exp

(
−1

2
w>j

(
σ−2
d In +

β

nd−1
Ψ>Ψ

)
wj +

β
√
nd−1

(Y >Ψ)j·wj

)]
(B.14)

= det

(
In +

βσ2
d

nd−1
Ψ>Ψ

)−nd/2
× exp

(
1

2

β2σ2
d

nd−1
tr

[
Y >Ψ

(
In +

βσ2
d

nd−1
Ψ>Ψ

)−1

Ψ>Y

]
− 1

2
β tr(Y >Y)

)
, (B.15)

where we abbreviate ψµ ≡ ψ(xµ;W) and introduce the matrices Ψµj ≡ ψµ,j and Yµj ≡ yµ,j . Here,
we have used the fact that the matrix In + (βσ2

d/nd−1)Ψ>Ψ is invertible at any finite temperature.
By the Weinstein–Aronszajn identity [3],

det

(
In +

βσ2
d

nd−1
Ψ>Ψ

)
= det

(
Ip +

βσ2
d

nd−1
ΨΨ>

)
= det(Ip + βσ2

dK), (B.16)

where we introduce the (non-constant) kernel matrix

K = K(d−1) ≡ 1

nd−1
ΨΨ>; (B.17)

as mentioned above, we abbreviate K ≡ K(d−1) for brevity. By the push-through identity [3],

1

nd−1
Ψ

(
In +

βσ2
d

nd−1
Ψ>Ψ

)−1

Ψ> =

(
Ip +

βσ2
d

nd−1
ΨΨ>

)−1
1

nd−1
ΨΨ> = (Ip + βσ2

dK)−1K,

(B.18)
hence, using the cyclic property of the trace,

1

2

β2σ2
d

nd−1
tr

[
Y >Ψ

(
In +

βσ2
d

nd−1
Ψ>Ψ

)−1

Ψ>Y

]
− 1

2
β tr(Y >Y)

=
1

2
βnd tr

[(
βσ2

d(Ip + βσ2
dK)−1K − Ip

)
Gyy

]
(B.19)

= −1

2
βnd tr[(Ip + βσ2

dK)−1Gyy], (B.20)

S4

where we have defined the normalized Gram matrix of the outputs

Gyy ≡
1

nd
Y Y > (B.21)

and noticed that

Ip − βσ2
d(Ip + βσ2

dK)−1K = (Ip + βσ2
dK)−1. (B.22)

Therefore, we conclude that

Z = EW exp
[
tr(J>O)− nd

2

(
β tr[(Ip + βσ2

dK)−1Gyy] + log det(Ip + βσ2
dK)

)]
(B.23)

at any width.

B.2 Perturbative expansion

We now consider how this expression behaves in the large-width limit. We assume that this limit is
well-defined in the sense that the readout kernel K tends in probability to the constant GP kernel K∞
[4–7], and that the observable O similarly tends to a deterministic limit O∞. Then, we formally write
K and O as their infinite-width limits plus corrections which are small at large hidden layer widths:

K = K∞ + λ δK, (B.24)
O = O∞ + λ δO, (B.25)

where the parameter λ is used to track powers of the small deviations.

We first expand the term resulting from integrating out the readout layer into its infinite-width limit
and a finite-width correction. We define the constant matrix

Γ ≡ K∞ +
1

βσ2
d

Ip, (B.26)

which is invertible at any finite temperature. Then, by the Woodbury identity [3], we have,

βσ2
d(Ip + βσ2

dK)−1 = (Γ + λδK)−1 = Γ−1 − λΓ−1δK(Γ + λδK)−1 (B.27)

and, similarly,

log det(Ip + βσ2
dK) = log det(βσ2

dΓ) + log det(Ip + λΓ−1δK). (B.28)

Noting that that both λΓ−1δK(Γ + λδK)−1 and log det(Ip + λΓ−1δK) are O(λ), we expand the
logarithm of the partition function as

logZ = logZ∞ + tr(J>O∞) + logEW exp[λ tr(J>δO) + λΩ], (B.29)

where

Z∞ ≡ det(βσ2
dΓ)−nd/2 exp

(
−1

2
ndσ

−2
d tr(Γ−1Gyy)

)
(B.30)

is the GP partition function and

Ω ≡ 1

2
nd tr[σ−2

d Γ−1δK(Γ + λδK)−1Gyy]− 1

2
ndλ

−1 log det(Ip + λΓ−1δK) (B.31)

is the remainder. logEW exp[λ tr(J>δO) + λΩ] has the form of a cumulant generating function,
hence it has a formal series expansion in λ given by

logEW exp[λ tr(J>δO) + λΩ] = λEW [tr(J>δO) + Ω]

+
1

2
λ2 EW{tr[J>(δO − EWδO)] + Ω− EWΩ]}2

+
1

6
λ3EW{tr[J>(δO − EWδO)] + Ω− EWΩ]}3

+O(λ4). (B.32)

S5

We can then see that the k-th cumulant is O(Jk), hence the k-th posterior cumulant of O will be
O(λk). Specifically, we can read off the posterior mean

〈O〉 = O∞ + λEWδO + λ2KW(δO,Ω) +
1

2
λ3KW(δO,Ω,Ω) +O(λ4). (B.33)

and covariance

cov(Oργ , Oωχ) = λ2KW(δOργ , δOωχ) + λ3KW(δOργ , δOωχ,Ω) +O(λ4). (B.34)

To make further progress, we expand Ω in powers of λ. Using the Neumann series for the matrix
inverse (see Appendix A), we have

(Γ + λδK)−1 = Γ−1 − λΓ−1δKΓ−1 +O(λ2), (B.35)

and, using the series expansion of the log-determinant near the identity (see Appendix A), we have

λ−1 log det(Ip + λΓ−1δK) = tr(Γ−1δK)− 1

2
λ tr(Γ−1δKΓ−1δK) +O(λ2). (B.36)

This yields

Ω =
nd
2

tr[(σ−2
d Γ−1GyyΓ−1 − Γ−1)δK]

− nd
2
λ tr

[(
σ−2
d Γ−1GyyΓ−1 − 1

2
Γ−1

)
δKΓ−1δK

]
+O(λ2). (B.37)

The leading term is simple because it is linear in δK. Then, keeping only the leading non-trivial
corrections and recognizing that

O∞ + λEWδO = EWO, (B.38)

λ2KW(δO, δKµν) = KW(O,Kµν), (B.39)

λ2KW(δOργ , δOωχ) = KW(Oργ , Oωχ), and (B.40)

λ3KW(δOργ , δOωχ, δKµν) = KW(Oργ , Oωχ,Kµν), (B.41)

we have

〈O〉 = EWO +
1

2
nd

p∑
µ,ν=1

(σ−2
d Γ−1GyyΓ−1 − Γ−1)µνKW(O,Kµν) +O(λ3) (B.42)

and

cov(Oργ , Oωχ) = KW(Oργ , Oωχ)

+
1

2
nd

p∑
µ,ν=1

(σ−2
d Γ−1GyyΓ−1 − Γ−1)µνKW(Oργ , Oωχ,Kµν)

+O(λ4). (B.43)

Restoring the layer indices to K = K(d−1), the above result for 〈O〉 yields the expression given in
the main text. From the structure of these expressions, we can see that higher-order terms (in λ) will
involve higher joint cumulants of the kernel deviations δK(`), which can in turn be converted into
joint cumulants of the kernels K(`). Therefore, to show that the perturbative expansion yields a valid
asymptotic series , one would need to show that these joint cumulants themselves have asymptotic
series expansions at large width, with leading terms that are successively suppressed by powers of
n−1.

C Explicit covariance computations in deep linear networks

In this appendix, we detail how to compute the prior covariances appearing in (B.42) for the hidden
layer kernels of deep linear fully-connected and convolutional networks.

S6

C.1 Fully-connected linear networks

In this brief subsection, we provide a self-contained derivation of the behavior of the prior cumulants
of the kernels of a deep fully-connected linear network with no bias terms. This is a special case of
Yaida [8]’s results, and provides some intuition for his results on general MLPs. As in the main text,
we consider a network with activations h(`) ∈ Rn` recursively defined as

h(`) = n
−1/2
`−1 W (`)h(`−1) (` = 1, . . . , d) (C.1)

with base case h(0) = x. We take the prior distribution over weights to be [W (`)]ij ∼i.i.d. N (0, σ
(2)
`),

and define the hidden layer kernels [K(`)]µν ≡ n−1
` h

(`)
µ · h(`)

ν for ` = 1, . . . , d− 1. Then, we have

EWK(`)
µν =

1

n` · · ·n0
EWx>µ (W (1))> · · · (W (`))>W (`) · · ·W (1)xν (C.2)

= σ2
1 · · ·σ2

`

xµ · xν
n0

(C.3)

= [K(`)
∞]µν (C.4)

at any width, as EW (`)(W (`))>W (`)/n` = σ2
` In`−1

. We now consider the second moments of the
kernels. We first note that

EWK(`)
µνK

(`+τ)
ρλ = σ2

`+τ · · ·σ2
`+1EWK(`)

µνK
(`)
ρλ (C.5)

for any τ ≥ 1. By Isserlis’ theorem (see Appendix A), we have

EW (`)W
(`)
ik W

(`)
il W

(`)
jmW

(`)
jr = σ4

` δij(δkmδlr + δkrδlm) + σ4
` δklδmr, (C.6)

hence we have the exact recursion

EWK(`)
µνK

(`)
ρλ =

1

(n` · · ·n0)2
EW

n∑̀
i,j=1

n`−1∑
k,l,m,r=1

W
(`)
ik W

(`)
il W

(`)
jmW

(`)
jr

× [W (`−1) · · ·W (1)xµ]k[W (`−1) · · ·W (1)xν]l

× [W (`−1) · · ·W (1)xρ]m[W (`−1) · · ·W (1)xλ]r (C.7)

= σ4
`EWK(`−1)

µν K
(`−1)
ρλ +

1

n`
σ4
` (EWK(`−1)

µρ K
(`−1)
νλ + EWK(`−1)

µλ K(`−1)
νρ) (C.8)

with base case

EWK(1)
µν K

(1)
ρλ =

1

(n1n0)2

n1∑
i,j=1

n0∑
k,l,m,r=1

EWW (1)
ik W

(1)
il W

(1)
jmW

(1)
jr xµ,kxν,lxρ,mxλ,r (C.9)

= σ4
1

xµ · xν
n0

xρ · xλ
n0

+
1

n1
σ4

1

(
xµ · xρ
n0

xν · xλ
n0

+
xµ · xλ
n0

xν · xρ
n0

)
(C.10)

= [K(1)
∞]µν [K(1)

∞]ρλ +
1

n1

(
[K(1)
∞]µρ[K

(1)
∞]νλ + [K(1)

∞]µλ[K(1)
∞]νρ

)
(C.11)

for the second moments of the kernels at each layer. This recurrence relation is in principle exactly
solvable for any finite width, but we are interested only in its leading-order behavior at large widths.
In particular, we can read off that

covW(K(`)
µν ,K

(`+τ)
ρλ) = σ2

`+τ · · ·σ2
`+1

(∑̀
`′=1

1

n`′

)(
[K(`)
∞]µρ[K

(`)
∞]νλ + [K(`)

∞]µλ[K(`)
∞]νρ

)
+O(n−2). (C.12)

Moreover, one can see by Isserlis’ theorem that the third and higher cumulants will be O(n−2).
Substituting this result into (B.42) with the hidden layer kernel as the observable of interest, we
obtain the expression (8) given in the main text.

S7

C.2 Convolutional linear networks

In this subsection, we derive the prior cumulants required to compute corrections to the average
feature kernels of deep convolutional linear networks. As described in the main text, following
the setup of Novak et al. [6] and Xiao et al. [9], we consider a network consisting of d − 1 linear
convolutional layers followed by a fully-connected linear readout layer. For simplicity, we assume
circular padding and no internal pooling. As discussed in Novak et al. [6], this setup could be easily
extended to other padding strategies, strided convolutions, and average pooling in intermediate layers.

We write the activations at the `-th hidden layer as h(`)
i,a, where i indexes the n` channels of the layer

and a is a q-dimensional spatial multi-index. We take the filters to be of size (2k+ 1)×· · ·× (2k+ 1)
in all convolutional layers; the extension to differently-sized filters would be straightforward but
notationally cumbersome. The ranges of all spatial summations will be implied.

The hidden layer activations are then defined through the recurrence

h
(`)
i,a(x) =

1
√
n`−1

n`−1∑
j=1

∑
b

w
(`)
ij,bh

(`−1)
j,a+b(x) (C.13)

with base case h(0)
i,a (x) = xi,a. We fix the prior distribution of the filter elements to be

w
(`)
ij,a ∼i.i.d.

N (0, σ2
` va), (C.14)

where va > 0 is a weighting factor that sets the fraction of receptive field variance at location a (and
is thus subject to the constraint

∑
a va = 1). For inputs [xµ]i,a and [xν]i,a, we introduce the hidden

layer kernels

K
(`)
µν,ab ≡

1

n`

n∑̀
i=1

h
(`)
i,a(xµ)h

(`)
i,b(xν). (C.15)

We will first compute the prior mean and covariance of these four-indexed kernels, and then address
how to handle readout across space.

As shown by Xiao et al. [9], the prior mean obeys the recurrence

EWK(`)
µν,ab

= EW (1)···W (`−1)

1

n`n`−1

n∑̀
i=1

n`−1∑
j,j′=1

∑
c,d

h
(`−1)
j,a+c(xµ)h

(`−1)
j′,b+d(xν)EW (`)w

(`)
ij,cw

(`)
ij′,d (C.16)

= σ2
`EW (1)···W (`−1)

∑
c

vc
1

n`−1

n`−1∑
j=1

h
(`−1)
j,a+c(xµ)h

(`−1)
j,b+c(xν) (C.17)

= σ2
`

∑
c

vcEWK(`−1)
µν,(a+c)(b+c) (C.18)

with base case

EWK(1)
µν,ab = σ2

1

∑
c

vc[Gxx]µν,(a+c)(b+c) (C.19)

for

[Gxx]µν,ab ≡
1

n0

n0∑
i=1

[xµ]i,a[xν]i,b. (C.20)

This recurrence yields

EWK(`)
µν,ab = σ2

1 · · ·σ2
`

∑
c1,...,c`

vc1 · · · vc` [Gxx]µν,(a+c1+···+c`)(b+c1+···+c`). (C.21)

Moreover, as in the fully-connected case considered in the preceding section, we have

[K(`)
∞]µν,ab = EWK(`)

µν,ab (C.22)

S8

at any width.

We now consider the prior covariance of the kernels of two different hidden layers ` and `+ τ . As
the weight prior factors across layers, we have

EWK(`)
µν,abK

(`+τ)
ρλ,cd = σ2

`+1 · · ·σ2
`+τ

∑
e1,...,eτ

ve1 · · · veτ

× EWK(`)
µν,abK

(`)
ρλ,(c+e1+···+eτ)(d+e1+···+eτ). (C.23)

By Isserlis’ theorem (see Appendix A),

EW (`)w
(`)
ij,ew

(`)
ij′,fw

(`)
i′j′′,gw

(`)
i′j′′′,h = σ4

` vevgδjj′δj′′j′′′δefδgh

+ σ4
` vevfδii′δjj′′δj′j′′′δegδfh

+ σ4
` vevfδii′δjj′′′δj′j′′δehδfg, (C.24)

hence we have the recurrence
EWK(`)

µν,abK
(`)
ρλ,cd

= EW (1)···W (`−1)

1

n2
`n

2
`−1

n∑̀
i,i′=1

n`−1∑
j,j′,j′′,j′′′=1

∑
e,f,g,h

× h(`−1)
j,a+e(xµ)h

(`−1)
j′,b+f(xν)h

(`−1)
j′′,c+g(xρ)h

(`−1)
j′′′,d+h(xλ)

× EW (`)w
(`)
ij,ew

(`)
ij′,fw

(`)
i′j′′,gw

(`)
i′j′′′,h (C.25)

= σ4
`

∑
e,f

vevf

[
EWK(`−1)

µν,(a+e)(b+e)K
(`−1)
ρλ,(c+f)(d+f)

+
1

n`
EWK(`−1)

µρ,(a+e)(c+e)K
(`−1)
νλ,(b+f)(d+f)

+
1

n`
EWK(`−1)

µλ,(a+e)(d+e)K
(`−1)
νρ,(a+f)(c+f)

]
(C.26)

with base case

EWK(1)
µν,abK

(1)
ρλ,cd = σ4

1

∑
e,f

vevf

[
[Gxx]µν,(a+e)(b+e)[Gxx]ρλ,(c+f)(d+f)

+
1

n`
[Gxx]µρ,(a+e)(c+e)[Gxx]νλ,(b+f)(d+f)

+
1

n`
[Gxx]µλ,(a+e)(d+e)[Gxx]νρ,(a+f)(c+f)

]
(C.27)

= [K(1)
∞]µν,ab[K(1)

∞]ρλ,cd

+
1

n`

[
[K(1)
∞]µρ,ac[K

(1)
∞]νλ,bd + [K(1)

∞]µλ,ad[K(1)
∞]νρ,bc

]
(C.28)

for the second prior moments of the kernels. As in the fully-connected case, these recurrence relations
could in principle be solved exactly, but we are only interested in their large-width behavior. Using
the forward recurrence for the GP kernels, we can easily read off that

covW(K
(`)
µν,ab,K

(`)
ρλ,cd) =

(∑̀
`′=1

1

n`′

)(
[K(`)
∞]µρ,ac[K

(`)
∞]νλ,bd + [K(`)

∞]µλ,ad[K(`)
∞]νρ,bc

)
+O(n−2), (C.29)

which can then be substituted into the desired cross-layer covariance:

covW(K
(`)
µν,ab,K

(`+τ)
ρλ,cd) = σ2

`+1 · · ·σ2
`+τ

∑
e1,...,eτ

ve1 · · · veτ

× covW(K
(`)
µν,ab,K

(`)
ρλ,(c+e1+···+eτ)(d+e1+···+eτ)).

(C.30)

S9

We now address the question of how to read out the convolutional layer activities across space. Fol-
lowing Novak et al. [6], we consider two strategies: vectorization and projection. With vectorization,
the output of the final convolutional layer is flattened into a nd−1s-dimensional vector before readout,
i.e., ψi+s(a−1)(x) = h

(d−1)
i,a (x) or ψnd(i−1)+a(x) = h

(d−1)
i,a (x). The two-index feature map kernel

appearing in Conjecture 1 is then related to the four-index convolutional hidden layer kernel analyzed
above via

K(d−1)
µν =

1

s

∑
a

K
(d−1)
µν,aa . (C.31)

With projection, the feature map is formed by contracting the final convolutional layer with a fixed
vector u, i.e.,

ψi(x) =
∑
a

uah
(d−1)
i,a (x). (C.32)

The feature map kernel is then given as

K(d−1)
µν =

∑
a,b

uaubK
(d−1)
µν,ab . (C.33)

Examples of common projection readout strategies include global average pooling (ua = 1/s) and
single-pixel subsampling (ua = δac for some desired location c). These readout approaches endow
the network with differing properties under spatial transformations; global average pooling has the
particular property of making the output translation-invariant.

We now seek to simplify the resulting expression for the leading-order correction to the posterior
mean of some four-index feature kernel K(`)

µν,ab. Per Conjecture 1, the general form of this correction
is

1

2
nd

p∑
ρ,λ=1

Φρλ covW(K
(`)
µν,ab,K

(d−1)
ρλ), (C.34)

where we have defined Φρλ = [σ−2
d Γ−1GyyΓ−1−Γ−1]ρλ for notational convenience. As elsewhere,

Γ ≡ K(d−1)
∞ +β−1σ−2

d Ip forK(d−1)
∞ the two-index kernel determined by the chosen readout strategy.

Depending on the chosen readout strategy, this general expression can be simplified dramatically.
In particular, for vectorization or global average pooling, the correction does not depend on the
particular form of va.

To show this for vectorization (the strategy used in our experiments), we substitute the definition of
K

(d−1)
∞ from (C.31) and the expression for the cross-layer kernel covariance from (C.30) into the

general expression for the correction to obtain
nd
2s
σ2
`+1 · · ·σ2

d−1

×
∑
ρ,λ

Φρλ
∑

e1,··· ,ed−`−1

ve1 · · · ved−`−1

∑
c

covW(K
(`)
µν,ab,K

(`)
ρλ,(c+e1+···+ed−`−1)(c+e1+···+ed−`−1)).

(C.35)

Thanks to the periodic boundary conditions, the summation over c is independent of the index shift
e1 + · · ·+ ed−`−1. Then, the sums over e1, · · · , ed−`−1 factor, yielding

nd
2s
σ2
`+1 · · ·σ2

d−1

p∑
ρ,λ=1

Φρλ
∑
c

covW(K
(`)
µν,ab,K

(`)
ρλ,cc) (C.36)

thanks to the normalization constraint
∑

e ve = 1. We now notice that Φρλ is a symmetric matrix,
and that the kernel remains invariant under the simultaneous exchange of indices ρ↔ λ and c↔ d.
Then, substituting in the expression for the same-layer kernel covariance (C.29), it is easy to show
that the correction reduces to

σ2
`+1 · · ·σ2

d−1

(∑̀
`′=1

nd
n`′

)
1

s

∑
c

p∑
ρ,λ=1

[K(`)
∞]µρ,acΦρλ[K(`)

∞]λν,cb. (C.37)

S10

This yields the expression given in the main text.

For projection, an analogous simplification is possible in the case of global average pooling (ua =

1/s). Substituting the definition of K(d−1)
∞ from (C.33) and expression for the cross-layer kernel

covariance (C.30) into the correction, we have

nd
2s2

σ2
`+1 · · ·σ2

d−1

p∑
ρ,λ=1

Φρλ
∑
c,d

covW(K
(`)
µν,ab,K

(`)
ρλ,cd). (C.38)

Substituting in the expression for the same-layer kernel covariance (C.29), it is again easy to show
that the correction reduces to

σ2
`+1 · · ·σ2

d−1

(∑̀
`′=1

nd
n`′

)
1

s2

∑
c,d

p∑
ρ,λ=1

[K(`)
∞]µρ,acΦρλ[K(`)

∞]λν,db. (C.39)

For projection strategies other than global average pooling (more precisely, for strategies for which
ua is not constant), the sum over indices in the cross-layer covariance is not independent of the
shift, hence we cannot simplify the correction in a similar fashion. This can be seen explicitly when
treating the case of single-pixel subsampling (ua = δac for some desired location c). In this case, the
correction reduces to
nd
2
σ2
`+1 · · ·σ2

d−1

×
∑
ρ,λ

Φρλ
∑

e1,··· ,ed−`−1

ve1 · · · ved−`−1
covW(K

(`)
µν,ab,K

(`)
ρλ,(c+e1+···+ed−`−1)(c+e1+···+ed−`−1)).

(C.40)

Unlike for vectorization or for projection using global average pooling, this expression is manifestly
dependent on the form of va.

Naïvely, the computation of the corrections to the linear convolutional kernels requires the computa-
tion of covW(K

(`)
µν,ab,K

(`)
ρλ,(c+e1+···+ed−`−1)(d+e1+···+ed−`−1)) for each index, which takes imprac-

tical amounts of compute time and storage. We only found it practical to compute the theoretical
kernels in the special cases presented above.

D Direct computation of the average hidden layer kernels of a deep linear
MLP

In this appendix, we provide a self-contained derivation of the average hidden layer kernels of a deep
linear fully-connected network (MLP). This derivation relies upon neither the results of Appendices
B and C nor those of Yaida [8].

D.1 The cumulant generating function of learned features for a MLP

In this section, we briefly describe the full partition function of the Bayes posterior for a general fully
connected network, or multi-layer perceptron (MLP), with no bias terms. An MLP f : Rn0 → Rnd
with d layers, no biases, and parameters Θ = {W (`)}d`=1 can be defined recursively in terms of its
layer-wise preactivations h(`) ∈ Rn` as

h(0) = x, (D.1)

h(`) =
1

√
n`−1

W (`)φ`−1(h(`−1)) (` = 1, . . . , d), (D.2)

f = φd(h
(d)), (D.3)

where the activation functions φ` act elementwise. As always, we focus on networks with linear
readout, i.e., φd(x) = x, and assume Gaussian priors over the weights:

W
(`)
ij ∼

i.i.d.
N (0, σ2

`). (D.4)

S11

We enforce the definition of the network architecture via Fourier representations of the Dirac distribu-
tion, with q

(`)
µ being the Lagrange multiplier that enforces the definition of the preactivation h

(`)
µ .

Then, after integrating out the weights using the fact that the relevant integrals are Gaussian, this
allows us to write the partition function as

Z =

∫ p∏
µ=1

d∏
`=1

dh
(`)
µ dq

(`)
µ

(2π)n`
exp

[
S({h(`)

µ }, {q(`)
µ })

]
, (D.5)

where the “effective action” for the preactivations and Lagrange multipliers is

S = −1

2
β

p∑
µ=1

‖h(d)
µ − yµ‖2 +

d∑
`=1

p∑
µ=1

iq(`)
µ · h(`)

µ

− 1

2

d∑
`=1

σ2
`

n`−1

p∑
µ,ν=1

q(`)
µ · q(`)

ν φ`−1(h(`−1)
µ) · φ`−1(h(`−1)

ν). (D.6)

As described in Appendix B, source terms can be added to the effective action to allow computation
of various averages. For deep linear networks, it is convenient to scale the source terms by an overall
factor of −1/2, for which we must correct when computing the averages:

SJ = −1

2

d−1∑
`=1

p∑
µ,ν=1

J (`)
µν φ`(h

(`)
µ) · φ`(h(`)

ν). (D.7)

For an MLP, our task is therefore to integrate out the preactivations and corresponding Lagrange
multipliers. We will do so sequentially from the first layer to the last, keeping terms up to the desired
order at each step, akin to the approach of Yaida [8]. So long as nd and d are fixed and small relative
to the width of the hidden layers, this is a consistent perturbative approach, as noted by Yaida [8].

D.2 General form of the perturbative layer integrals for a deep linear network

In this section, we evaluate the general form of the integrals required to perturbatively marginalize
out a given layer of a deep linear network to O(n−1). These integrals are generically of the form

I =

∫ p∏
µ=1

dhµ dqµ
(2π)n2

exp

(
p∑

µ=1

iqµ · hµ −
1

2

p∑
µ,ν=1

Gµν(qµ · qν) +

p∑
µ=1

jµ · hµ

− 1

2

1

n2

p∑
µ,ν=1

Aµν(hµ · hν)

+
1

4

g

n1

p∑
µ,ν,ρ,λ=1

Gµν(qν · qρ)Gρλ(qλ · qµ)

+
1

2

1

n1

p∑
µ,ν=1

Bµν(qµ · qν)

)
, (D.8)

where hµ,qµ ∈ Rn2 . Here, G is a positive semidefinite matrix, while A and B are symmetric
matrices that need not be positive semidefinite. Furthermore, jµ is some source, while g is a coupling
constant. We will first evaluate this integral up to terms of O(n−1

1) for n1 � 1, assuming that
G, A, B, jµ, and g are O(1) functions of n1, and then evaluate it up to terms of O(n−1

1 , n−1
2) for

n1, n2 � 1, assuming that G, A, B, jµ, and g are also O(1) functions of n2.

We will proceed by evaluating the integrals for G invertible, and then infer the general case by a
continuity argument. We treat the quartic term perturbatively, and all other terms directly. Writing

C ≡ G− 1

n1
B, (D.9)

the leading term in the integral over qµ is

1

(2π)n2p/2 det(C)n2/2
exp

(
−1

2

p∑
µ,ν=1

C−1
µν (hµ · hν)

)
. (D.10)

S12

Multiplying and dividing by this quantity, we can compute the perturbative correction from the quartic
term using the fact that qµ then behaves as a Gaussian random vector of mean q̄µ = i

∑p
ν=1 C

−1
µν hν

and covariance C−1
µν In2 . Denoting expectation with respect to this distribution as 〈〈·〉〉q and writing

q̃µ ≡ qµ − q̄µ, Isserlis’ theorem yields

〈〈(qν · qρ)(qλ · qµ)〉〉q = 〈〈([q̃ν + q̄ν] · [q̃ρ + q̄ρ])([q̃λ + q̄λ] · [q̃µ + q̄µ])〉〉q (D.11)
= 〈〈(q̃ν · q̃ρ + q̃ν · q̄ρ + q̄ν · q̃ρ + q̄ν · q̄ρ)

× (q̃λ · q̃µ + q̃λ · q̄µ + q̄λ · q̃µ + q̄λ · q̄µ)〉〉q (D.12)
= 〈〈(q̃ν · q̃ρ)(q̃λ · q̃µ)〉〉q + 〈〈(q̃ν · q̃ρ)〉〉q(q̄λ · q̄µ)

+ 〈〈(q̃ν · q̄ρ)(q̃λ · q̄µ)〉〉q + 〈〈(q̃ν · q̄ρ)(q̄λ · q̃µ)〉〉q
+ 〈〈(q̄ν · q̃ρ)(q̃λ · q̄µ)〉〉q + 〈〈(q̄ν · q̃ρ)(q̄λ · q̃µ)〉〉q
+ (q̄ν · q̄ρ)〈〈(q̃λ · q̃µ)〉〉q + (q̄ν · q̄ρ)(q̄λ · q̄µ) (D.13)

= n2
2C
−1
νρ C

−1
λµ + n2C

−1
νλ C

−1
ρµ + n2C

−1
νµC

−1
ρλ + n2C

−1
νρ (q̄λ · q̄µ)

+ C−1
νλ (q̄ρ · q̄µ) + C−1

νµ (q̄ρ · q̄λ)

+ C−1
ρλ (q̄ν · q̄µ) + C−1

ρµ (q̄ν · q̄λ)

+ n2(q̄ν · q̄ρ)C−1
µλ + (q̄ν · q̄ρ)(q̄λ · q̄µ). (D.14)

Then, the quartic correction to the integral over qµ is proportional to

p∑
µ,ν,ρ,λ=1

GµνGρλ〈〈(qν · qρ)(qλ · qµ)〉〉q = n2(n2 + 1) tr(GC−1GC−1) + n2 tr(GC−1)2

− 2(n2 + 1) tr(GC−1GC−1HC−1)

− 2 tr(GC−1) tr(GC−1HC−1)

+ tr(GC−1HC−1GC−1HC−1), (D.15)

where we write Hµν ≡ hµ · hν .

We now must integrate over hµ. The leading term is simply

det(CD)−n2/2 exp

(
1

2

p∑
µ,ν=1

D−1
µν Jµν

)
(D.16)

where we have defined

D ≡ C−1 +
1

n2
A. (D.17)

and Jµν ≡ jµ · jν . Multiplying and dividing by this quantity, we can compute the perturbative
correction from the quartic term using the fact that hµ then behaves as a Gaussian random vector
of mean h̄µ =

∑p
ν=1D

−1
µν jν and covariance D−1

µν In2
. We denote expectations with respect to this

distribution by 〈〈·〉〉h, and define h̃µ ≡ hµ − h̄µ. Then, we have

〈〈Hµν〉〉h = 〈〈hµ · hν〉〉h = h̄µ · h̄ν + n2D
−1
µν , (D.18)

and, by analogy to the corresponding four-point average for qµ,

〈〈(hν · hρ)(hλ · hµ)〉〉h = n2
2D
−1
νρD

−1
λµ + n2D

−1
νλD

−1
ρµ + n2D

−1
νµD

−1
ρλ + n2D

−1
νρ (h̄λ · h̄µ)

+D−1
νλ (h̄ρ · h̄µ) +D−1

νµ (h̄ρ · h̄λ)

+D−1
ρλ (h̄ν · h̄µ) +D−1

ρµ (h̄ν · h̄λ)

+ n2(h̄ν · h̄ρ)D−1
µλ + (h̄ν · h̄ρ)(h̄λ · h̄µ). (D.19)

S13

Then, the correction to the integral over hµ is proportional to
p∑

µ,ν,ρ,λ=1

GµνGρλ〈〈(qν · qρ)(qλ · qµ)〉〉 = n2(n2 + 1) tr(GC−1GC−1) + n2 tr(GC−1)2

− 2(n2 + 1) tr(GC−1GC−1D−1JD−1C−1)

− 2n2(n2 + 1) tr(GC−1GC−1D−1C−1)

− 2 tr(GC−1) tr(GC−1D−1JD−1C−1)

− 2n2 tr(GC−1) tr(GC−1D−1C−1)

+ n2(n2 + 1) tr(C−1GC−1D−1C−1GC−1D−1)

+ n2 tr(C−1GC−1D−1)2

+ 2(n2 + 1) tr(C−1GC−1D−1C−1GC−1D−1JD−1)

+ 2 tr(C−1GC−1D−1) tr(C−1GC−1D−1JD−1)

+ tr(C−1GC−1D−1JD−1C−1GC−1D−1JD−1),
(D.20)

where we have noted that

〈〈tr(GC−1HC−1GC−1HC−1)〉〉h

=

p∑
µ,ν,ρ,λ=1

(C−1GC−1)µν(C−1GC−1)ρλ〈〈(hν · hρ)(hλ · hµ)〉〉h (D.21)

= n2(n2 + 1) tr(C−1GC−1D−1C−1GC−1D−1) + n2 tr(C−1GC−1D−1)2

+ 2(n2 + 1) tr(C−1GC−1D−1C−1GC−1D−1JD−1)

+ 2 tr(C−1GC−1D−1) tr(C−1GC−1D−1JD−1)

+ tr(C−1GC−1D−1JD−1C−1GC−1D−1JD−1) (D.22)

by analogy with the corresponding quartic expectation for qµ.

We must now expand our results in n−1
1 . The inverses of the matrices C and D have Neumann series

C−1 = G−1 +
1

n1
G−1BG−1 +O(n−2

1) (D.23)

and

D−1 =

(
C−1 +

1

n2
A

)−1

(D.24)

=

(
G−1 +

1

n1
G−1BG−1 +

1

n2
A+O(n−2

1)

)−1

(D.25)

= F−1G− 1

n1
F−1BF−> +O(n−2

1) (D.26)

where we have defined

F ≡ Ip +
1

n2
GA (D.27)

and we write F−> = (F−1)> = (F>)−1. Then, using the series expansion of the log-determinant,
we find that the logarithm of the leading term expands as

1

2
tr(D−1J)− 1

2
n2 log det(CD) =

1

2
tr(F−1GJ)− 1

2
n2 log det(F)

− 1

2

1

n1
tr(F−1BF−>J) +

1

2

1

n1
tr(F−1BA)

+O(n−2
1), (D.28)

S14

while the quartic correction simplifies to

1

4

g

n1

p∑
µ,ν,ρ,λ=1

GµνGρλ〈〈(qν · qρ)(qλ · qµ)〉〉

=
1

4

g

n1
n2(n2 + p+ 1)p

+
1

4

n2g

n1

(
(n2 + 1) tr(F−2) + tr(F−1)2 − 2(n2 + p+ 1) tr(F−1)

)
+

1

2

g

n1

(
(n2 + 1) tr(F−3GJ) + tr(F−1) tr(F−2GJ)− (n2 + p+ 1) tr(F−2GJ)

)
+

1

4

g

n1
tr(F−2GJF−2GJ)

+O(n−2
1). (D.29)

Combining these results, we find that the result of integrating out the layer to O(n−1
1) is

log I =
1

2
tr(F−1GJ)− 1

2
n2 log det(F)

− 1

2

1

n1
tr(F−1BF−>J) +

1

2

1

n1
tr(F−1BA)

+
1

4

g

n1
n2(n2 + p+ 1)p

+
1

4

n2g

n1

(
(n2 + 1) tr(F−2) + tr(F−1)2 − 2(n2 + p+ 1) tr(F−1)

)
+

1

2

g

n1

(
(n2 + 1) tr(F−3GJ) + tr(F−1) tr(F−2GJ)− (n2 + p+ 1) tr(F−2GJ)

)
+

1

4

g

n1
tr(F−2GJF−2GJ)

+O(n−2
1). (D.30)

As this result is a continuous function of G, as the set of full-rank positive definite matrices is dense
in the space of positive semidefinite matrices, this result holds for all positive-semidefinite G.

We now further expand this result in n−1
2 . This yields

F−1 = Ip −
1

n2
GA+

1

n2
2

GAGA+O(n−3
2) (D.31)

and

log det(F) =
1

n2
tr(GA)− 1

2

1

n2
2

tr(GAGA) +O(n−3
2), (D.32)

hence we find that the logarithm of the leading term yields

1

2
tr(D−1J)− 1

2
n2 log det(CD) =

1

2
tr(GJ)− 1

2
tr(GA) +

1

4

1

n2
tr(GAGA)

− 1

2

1

n2
tr(GAGJ) +

1

2

1

n1
tr(B(A− J))

+O(n−2
1 , n−2

2 , n−1
1 n−1

2). (D.33)

After some straightforward but tedious algebra, the quartic term reduces to

1

4

g

n1

p∑
µ,ν,ρ,λ=1

GµνGρλ〈〈(qν · qρ)(qλ · qµ)〉〉 =
1

4

g

n1
tr(G(A− J)G(A− J))

+O(n−2
1 , n−2

2 , n−1
1 n−1

2). (D.34)

S15

Combining these results, we find that the result of integrating out the layer is

log I =
1

2
tr(GJ)− 1

2
tr(GA) +

1

4

1

n2

(
1 +

n2

n1
g

)
tr(GAGA)

− 1

2

(
1 +

n2

n1
g

)
tr(GAGJ) +

1

2

1

n1
tr(B(A− J)) +

1

4

1

n1
g tr(GJGJ)

+O(n−2
1 , n−2

2 , n−1
1 n−1

2). (D.35)
Again, this result is continuous in G, hence it holds even if G is rank-deficient.

D.3 Perturbative computation of the partition function of a deep linear network

We now apply the results of Appendix D.2 to compute the partition function for a deep linear network
to the desired order. Our starting point is the effective action before any of the layers have been
integrated out, including a source term:

S = −1

2
β

p∑
µ=1

‖h(d)
µ − yµ‖2 +

d∑
`=1

p∑
µ=1

iq(`)
µ · h(`)

µ −
1

2

p∑
µ,ν=1

(σ2
1Gxx)µν(q(1)

µ · q(1)
ν)

− 1

2

d−1∑
`=1

1

n`

p∑
µ,ν=1

(J (`)
µν + σ2

`+1q
(`+1)
µ · q(`+1)

ν)(h(`)
µ · h(`)

ν). (D.36)

Applying the results of Appendix D.2 with

G = σ2
1Gxx,

jµ = 0,

A = J (1) + σ2
2Q

(2),

B = 0, and
g = 0,

(D.37)

we find that the effective action after integrating out the first layer is

S(1) = −1

2
β

p∑
µ=1

‖h(d)
µ − yµ‖2 +

d∑
`=2

p∑
µ=1

iq(`)
µ · h(`)

µ −
1

2

p∑
µ,ν=1

(m2
2Gxx)µν(q(2)

µ · q(2)
ν)

− 1

2

d−1∑
`=2

1

n`

p∑
µ,ν=1

(J (`)
µν + σ2

`+1q
(`+1)
µ · q(`+1)

ν)(h(`)
µ · h(`)

ν)

+
1

4

g1

n1
m4

2 tr(GxxQ
(2)GxxQ

(2)) +
1

2

g1

n1
m2

2 tr(GxxJ̃1GxxQ
(2))

− 1

2
tr(m2

1GxxJ
(1)) +

1

4

g1

n1
m4

1 tr(GxxJ
(1)GxxJ

(1))

+O(n−2), (D.38)
where we have defined

m1 ≡ σ1,

m2 ≡ σ2m1,

g1 ≡ 1, and

J̃1 ≡ m2
1J

(1).

(D.39)

Assuming that the network has more than one hidden layer, if we now again apply the results of
Appendix D.2 with

G = m2
2Gxx,

jµ = 0,

A = J (2) + σ2
3Q

(3),

B = g1m
2
2GxxJ̃1Gxx, and

g = g1,

(D.40)

S16

we find that the effective action after integrating out the first two layers is

S(2) = −1

2
β

p∑
µ=1

‖h(d)
µ − yµ‖2 +

d∑
`=3

p∑
µ=1

iq(`)
µ · h(`)

µ −
1

2

p∑
µ,ν=1

(m2
3Gxx)µν(q(3)

µ · q(3)
ν)

− 1

2

d−1∑
`=3

1

n`

p∑
µ,ν=1

(J (`)
µν + σ2

`+1q
(`+1)
µ · q(`+1)

ν)(h(`)
µ · h(`)

ν)

+
1

4

g2

n2
m4

3 tr(GxxQ
(3)GxxQ

(3))

+
1

2

g2

n2
m2

3 tr(GxxJ̃2GxxQ
(3))

− 1

2
tr(m2

1GxxJ
(1))− 1

2
tr(m2

2GxxJ
(2))

+
1

4

g1

n1
m4

1 tr(GxxJ
(1)GxxJ

(1)) +
1

4

g2

n2
m4

2 tr(GxxJ
(2)GxxJ

(2))

+
1

2

g1

n1
m2

2 tr(GxxJ̃1GxxJ
(2))

+O(n−2), (D.41)

where we have defined

m3 ≡ σ3m2,

g2 ≡ 1 +
n2

n1
g1, and

J̃2 ≡ m2
2J

(2) +
n2

n1

g1

g2
J̃1.

(D.42)

Then, by induction, we can see that we can iterate this procedure to integrate out all of the hidden
layers, yielding

S(d−1) = −1

2
β

p∑
µ=1

‖h(d)
µ − yµ‖2 +

p∑
µ=1

iq(d)
µ · h(d)

µ −
1

2

p∑
µ,ν=1

(m2
dGxx)µν(q(d)

µ · q(d)
ν)

+
1

4

gd−1

nd−1
m4
d tr(GxxQ

(d)GxxQ
(d))

+
1

2

gd−1

nd−1
m2
d tr(GxxJ̃d−1GxxQ

(d))

− 1

2

d−1∑
`=1

tr(m2
`GxxJ

(`))

+
1

4

d−1∑
`=1

g`
n`
m4
` tr(GxxJ

(`)GxxJ
(`))

+
1

2

d−2∑
`=1

g`
n`
m2
`+1 tr(GxxJ̃`GxxJ

(`+1))

+O(n−2), (D.43)

where md, gd−1, and J̃d−1 are defined by the closed recurrences

m` ≡ σ`m`−1, (D.44)

g` ≡ 1 +
n`
n`−1

g`−1, and (D.45)

J̃` ≡ m2
`J

(`) +
n`
n`−1

g`−1

g`
J̃`−1. (D.46)

S17

Applying the results of Appendix D.2 one final time with

G = m2
dGxx,

jµ = βy,

A = βndIp,

B = gd−1m
2
dGxxJ̃d−1Gxx, and

g = gd−1,

(D.47)

we conclude that

logZ = −1

2
βnd tr(Γ̃−1Gyy)− 1

2
nd log det(Γ̃)

+
1

4

ndgd−1

nd−1

(
(nd + p+ 1)p+ (nd + 1) tr(Γ̃−2) + tr(Γ̃−1)2 − 2(nd + p+ 1) tr(Γ̃−1)

)
+

1

2

gd−1

nd−1
β2ndm

2
d

(
(nd + 1) tr(Γ̃−3GxxGyy) + tr(Γ̃−1) tr(Γ̃−2GxxGyy)

− (nd + p+ 1) tr(Γ̃−2GxxGyy)

)
+

1

4

gd−1

nd−1
β4n2

dm
4
d tr(Γ̃−2GxxGyyΓ̃−2GxxGyy)

− 1

2

gd−1

nd−1
ndm

2
d tr

[(
β2GxxΓ̃−1GyyΓ̃−1Gxx − βGxxΓ̃−1Gxx

)
J̃d−1

]
− 1

2

d−1∑
`=1

tr(m2
`GxxJ

(`))

+
1

4

d−1∑
`=1

g`
n`
m4
` tr(GxxJ

(`)GxxJ
(`))

+
1

2

d−2∑
`=1

g`
n`
m2
`+1 tr(GxxJ̃`GxxJ

(`+1))

+O(n−2), (D.48)

where we have defined the matrix

Γ̃ ≡ Ip + βm2
dGxx (D.49)

and absorbed the normalizing constant using the fact that Ip− βm2
dΓ̃
−1Gxx = Γ̃−1. As was the case

for the individual layer integrals, a continuity argument implies that this expression can be applied
even if Gxx is rank-deficient.

D.4 Computing the average hidden layer kernels of a deep linear network

With the relevant partition function in hand, we can finally compute the average hidden layer kernels.
In particular, we can immediately read off that

〈K(`)〉 = m2
`Gxx

+
gd−1

nd−1
ndm

2
d tr

[(
β2GxxΓ̃−1GyyΓ̃−1Gxx − βGxxΓ̃−1Gxx

)
δJ̃d−1

δJ (`)

∣∣∣∣
J(`)=0

]
+O(n−2), (D.50)

hence our only task is to determine how the effective source J̃d−1 depends on the source for a given
layer. Fortunately, the recurrence relation for the effective source is extremely easy to solve, yielding

J̃d−1 =

d−1∑
`=1

m2
`

nd−1

n`

g`
gd−1

J (`). (D.51)

S18

Thus, defining the matrix

Γ ≡ 1

βm2
d

Γ̃ = Gxx +
1

βm2
d

Ip, (D.52)

we find that

〈K(`)〉 = m2
`Gxx +

g`
n`
ndm

2
`

(
m−2
d GxxΓ−1GyyΓ−1Gxx −GxxΓ−1Gxx

)
+O(n−2). (D.53)

To obtain the expression listed in the main text, we note that

g`
n`

=
1

n`
+
g`−1

n`−1
, (D.54)

hence we have

g`
n`

=
∑̀
`′=1

1

n`′
, (D.55)

mirroring the width dependence found by Yaida [8] in his study of the prior of deep linear networks.

E Average kernels in a deep feedforward linear network with skip
connections

In this appendix, we show that Conjecture 1 holds perturbatively for a linear feedforward network
with arbitrary skip connections, following the method of Appendix D. Concretely, we consider a
network defined as

h(0) = x (E.1)

h(`) =

`−1∑
`′=0

σ`,`′√
n`′

W (`,`′)h(`′) ` = 1, . . . , d (E.2)

f = h(d), (E.3)

where σ`,`′ is positive if layer ` receives input from an earlier layer `′ < `, and zero otherwise.

E.1 Perturbative computation of the partition function

Upon integrating out the weights, we obtain an effective action for the preactivations and the
corresponding Lagrange multipliers of

S = −β
p∑

µ=1

ε(h(d)
µ ,yµ) +

p∑
µ=1

d∑
`=1

iq(`)
µ · h(`)

µ

− 1

2

d−1∑
`=1

1

n`

p∑
µ,ν=1

[
J (`) +

d∑
`′=`+1

σ2
`′,`(q

(`′)
µ · q(`′)

ν)

]
(h(`)
µ · h(`)

ν)

− 1

2

d∑
`=1

σ2
`,0

p∑
µ,ν=1

(Gxx)µν(q(`)
µ · q(`)

ν). (E.4)

Applying the result of Appendix D.2 with

G = σ2
1,0Gxx,

jµ = 0,

A = J (1) +

d∑
`′=2

σ2
`′,1Q

(`′),

B = 0, and
g = 0,

(E.5)

S19

we find that the effective action after integrating out the first layer is

S(1) = −β
p∑

µ=1

ε(h(d)
µ ,yµ) +

p∑
µ=1

d∑
`=2

iq(`)
µ · h(`)

µ

− 1

2

d−1∑
`=2

1

n`

p∑
µ,ν=1

[
J (`) +

d∑
`′=`+1

σ2
`′,`(q

(`′)
µ · q(`′)

ν)

]
(h(`)
µ · h(`)

ν)

− 1

2

d∑
`=2

m2
`,1 tr(GxxQ

(`)) +
1

4

1

n1

d∑
`,`′=2

g`,`′,1 tr(GxxQ
(`)GxxQ

(`′))

+
1

2

1

n1

d∑
`=2

tr(GxxJ̃`,1GxxQ
(`))

− 1

2
m2

1,0 tr(GxxJ
(1))

+
1

4

1

n1
σ4

1,0 tr(GxxJ
(1)GxxJ

(1))

+O(n−2), (E.6)

where we have defined

m2
`,0 ≡ σ2

`,0, (E.7)

m2
`,1 ≡ m2

`,0 + σ2
`,1m

2
1,0 (E.8)

g`,`′,1 ≡ σ2
`,1σ

2
`′,1σ

4
1,0, and (E.9)

J̃`,1 ≡ σ2
`,1σ

4
1,0J

(1), (E.10)

where `, `′ > 1 for all cases but m2
1,0. Assuming the network has more than one hidden layer, if we

now again apply the results of Appendix D.2 with

G = m2
2,1Gxx,

jµ = 0,

A = J (2) +

d∑
`′=3

σ2
`′,2Q

(`′),

B = GxxJ̃2,1Gxx +

d∑
`′=3

g`′,2,1GxxQ
(`′)Gxx, and

g = g2,2,1/m
4
2,1,

(E.11)

S20

we find that the effective action after integrating out the first two layers of the network is

S(2) = −β
p∑

µ=1

ε(h(d)
µ ,yµ) +

p∑
µ=1

d∑
`=1

iq(`)
µ · h(`)

µ

− 1

2

d−1∑
`=3

1

n`

p∑
µ,ν=1

[
J (`)
µν +

d∑
`′=`+1

σ2
`′,`(q

(`′)
µ · q(`′)

ν)

]
(h(`)
µ · h(`)

ν)

− 1

2

d∑
`=3

m2
`,2 tr(GxxQ

(`)) +
1

4

1

n2

d∑
`,`′=3

g`,`′,2 tr(GxxQ
(`)GxxQ

(`′))

+
1

2

1

n2

d∑
`=3

tr(GxxJ̃`,2GxxQ
(`))

− 1

2

2∑
`=1

m2
`,`−1 tr(GxxJ

(`))

+
1

4

1

n1
m4

1,0 tr(GxxJ
(1)GxxJ

(1)) +
1

4

1

n2

(
m4

2,1 +
n2

n1
g2,2,1

)
tr(GxxJ

(2)GxxJ
(2))

+
1

2

1

n1
tr(GxxJ̃2,1GxxJ

(2))

+O(n−2), (E.12)

where we now define

m2
`,2 ≡ m2

`,1 +m2
2,1σ

2
`,2, (E.13)

g`,`′,2 ≡ m4
2,1 +

n2

n1

(
g`,`′,1 + g2,2,1σ

2
`,2σ

2
`′,2 + g`,2,1σ

2
`′,2 + σ2

`,2g2,`′,1

)
, and (E.14)

J̃`,2 ≡
n2

n1
J̃`,1 +

(
m4

2,1 +
n2

n1
g2,2,1

)
σ2
`,2J

(2) +
n2

n1
σ2
`,2J̃2,1 +

n2

n1
g`,2,1J

(2) (E.15)

for `, `′ > 2. We can now see that we can repeat this procedure to integrate out all of the hidden
layers of the network, yielding an effective action of

S(d−1) = −β
p∑

µ=1

ε(h(d)
µ ,yµ) +

p∑
µ=1

iq(d)
µ · h(d)

µ

− 1

2
m2
d,d−1 tr(GxxQ

(d)) +
1

4

1

nd−1
gd,d,d−1 tr(GxxQ

(d)GxxQ
(d))

+
1

2

1

nd−1
tr(GxxJ̃d,d−1GxxQ

(d))

− 1

2

d−1∑
τ=1

m2
τ,τ−1 tr(GxxJ

(τ))

+
1

4

d−1∑
τ=2

(
1

nτ
m4
τ,τ−1 +

1

nτ−1
gτ,τ,τ−1

)
tr(GxxJ

(τ)GxxJ
(τ))

+
1

2

d−1∑
τ=2

1

nτ−1
tr(GxxJ̃τ,τ−1GxxJ

(τ))

+O(n−2), (E.16)

S21

where the coupling constants and effective source obey the recurrences

m2
`,τ ≡ m2

`,τ−1 +m2
τ,τ−1σ

2
`,τ , (E.17)

g`,`′,τ ≡ m4
τ,τ−1σ

2
`,τσ

2
`′,τ

+
nτ
nτ−1

(
g`,`′,τ−1 + gτ,τ,τ−1σ

2
`,τσ

2
`′,τ + g`,τ,τ−1σ

2
`′,τ + σ2

`,τgτ,`′,τ−1

)
, and (E.18)

J̃`,τ ≡
nτ
nτ−1

J̃`,τ−1 +
nτ
nτ−1

σ2
`,τ J̃τ,τ−1

+

(
m4
τ,τ−1σ

2
`,τ +

nτ
nτ−1

gτ,τ,τ−1σ
2
`,τ +

nτ
nτ−1

g`,τ,τ−1

)
J (τ) (E.19)

for `, `′ > τ . Applying the results of Appendix D.2 once more with

G = m2
d,d−1Gxx,

jµ = βyµ,

A = βndIp,

B = GxxJ̃d,d−1Gxx, and

g = gd,d,d−1/m
4
d,d−1,

(E.20)

we find the source-dependent terms in the logarithm of the partition function are

logZ ⊃ −1

2

1

n1
β2nd tr(Γ−1GxxJ̃d,d−1GxxΓ−1Gyy) +

1

2

1

nd−1
βnd tr(Γ−1GxxJ̃d,d−1Gxx)

− 1

2

d−1∑
τ=1

m2
τ,τ−1 tr(GxxJ

(τ))

+
1

4

d−1∑
τ=2

(
1

nτ
m4
τ,τ−1 +

1

nτ−1
gτ,τ,τ−1

)
tr(GxxJ

(τ)GxxJ
(τ))

+
1

2

d−1∑
τ=2

1

nτ−1
tr(GxxJ̃τ,τ−1GxxJ

(τ))

+O(n−2), (E.21)

where

Γ ≡ Ip + βm2
d,d−1Gxx. (E.22)

E.2 Computing the average hidden layer kernels

With the source-dependent terms of the relevant partition function in hand, we can compute the
average hidden layer kernels for a feedforward linear network with arbitrary skip connections. We
can immediately read off that

〈K(`)〉 = m2
`,`−1Gxx

+
nd
nd−1

tr

[(
β2GxxΓ−1GyyΓ−1Gxx − βGxxΓ−1Gxx

)
δJ̃d,d−1

δJ (`)

∣∣∣∣
J(`)=0

]
+O(n−2), (E.23)

hence our only task is to compute the derivative of the effective source J̃d,d−1 with respect to the
source for the `-th hidden layer. Singling out the `-th layer, we can set all sources except J (`) to zero.
Then, the ‘earliest’ effective source to be non-zero is

J̃`′,` =

(
m4
`,`−1σ

2
`′,` +

n`
n`−1

g`,`,`−1σ
2
`′,` +

n`
n`−1

g`′,`,`−1

)
J (`), (E.24)

S22

for `′ > `, and the recurrence relation for τ > ` is

J̃`′,τ =
nτ
nτ−1

(
J̃`′,τ−1 + σ2

`′,τ J̃τ,τ−1

)
. (E.25)

From the form of these recurrences, we can see that

〈K(`)〉 = m2
`,`−1Gxx

+
nd
nd−1

g̃`Gxx(β2Γ−1GyyΓ−1 − βΓ−1)Gxx

+O(n−2), (E.26)

where g̃` is a layer-dependent scalar. Even without explicitly solving the recurrences to obtain g̃`, this
shows that Conjecture 1 holds perturbatively for linear networks with arbitrary skip connections. We
leave detailed study of these recurrences—and therefore of the precise dependence of the corrections
on width, depth, and skip connection structure—as an interesting objective for future work.

F Comparison to the results of Aitchison [10] and Li and Sompolinsky [11]

In this appendix, we compare our results for the average kernels of deep linear networks to those of
Aitchison [10] and Li and Sompolinsky [11].

F.1 Comparison to the results of Aitchison [10]

We first show that our result (9) for the low-temperature limit of the average kernels of a deep linear
network can be recovered from the results of Aitchison [10]. Working in what corresponds to the
zero-temperature limit of our setup, Aitchison derives the following implicit recurrence

0 = −(n`+1 − n`)(K(`))−1 + n`+1(K(`))−1(K(`+1))(K(`))−1 − n`(K(`−1))−1, (F.1)

for ` = 1, . . . , d − 1, where the boundary conditions of the recurrence are K(0) = Gxx and
K(d) = Gyy . We will self-consistently solve this recurrence relation in the limit n1, . . . , nd−1 →∞,
n0, nd, p = O(1). Concretely, we make the ansatz that the zero-temperature kernels are of the form

K(`) = K(`)
∞ +

1

n`
K

(`)
1 +O(n−2

`), (F.2)

and solve the recurrence relations order-by-order using the resulting Neumann series

(K(`))−1 = (K(`)
∞)−1 − 1

n`
(K(`)
∞)−1K

(`)
1 (K(`)

∞)−1 +O(n−2
`). (F.3)

The leading-order recurrence is simply

0 =

(
1− n`+1

n`

)
(K(`)
∞)−1 +

n`+1

n`
(K(`)
∞)−1(K(`+1)

∞)(K(`)
∞)−1 − (K(`−1)

∞)−1, (F.4)

with boundary conditions K(0)
∞ = Gxx and K

(d)
∞ = Gyy. For the last hidden layer, we have

n`+1/n` = nd/nd−1 → 0, hence the recurrence reduces to

K(d−1)
∞ = K(d−2)

∞ . (F.5)

If we iterate this procedure backwards through the network, it is easy to see that the n`+1/n`-
dependent terms at each layer will cancel, leaving

K(d−1)
∞ = K(d−2)

∞ = · · · = K(1)
∞ = Gxx. (F.6)

We now consider the leading finite-width correction. For the last hidden layer, we obtain

0 = nd(Gyy −Gxx)−K(d−1)
1 +

nd−1

nd−2
K

(d−2)
1 (F.7)

S23

after dropping all terms that are of O(n−2) and multiplying on the left and right by Gxx. For the first
hidden layer, we have

0 = K
(2)
1 −

(
1 +

n2

n1

)
K

(1)
1 . (F.8)

Finally, for intermediate hidden layers (i.e., ` = 2, 3, . . . , d− 2), we have

0 = K
(`+1)
1 −

(
1 +

n`+1

n`

)
K

(`)
1 +

n`
n`−1

K
(`−1)
1 . (F.9)

Based on the form of these recurrences, we make the ansatz that the solution is of the form

K
(`)
1 = nda`(Gyy −Gxx) (F.10)

for some sequence a`, where we assume that Gyy 6= Gxx. Then, the recurrence for the last hidden
layer is satisfied provided that

ad−1 = 1 +
nd−1

nd−2
ad−2, (F.11)

those for the intermediate layers if

0 = a`+1 −
(

1 +
n`+1

n`

)
a` +

n`
n`−1

a`−1, (F.12)

and that for the first hidden layer if

a2 =

(
1 +

n2

n1

)
a1. (F.13)

Substituting the expression for ad−1 into the condition resulting from the recurrence relation centered
on ad−2, we find that we must have

ad−2 = 1 +
nd−2

nd−3
ad−3, (F.14)

hence we can iterate this process backwards to the second hidden layer, yielding

a` = 1 +
n`
n`−1

a`−1 (F.15)

for ` = 2, 3, . . . , d− 1. Then, the condition relating a2 and a1 resulting from the recurrence relation
for the first layer implies that we must have a1 = 1. Thus, we recover our zero-temperature result
from solving Aitchison’s recurrence relations order-by-order.

F.2 Comparison to the results of Li and Sompolinsky [11]

We now show that our result (9) for the low-temperature limit of the average kernels of a deep
linear network can be recovered as a limiting case of the result of Li and Sompolinsky [11]. Their
result for the zero-temperature kernel in the limit n0, n, p→∞ with n1 = n2 = · · · = nd−1 = n,
n0/n ∈ (0,∞), α ≡ p/n ∈ (0,∞), and σ1 = · · · = σd = σ is, in our notation,

σ−2(`+1)〈K(`)〉 ∼
(

1− nd
n

)`
Gxx +

1

n
σ−2dY VM`V

>Y >, (F.16)

where Y ∈ Rp×nd is the matrix of targets and M` ∈ Rnd×nd is a diagonal matrix with non-zero
elements

[M`]kk = z
−(d−1)
k

z`k − 1

zk − 1
. (F.17)

Here, the orthogonal matrix V is the matrix of eigenvectors of

R =
1

σ2p
Y >G+

xxY = V ΩV >, (F.18)

S24

for G+
xx the pseudoinverse of Gxx, and the scalars zk are in turn defined in terms of the eigenvalues

Ωkk = ωk as

1− α = zk − ασ−2(d−1)z
−(d−1)
k ωk; (F.19)

we note that Li and Sompolinsky [11] use variables uk0 = σ2zk.

As we are interested in the limit α ↓ 0, it is useful to write the implicit equation for zk as

zk = 1 + α(σ−2Lz
−(d−1)
k ωk − 1), (F.20)

hence we expect zk → 1 as α ↓ 0. Thus, we have

[M`]kk → `, (F.21)

which gives

VM`V
> → `Ind . (F.22)

Using the expansion (1− nd/n)` = 1− nd`/n+O(n−2), we therefore find that

σ−2(`+1)〈K(`)〉 ∼ Gxx +
nd`

n
(σ−2dGyy −Gxx) (F.23)

in the limit in which nd/n ↓ 0 and p/n ↓ 0. Therefore, combining this result with that of the previous
subsection, our result (9) agrees with those of Aitchison [10] and of Li and Sompolinsky [11] in the
appropriate limit. Whether the full result of Li and Sompolinsky [11] agrees with that of Aitchison
[10] is an interesting question, but is well beyond the scope of the present work.

G Predictor statistics and generalization in deep linear networks

Though the main focus of our work is on the asymptotics of representation learning, we have also
computed the leading finite-width corrections to the predictor statistics. Though one can derive the
analogy of Conjecture 1 for the predictor statistics of a general BNN with linear readout, the resulting
formula is not particularly illuminating. We will therefore present results only for linear networks. As
was true of the hidden layer kernels of deep linear networks, this calculation can be performed either
using methods similar to those described in Appendix B or Appendix D. As the steps are largely
identical to those calculations, we only briefly summarize the results.

In short, we fix a test dataset D̂ = {(x̂µ, ŷµ)}p̂µ=1 of p̂ examples, and define the Gram matrices

(Gx̂x̂)µ̂ν̂ ≡ n−1
0 x̂µ̂ · x̂ν̂ , (G.1)

(Gŷŷ)µ̂ν̂ ≡ n−1
d ŷµ̂ · ŷν̂ , (G.2)

(Gxx̂)µµ̂ ≡ n−1
0 xµ · x̂µ̂, and (G.3)

(Gyŷ)µν̂ ≡ n−1
d yµ · ŷν̂ . (G.4)

Introducing appropriate source terms to allow us to compute predictor statistics, we then proceed
perturbatively as before, assuming that the combined input Gram matrix[

Gxx Gxx̂
G>xx̂ Gx̂x̂

]
(G.5)

is invertible. Again, the final result can be extended to the case in which this matrix is not invertible
by a continuity argument.

Our notation in this appendix will follow that of Appendix B rather than Appendix D in that we will
introduce matrices

K∞ ≡ σ2
1 · · ·σ2

d−1Gxx, (G.6)

R̂∞ ≡ σ2
1 · · ·σ2

d−1Gxx̂, and (G.7)

K̂∞ ≡ σ2
1 · · ·σ2

d−1Gx̂x̂ (G.8)

to denote the blocks of the infinite-width kernel of the last hidden layer, rather than introducing scalar
parameters to represent the products of variances. This will make our expressions somewhat more
compact than they would be under the conventions of Appendix D.

S25

G.1 Predictor statistics

Defining the matrix F̂µ̂j ≡ fj(x̂µ̂), we find that the mean predictor can be written compactly as

〈F̂ 〉 = R̂>∞

[
Γ−1 − 1

βσ2
d

(
d−1∑
`=1

1

n`

)
Γ−1MΓ−1

]
Y +O(n−2) (G.9)

for

M ≡ Γ−1K∞ + tr(Γ−1K∞)Ip − nd(σ−2
d Γ−1GyyΓ−1 − Γ−1)K∞. (G.10)

The predictor covariance is given as

σ−2
d cov(F̂µ̂j , F̂ν̂k)

= (K̂∞ − R̂>∞Γ−1R̂∞)µ̂ν̂δjk

+

(
d−1∑
`=1

1

n`

)[
M̂µ̂ν̂δjk

+ σ−2
d (Y >Γ−1K∞Γ−1Y)jk(K̂∞ − R̂>∞Γ−1R̂∞)µ̂ν̂

− 1

βσ4
d

(Y >Γ−1K∞Γ−1Y)jk(R̂>∞Γ−2R̂∞)µ̂ν̂

+
1

β2σ6
d

(Y >Γ−2R̂∞)jν̂(Y >Γ−2R̂∞)kµ̂

]
+O(n−2) (G.11)

for

M̂ ≡ − tr(Γ−1K∞)(K̂∞ − R̂>∞Γ−1R̂∞) +
1

βσ2
d

tr(Γ−1K∞)R̂>∞Γ−2R̂∞ −
1

β2σ4
d

R̂>∞Γ−3R̂∞

+ nd
1

β2σ4
d

R̂>∞Γ−1(σ−2
d Γ−1GyyΓ−1 − Γ−1)Γ−1R̂∞. (G.12)

The mean and covariance of the training set predictor Fµj ≡ fj(xµ) can be obtained by setting R̂∞
and K̂∞ to K∞ in the above expressions.

G.2 Bias-variance decompositions and the low-temperature limit

These results allow us to define thermal bias-variance decompositions of the form

〈E〉 =
1

2

p∑
µ=1

‖〈f(xµ)〉 − yµ‖22 +
1

2

p∑
µ=1

nd∑
k=1

cov[fk(xµ), fk(xµ)] ≡ Eb + Ev (G.13)

for the mean training and test errors. However, the resulting expressions are not particularly illumi-
nating except in the low-temperature limit β →∞. We will focus on the regime in which Gxx (and
thus K∞) is invertible, in which the underlying linear system XW = Y is underdetermined and
the training set can be interpolated. In this regime, Γ−1 = K−1

∞ +O(β−1), and the mean predictor
reduces to the least-norm pseudoinverse solution to the linear system, with mean training and test
predictions of

〈F 〉 = Y +O(β−1) (G.14)

and

〈F̂ 〉 = R̂>∞K
−1
∞ Y +O(β−1) = G>x̂xG

−1
xxY +O(β−1) = X̂X>(XX>)−1Y +O(β−1), (G.15)

respectively. The training and test set covariances have low-temperature limits of

cov(Fµj , Fνk) = O(β−1) (G.16)

S26

and

cov(F̂µ̂j , F̂ν̂k) = σ2
d(K̂∞ − R̂>∞K−1

∞ R̂∞)µ̂ν̂

[
δjk +

(
d−1∑
`=1

1

n`

)
(σ−2
d Y >K−1

∞ Y − pIn2
)jk

]
+O(β−1, n−2), (G.17)

respectively. Then, it is easy to see that both Eb and Ev are O(β−1), while

Êb =
1

2
‖R̂>∞K−1

∞ Y − Ŷ ‖2F +O(β−1) (G.18)

and

Êv = ndσ
2
d tr(K̂∞ − R̂>∞K−1

∞ R̂∞)

[
1 +

(
d−1∑
`=1

1

n`

)
(σ−2
d tr(K−1

∞ Gyy)− p)

]
+O(β−1, n−2). (G.19)

Thus, at least to leading order, width affects the low-temperature test error only through the variance
term. Substituting in the definition of K∞, we find that to leading order the test error decreases with
increasing width if

1

p
tr(G−1

xxGyy) > σ2
1 · · ·σ2

d (G.20)

and increases with increasing width otherwise. This small-initialization condition is the generalization
of that found by Li and Sompolinsky [11] to our asymptotic regime.

G.3 Effects of alternative regularization temperature-dependence

In this appendix, we comment on the possibility of alternative temperature-dependent posteriors. This
possibility arises from the interpretation of the Bayes posterior (B.4) as the equilibrium distribution
of the Langevin dynamics

dΘ(`)(t) = −(λ(β)ΣΘ +∇ΘE)dt+
√

2β−1dB(`)(t) (G.21)

at inverse temperature β, where B(`)(t) is a standard Wiener process, Σ is the diagonal matrix of
prior variances, and λ(β) = 1/β. As elsewhere, we focus on the regime in which the training dataset
can be linearly interpolated, in which the thermal variance of the test set predictions need not vanish.
Moreover, it suffices to consider only the GP contributions; the finite-width corrections computed
above do not change the qualitative results. In these statistics, the case of general λ(β) is related to
λ(β) = 1/β by the replacement

σ2
1 · · ·σ2

d ←
σ2

1 · · ·σ2
d

βdλ(β)d
. (G.22)

Then, if we assume a low-temperature power-law dependence λ(β) ∼ βω for simplicity, we find that
the zero-temperature limits of the training set predictor mean and covariance are

lim
β→∞

〈F 〉 =


0 ω > 1/d− 1

K∞(σ−2
d Ip +K∞)−1Y ω = 1/d− 1

Y ω < 1/d− 1

(G.23)

and
lim
β→∞

cov(Fµj , Fνk) = 0, (G.24)

respectively, while those of the test set mean and covariance are

lim
β→∞

〈F̂ 〉 =


0 ω > 1/d− 1

R̂>∞(σ−2
d Ip +K∞)−1Y ω = 1/d− 1

R̂>∞K
−1
∞ Y ω < 1/d− 1

(G.25)

and

lim
β→∞

cov(F̂µ̂j , F̂ν̂k) =


0 ω > −1

σ2
d(K̂∞ − R̂>K−1

∞ R̂∞)µ̂ν̂δjk ω = −1

∞ ω < −1,

(G.26)

respectively. Therefore, taking λ(β) = 1/β yields sensible zero-temperature infinite-width behavior
for a linear network of any depth in the underdetermined regime.

S27

H Derivation of the average kernels for a depth-two network

In this appendix, we derive the average feature kernel for a network with a single (possibly nonlinear)
hidden layer and a linear readout. This derivation is a simple extension of the perturbative derivation
of Conjecture 1 in Appendix B, using the fact that the size of the terms in the expansion for two-layer
networks can be directly controlled in terms of the inverse hidden layer width.

Concretely, we consider a network defined as

h(1) =
σ1√
n0
W (1)x (H.1)

h(2) =
σ2√
n1
W (2)φ(h(1)) (H.2)

f = h(2). (H.3)

Our task is to control the prior cumulants of the hidden layer feature kernel

Kµν ≡
1

n1
φ(h(1)

µ) · φ(h(1)
ν). (H.4)

We can use the fact that the rows [w
(1)
j]> of W (1) are independent and identically distributed under

the prior to obtain

[K∞]µν = EWKµν (H.5)

=
1

n1

n1∑
j=1

E
w

(1)
j

[
φ

(
σ1√
n0

w
(1)
j · xµ

)
φ

(
σ1√
n0

w
(1)
j · xν

)]
(H.6)

= E[φ(h(1)
µ)φ(h(1)

ν) : h(1) ∼ N (0, σ2
1Gxx)] (H.7)

at any hidden layer width [12, 13]. Similarly, we can easily see that

covW(Kµν ,Kρλ) =
1

n1

(
E[φ(h(1)

µ)φ(h(1)
ν)φ(h(1)

ρ)φ(h
(1)
λ)]− [K∞]µν [K∞]ρλ

)
, (H.8)

where h(1) ∼ N (0, σ2
1Gxx), and that higher cumulants are O(n−2

1). Then, we can directly apply the
result of Appendix B to conclude that

〈Kµν〉 = [K∞]µν +
1

2
nd

p∑
ρ,λ=1

(σ−2
d Γ−1GyyΓ−1 − Γ−1)ρλ covW(Kµν ,Kρλ) +O(n−2

1) (H.9)

for Γ = σ2
1K∞ + Ip/βσ

2
2 . Depending on the nonlinearity, this result may be continuous in Gxx, and

therefore extensible to the non-invertible case via a continuity argument. In particular, as noted in
Appendix D, this holds for a linear network.

To gain some intuition for how different choices of nonlinear activation function affect the learned
representations, we consider the case in which Gxx is diagonal. In this special case, the four-point
term simplifies dramatically. In particular, we have

(K∞)µν = var[φ(h(1)
µ)]δµν + E[φ(h(1)

µ)]E[φ(h(1)
ν)] (H.10)

and

covW(Kµν ,Kρλ) =
1

n1

(
var[φ(h(1)

µ)2]δµνδµρδµλ

+ var[φ(h(1)
µ)] var[φ(h(1)

ν)](1− δµν)(δµρδνλ + δµλδνρ)

)
, (H.11)

which yields

〈Kµν〉 = (K∞)µν +
1

2

n2

n1
(σ−2

2 Γ−1GyyΓ−1 − Γ−1)µν

×
[

var[φ(h(1)
µ)2]δµν + 2 var[φ(h(1)

µ)] var[φ(h(1)
ν)](1− δµν)

]
+O(n−2

1).

(H.12)

S28

Moreover, applying the Sherman-Morrison formula [3], we have

1

βσ2
2

Γ−1
µν =

δµν
γµ
− 1

1 +
∑p
ρ=1 E[φ(h

(1)
ρ)]2/γρ

E[φ(h
(1)
µ)]

γµ

E[φ(h
(1)
ν)]

γν
, (H.13)

where we have defined the vector γµ ≡ 1 + βσ2
2 var[φ(h

(1)
µ)] for brevity. Thus, in this simple

setting, activation functions with Eφ(h) 6= 0 yield qualitatively different behavior from those with
Eφ(h) = 0: non-vanishing Eφ(h) introduces a rank-1 component in the GP kernel, which in turn
couples elements of Gyy in the leading finite-width correction.

I Numerical methods

In this appendix, we describe the numerical methods used in our experiments. We perform our
simulations by sampling network parameters at each time step of the Langevin update G.21 after
some large burn-in period when the loss function stabilizes around a fixed number. We used Euler-
Maruyama method [14] to obtain the discretized Langevin equation:

Θ(t+ 1)−Θ(t) = −β−1Θ(t)dt−∇ΘE(t)dt+ ξ
√

2β−1dt, (I.1)

where ξ ∼ N (0, 1) is a standard Gaussian random variable sampled i.i.d. at each time step and dt
is the time step. The first, second and last terms represent the weight decay, the gradient descent
update and the stochastic Wiener process, respectively. We also used stochastic gradient methods for
posterior sampling such as Stochastic Gradient Langevin Dynamics [15, 16], although obtained the
best results via full-batch gradient updates.

We used the Neural Tangents framework [17] and PyTorch deep learning library [18] to generate
the neural networks and trained them according to the discretized full-batch Langevin update rule.
A typical burn-in time was ∼ 2 × 106 iterations and after that the parameters were sampled over
∼ 2× 106 iterations where we chose a learning rate of dt ∼ 10−4. Simulations have been performed
on a cluster with NVIDIA Tesla V100 GPU’s with 32 GB RAM and a typical simulation run took
∼ 2− 6 hr depending on the architecture and the network width. All code used throughout this work
can be reached at https://github.com/Pehlevan-Group/finite-width-bayesian/.

All figures shown here are results of a single instance of a trained neural network on a fixed dataset.
Since we performed all our experiments with β = 1, we observed that the different initializations of a
network did not influence the final posterior mean due to the weight decay and long burn-in periods.

Throughout all experiments, the MNIST digits were downsized from 28× 28 pixels to 10× 10 pixels
without distorting the original digits. This was done to accelerate the training process since large
input dimensions would take an order of magnitude more time to obtain well estimated posterior
means. We considered 10-dimensional outputs corresponding to one-hot encoded digits. Both inputs
and labels were ordered according to their class. Figure 2 shows an example of MNIST digits and the
input Gxx and output Gyy Gram matrices.

References
[1] Leon Isserlis. On a formula for the product-moment coefficient of any order of a normal

frequency distribution in any number of variables. Biometrika, 12(1/2):134–139, 1918.

[2] Gian-Carlo Wick. The evaluation of the collision matrix. Physical Review, 80(2):268, 1950.

[3] Roger A Horn and Charles R Johnson. Matrix Analysis. Cambridge University Press, 2012.

[4] Jaehoon Lee, Jascha Sohl-Dickstein, Jeffrey Pennington, Roman Novak, Sam Schoenholz, and
Yasaman Bahri. Deep neural networks as Gaussian processes. In International Conference on
Learning Representations, 2018. URL https://openreview.net/forum?id=B1EA-M-0Z.

[5] Alexander G. de G. Matthews, Jiri Hron, Mark Rowland, Richard E. Turner, and Zoubin
Ghahramani. Gaussian process behaviour in wide deep neural networks. In International
Conference on Learning Representations, 2018. URL https://openreview.net/forum?
id=H1-nGgWC-.

S29

https://github.com/Pehlevan-Group/finite-width-bayesian/
https://openreview.net/forum?id=B1EA-M-0Z
https://openreview.net/forum?id=H1-nGgWC-
https://openreview.net/forum?id=H1-nGgWC-

[6] Roman Novak, Lechao Xiao, Yasaman Bahri, Jaehoon Lee, Greg Yang, Daniel A. Abolafia, Jef-
frey Pennington, and Jascha Sohl-Dickstein. Bayesian deep convolutional networks with many
channels are Gaussian processes. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=B1g30j0qF7.

[7] Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian pro-
cess behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint
arXiv:1902.04760, 2019.

[8] Sho Yaida. Non-Gaussian processes and neural networks at finite widths. In Jianfeng Lu
and Rachel Ward, editors, Proceedings of The First Mathematical and Scientific Machine
Learning Conference, volume 107 of Proceedings of Machine Learning Research, pages 165–
192, Princeton University, Princeton, NJ, USA, July 2020. PMLR. URL http://proceedings.
mlr.press/v107/yaida20a.html.

[9] Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel Schoenholz, and Jeffrey Pen-
nington. Dynamical isometry and a mean field theory of CNNs: How to train 10,000-layer
vanilla convolutional neural networks. In International Conference on Machine Learning, pages
5393–5402. PMLR, 2018.

[10] Laurence Aitchison. Why bigger is not always better: on finite and infinite neural networks. In
Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages 156–164.
PMLR, July 2020. URL http://proceedings.mlr.press/v119/aitchison20a.html.

[11] Qianyi Li and Haim Sompolinsky. Statistical mechanics of deep linear neural networks:
The backpropagating kernel renormalization. Phys. Rev. X, 11:031059, Sep 2021. doi: 10.
1103/PhysRevX.11.031059. URL https://link.aps.org/doi/10.1103/PhysRevX.11.
031059.

[12] Radford M Neal. Priors for infinite networks. In Bayesian Learning for Neural Networks, pages
29–53. Springer, 1996.

[13] Christopher KI Williams. Computing with infinite networks. Advances in Neural Information
Processing Systems, pages 295–301, 1997.

[14] Peter E Kloeden and Eckhard Platen. Stochastic differential equations. In Numerical Solution
of Stochastic Differential Equations, pages 103–160. Springer, 1992.

[15] M. Welling and Y. Teh. Bayesian learning via stochastic gradient langevin dynamics. In ICML,
2011.

[16] Chunyuan Li, Changyou Chen, David Carlson, and Lawrence Carin. Preconditioned stochastic
gradient langevin dynamics for deep neural networks. In Thirtieth AAAI Conference on Artificial
Intelligence, 2016.

[17] Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-
Dickstein, and Samuel S. Schoenholz. Neural tangents: Fast and easy infinite neural networks
in python. In International Conference on Learning Representations, 2020. URL https:
//github.com/google/neural-tangents.

[18] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/
2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

[19] Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database. ATT Labs
[Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

S30

https://openreview.net/forum?id=B1g30j0qF7
http://proceedings.mlr.press/v107/yaida20a.html
http://proceedings.mlr.press/v107/yaida20a.html
http://proceedings.mlr.press/v119/aitchison20a.html
https://link.aps.org/doi/10.1103/PhysRevX.11.031059
https://link.aps.org/doi/10.1103/PhysRevX.11.031059
https://github.com/google/neural-tangents
https://github.com/google/neural-tangents
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] As discussed in §3 and the

Conclusion, the primary limitation of our work is that our main result is obtained
through a non-rigorous perturbative argument. We therefore frame its most general
form as a conjecture.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] We do
not anticipate that our work will have negative societal impacts as outlined in the ethics
guidelines, as it is purely theoretical.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] See §2 and the

statement of Conjecture 1.
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendices B, C,

C, D, and H. As noted above, we frame our main result as a conjecture due to the fact
that some of our methods are not fully rigorous.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the

main experimental results (either in the supplemental material or as a URL)?
[Yes] Our code is publicly available at https://github.com/Pehlevan-Group/
finite-width-bayesian/.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] All experimental details have been detailed in supplemental
material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See details in Appendix I of the
supplemental material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We use the MNIST

dataset [19], which we cite appropriately. We also use open-source libraries such as
PyTorch [18], which we also cite.

(b) Did you mention the license of the assets? [Yes] We mention licenses in Appendix I of
the supplemental material.

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
Our work involves no new assets.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

S31

https://github.com/Pehlevan-Group/finite-width-bayesian/
https://github.com/Pehlevan-Group/finite-width-bayesian/

	Preliminary technical results
	Isserlis' theorem for Gaussian moments
	Neumann series for matrix inverses near the identity
	Series expansion of the log-determinant near the identity

	Perturbation theory for wide Bayesian neural networks with linear readout
	Integrating out the readout layer
	Perturbative expansion

	Explicit covariance computations in deep linear networks
	Fully-connected linear networks
	Convolutional linear networks

	Direct computation of the average hidden layer kernels of a deep linear MLP
	The cumulant generating function of learned features for a MLP
	General form of the perturbative layer integrals for a deep linear network
	Perturbative computation of the partition function of a deep linear network
	Computing the average hidden layer kernels of a deep linear network

	Average kernels in a deep feedforward linear network with skip connections
	Perturbative computation of the partition function
	Computing the average hidden layer kernels

	Comparison to the results of Aitchison (2020) and Li & Sompolinsky (2020)
	Comparison to the results of Aitchison (2020)
	Comparison to the results of Li and Sompolinsky (2020)

	Predictor statistics and generalization in deep linear networks
	Predictor statistics
	Bias-variance decompositions and the low-temperature limit
	Effects of alternative regularization temperature-dependence

	Derivation of the average kernels for a depth-two network
	Numerical methods
	Checklist

