
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Appendices
A PROOFS

A.1 PROOF OF LEMMA 4.1

Proof. The Lagrangian function of (4) is as follows:

L =
∑
ai

πi(ai|s)Qπold
i (s, ai)− ω

∑
ai

πi
old(ai|s)f

(
πi(ai|s)
πi
old(ai|s)

)

+ λs

(∑
ai

πi(ai|s)− 1

)
+
∑
ai

βi(ai|s)πi(ai|s),

where λs and β(ai|s) are the Lagrangian multiplier.

Then by the KKT condition we have

∂L

∂πi(ai|s)
= Qπold

i (s, ai)− ωf ′
(

πi(ai|s)
πi
old(ai|s)

)
+ λs + βi(ai|s) = 0,

so we can resolve πi(ai|s) as

πi(ai|s)
πi
old(ai|s)

= g

(
Qπold

i (s, ai) + λs + βi(ai|s)
ω

)
(19)

From the complementary slackness we know that β(ai|s)πi(ai|s) = 0, so we can rewrite (19) as

πi(ai|s)
πi
old(ai|s)

= max

{
g

(
Qπold

i (s, ai) + λs

ω

)
, 0

}
, (20)

πi(ai|s) = max

{
πi
old(ai|s)g

(
Qπold

i (s, ai) + λs

ω

)
, 0

}
. (21)

A.2 PROOF OF PROPOSITION 4.2

Proof. To discuss the monotonicity of the policies pt and qt, let QA
t (0) and QA

t (1) represent the
expected reward Alice will obtain by taking action u0

A and u1
A respectively. Simlilarly, we can also

define QB
t (0) and QB

t (1) for Bob.

From the definition, we have QA
t (0) = qt · a+ (1− qt) · b = b+ (a− b)qt. Similarly we can obtain

that QA
t (1) = d+ (c− d)qt, QB

t (0) = c+ (a− c)pt and QB
t (1) = d+ (b− d)pt.

Combining (21) with the condition g(x) ≥ 0, then we have

pt+1 = ptg

(
(a− b)qt + b+ λA

t

ω

)
, 1− pt+1 = (1− pt)g

(
(c− d)qt + d+ λA

t

ω

)

⇒ 1

pt+1
− 1 = (

1

pt
− 1)

g
(

(c−d)qt+d+λA
t

ω

)
g
(

(a−b)qt+b+λA
t

ω

) . (22)

From (22) we can find that

pt+1 ≤ pt ⇔
g
(

(c−d)qt+d+λA
t

ω

)
g
(

(a−b)qt+b+λA
t

ω

) ≥ 1

⇔ (c− d)qt + d ≥ (a− b)qt + b (23)
⇔ (b+ c− a− d)qt ≥ b− d

⇔ qt ≥ q̂.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

The critical step (23) is from the combination of the condition g(x) ≥ 0 and the property g(x) is
non-decreasing.

Similarly we can obtain that pt ≥ p̂ ⇒ qt+1 ≤ qt; pt ≤ p̂ ⇒ qt+1 ≥ qt; qt ≥ q̂ ⇒ pt+1 ≤
pt; and qt ≤ q̂ ⇒ pt+1 ≥ pt.

A.3 PROOF OF COROLLARY 4.3

Proof. From the iteration of {pt} we have

pt+1

1− pt+1
=

pt
1− pt

g
(

(a−b)qt+b+λA
t

ω

)
g
(

(c−d)qt+d+λA
t

ω

) . (24)

Let t→∞ in both side of (24), we know that

p∗

1− p∗

 g
(

(a−b)q∗+b+λA
∗

ω

)
g
(

(c−d)q∗+d+λA
∗

ω

) − 1

 = 0. (25)

As q∗ > q̂, we know that
g

(
(a−b)q∗+b+λA

∗
ω

)
g

(
(c−d)q∗+d+λA

∗
ω

) < 1. So we can rewrite (25) as p∗

1−p∗ = 0 and resolve

p∗ = 0.

As for q∗, we can follow a similar idea. From the iteration of {qt} we have

1

qt+1
− 1 = (

1

qt
− 1)

g
(

(b−d)pt+d+λB
t

ω

)
g
(

(a−c)pt+c+λB
t

ω

) . (26)

Let t→∞ in both side of (26) , we know that

1− q∗

q∗

g
(

(b−d)p∗+d+λB
∗

ω

)
g
(

(a−c)p∗+c+λB
∗

ω

) − 1

 = 0. (27)

As p∗ < p̂, we know that
g

(
(b−d)p∗+d+λB

∗
ω

)
g

(
(a−c)p∗+c+λB

∗
ω

) < 1. Then we can rewrite (27) as 1−q∗

q∗ = 0 and obtain

q∗ = 1.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.4 PROOF OF LEMMA 4.4

Proof. For any fixed i, consider the following difference∣∣∣∣∣∣
∑
a

πnew(a|s)Qπ(s,a)−
∑
ai

πi
new(ai|s)

∑
a−i

π−i
old(a−i|s)Qπ(s, ai, a−i)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
ai

πi
new(ai|s)

∑
a−i

(
π−i
new(a−i|s)− π−i

old(a−i|s)
)
Qπ(s, ai, a−i)

∣∣∣∣∣∣ (28)

≤
∑
ai

πi
new(ai|s)

∑
a−i

∣∣π−i
new(a−i|s)− π−i

old(a−i|s)
∣∣ |Qπ(s, ai, a−i)| (29)

≤ M

2

∑
ai

πi
new(ai|s)

∑
a−i

∣∣π−i
new(a−i|s)− π−i

old(a−i|s)
∣∣ (30)

=
M

2

∑
a−i

∣∣π−i
new(a−i|s)− π−i

old(a−i|s)
∣∣ (31)

=
M

2

∑
a−i

∣∣∣∣∣∣
N∑

k=1,k ̸=i

π1:k−1
new (a1:k−1|s)πk:N

old (ak:N |s)− π1:k
new(a1:k|s)πk+1∼N

old (ak+1:N |s)

∣∣∣∣∣∣ (32)

≤ M

2

∑
a−i

N∑
k=1,k ̸=i

∣∣π1:k−1
new (a1:k−1|s)πk:N

old (ak:N |s)− π1:k
new(a1:k|s)πk+1∼N

old (ak+1:N |s)
∣∣ (33)

=
M

2

N∑
k=1,k ̸=i

∑
ak

∣∣πk
new(ak|s)− πk

old(ak|s)
∣∣ (34)

= M

N∑
k=1,k ̸=i

DTV

(
πk
new(·|s)∥πk

old(·|s)
)

(35)

where π1:k−1
new denotes π1

new × π2
new × · · ·πk−1

new and πi
new will be skipped if involved, and a1:k−1 has

similar meanings as a1:k−1 = a1 × a2 × · · · ak−1. In (29) and (33), we use the triangle inequality
of the absolute value. In (30), we use the property Qπ(s,a) ≤ rmax

1−γ = M
2 from the definition of

Q-function. In (32), we insert N − 1 terms between π−i
new(a−i|s) and π−i

old(a−i|s) to make sure the
adjacent two terms are only different in one individual policy.

By rewriting the conclusion above, for any agent i, we have∑
a

πnew(a|s)Qπ(s,a) ≥
∑
ai

πi
new(ai|s)

∑
a−i

π−i
old(a−i|s)Qπ(s, ai, a−i)

−M

N∑
k=1,k ̸=i

DTV

(
πk
new(·|s)∥πk

old(·|s)
)
. (36)

Then, by applying (36) to i = 1, 2, · · · , N and add all these N inequalities together, we have

∑
a

πnew(a|s)Qπ(s,a) ≥ 1

N

N∑
i=1

∑
ai

πi
new(ai|s)

∑
a−i

π−i
old(a−i|s)Qπ(s, ai, a−i)

− (N − 1)M

N

N∑
i=1

DTV

(
πi
new(·|s)∥πi

old(·|s)
)
.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.5 PROOF OF PROPOSITION 4.5

Proof. By the definition of V πold
ρ we have

V πold
ρ (s) =

1

N

∑
i

∑
ai

πi
old(ai|s)

∑
a−i

ρ−i(a−i|s)Qπold
ρ (s, ai, a−i)− ω

∑
i

Df

(
πi
old(·|s)∥ρi(·|s)

)
≤ 1

N

∑
i

∑
ai

πi
new(ai|s)

∑
a−i

ρ−i(a−i|s)Qπold
ρ (s, ai, a−i)− ω

∑
i

Df

(
πi
new(·|s)∥ρi(·|s)

)
(37)

=
1

N

∑
i

∑
ai

πi
new(ai|s)

∑
a−i

ρ−i(a−i|s)
(
r(s, ai, a−i) + γE

[
V πold
ρ (s′)

])
− ω

∑
i

Df

(
πi
new(·|s)∥ρi(·|s)

)
(38)

≤ · · · (expand V πold
ρ (s′) and repeat replacing πi

old with πi
new) (39)

≤ V πnew
ρ (s). (40)

In (37), we use the definition of πi
new in (11). (38) is from the definition of Qπold

ρ (s, ai, a−i). In (39),
we repeatedly expand V πold

ρ according to its definition and replace πi
old with πi

new by the optimality
of πi

new like what we have done in (37). After we replace all πi
old with πi

new, then we obtain V πnew
ρ (s)

according to the definition of V πnew
ρ (s) in (40).

With the result V πold
ρ (s) ≤ V πnew

ρ (s), we know Qπold
ρ (s,a) = r(s,a) + γE[V πold

ρ (s′)] ≤ r(s,a) +
γE[V πnew

ρ (s′)] = Qπnew
ρ (s,a).

A.6 PROOF OF THEOREM 4.6

Proof. From the Proposition 4.5, we know V
πt+1
πt (s) ≥ V πt(s). Thus, we just need to prove

V πt(s) ≥ V πt
πt−1

(s).

From the definition of V πt(s) we have

V πt(s) =
∑
a

πt(a|s)Qπt(s,a)

≥ 1

N

N∑
i=1

∑
ai

πi
t(ai|s)

∑
a−i

π−i
t−1(a−i|s)Qπt(s, ai, a−i)

− ω

N∑
i=1

DTV

(
πi
t(·|s)∥πi

t−1(·|s)
)

(41)

=
1

N

N∑
i=1

∑
ai

πi
t(ai|s)

∑
a−i

π−i
t−1(a−i|s) (r(s, ai, a−i) + γE[V πt(s′)])

− ω

N∑
i=1

DTV

(
πi
t(·|s)∥πi

t−1(·|s)
)

(42)

≥ · · · (expand V πt(s′) and repeat replacing π−i
t with π−i

t−1) (43)

≥V πt
πt−1

(s). (44)

(41) is from Lemma 4.4, and (42) is from the definition of Qπt(s, ai, a−i). In (43), we repeatedly
expand V πt and replace the π−i

t with π−i
t−1 by Lemma 4.4 like what we have done in (41). After we

replace all π−i
t with π−i

t−1, then we obtain V πt
πt−1

(s) in (44) according to the definition of V πt
πt−1

(s).

From the inequalities V
πt+1
πt (s) ≥ V πt(s) ≥ V πt

πt−1
(s) ≥ V πt−1(s), we know that the sequence

{V πt} improves monotonically. Combining with the condition that the sequence {V πt} is bounded,
we know that {V πt} will converge to V ∗. According to the definition, the sequence {Qπt} and {πt}

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

will also converge to Q∗ and π∗ respectively, where π∗ satisfies the following fixed-point equation:

πi
∗ = argmax

πi

∑
ai

πi(ai|s)
∑
a−i

π−i
∗ (a−i|s)Q∗(s, ai, a−i)− ωDTV

(
πi(·|s)∥πi

∗(·|s)
)
.

A.7 PROOF OF DTV(p∥q) ≤ DH(p∥q)

Proof.

D2
TV(p∥q) =

1

4

(∑
i

|pi − qi|

)2

=
1

4

(∑
i

|√pi −
√
qi| |
√
pi +

√
qi|

)2

≤ 1

4

(∑
i

|√pi −
√
qi|2
)(∑

i

|√pi +
√
qi|2
)

(Cauchy–Schwarz inequality)

=
1

4
D2

H(p∥q)

(
2 + 2

∑
i

√
piqi

)
≤ D2

H(p∥q).

B EXPERIMENTAL SETTINGS

B.1 MPE

The three tasks are based on the original Multi-Agent Particle Environment (MPE) (Lowe et al., 2017)
(MIT license) and were initially used in Agarwal et al. (2020) (MIT license). The objectives of these
tasks are:

• Simple Spread: N agents must occupy the locations of N landmarks.
• Line Control: N agents must line up between two landmarks.
• Circle Control: N agents must form a circle around a landmark.

The reward in these tasks is the distance between all the agents and their target locations. We select
these tasks to maintain consistency with DPO (Su & Lu, 2022b) but set the number of agents N = 10
for these three tasks in our experiment.

B.2 MULTI-AGENT MUJOCO

Multi-agent MuJoCo (Peng et al., 2021) (Apache-2.0 license) is a robotic locomotion task featuring
continuous action space for multi-agent settings. The robot is divided into several parts, each
containing multiple joints. Agents in this environment control different parts of the robot. The type
of robot and the assignment of joints determine the task. For example, the task "HalfCheetah-3×2"
means dividing the robot "HalfCheetah" into three parts, with each part containing two joints. Details
of our experiment settings in multi-agent MuJoCo are listed in Table 2. The configuration specifies
the number of agents and the joints assigned to each agent. "Agent obsk" defines the number of
nearest agents an agent can observe.

B.3 STARCRAFT2

SMAC (Samvelyan et al., 2019) (MIT license) is a widely used environment for multi-agent rein-
forcement learning (MARL). In SMAC, agents receive rewards when they attack or kill an enemy
unit. The rewards for an episode are normalized to a maximum of 20, regardless of the number
of agents, to ensure consistency across tasks. An episode is considered won if the agents kill all
enemy units. The observation space for agents depends on the number of units involved in the task.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 2: The task settings of multi-agent MuJoCo

task configuration agent obsk

HalfCheetah 3×2 2
Hopper 3×1 2

Walker2d 3×2 2
Ant 4×2 2

Typically, the observation is a vector with over 100 dimensions, containing information about all
units. Information about units outside an agent’s field of view is represented as zero in the observation
vector. More details on SMAC can be found in the original paper (Samvelyan et al., 2019). SMACv2
(Ellis et al., 2023) (MIT license) is an advanced version of SMAC. Unlike SMAC, SMACv2 allows
agents to control different types of units in different episodes, where the unit types are determined
by a distribution and a type list. Moreover, the initial positions of agents are randomly selected in
different episodes. With these properties, SMACv2 is more stochastic and difficult than SMAC. We
keep the configuration the same as the original paper (Ellis et al., 2023) among the selected tasks.

C TRAINING DETAILS

Our code of IPPO is based on the open-source code1 of MAPPO (Yu et al., 2021) (MIT license).
The original IPPO and MAPPO is actually implemented as a CTDE method with parameter sharing
and centralized critics. We modify the code for individual parameters and ban the tricks used by
MAPPO for SMAC. The network architectures and base hyperparameters of TVPO, DPO and IPPO
are the same for all the tasks in all the environments. We use 3-layer MLPs for the actor and the
critic and use ReLU as non-linearities. The number of the hidden units of the MLP is 128. We train
all the networks with an Adam optimizer. The learning rates of the actor and critic are both 5e-4.
The number of epochs for every batch of samples is 15 which is the recommended value in Yu et al.
(2021). For IPPO, the clip parameter is 0.2 which is the same as Schulman et al. (2017). For DPO, the
hyperparameter is set as the original paper (Su & Lu, 2022b) recommends. Our code of IQL is based
on the open-source code2 PyMARL (Apache-2.0 license) and we modify the code for individual
parameters. The default architecture in PyMARL is RNN so we just follow it and the number of the
hidden units is 128. The learning rate of IQL is also 5e-4. The architectures of the actor and critic of
IDDPG are 3-layer MLPs. The learning rates of the actor and critic are both 5e-4. Our code of I2Q is
from the open source code3 of the original paper (Jiang & Lu, 2022). We keep the hyperparameter of
I2Q the same as the default value of the open-source code in our experiments.

Table 3: Hyperparameters for all the experiments

hyperparameter value

MLP layers 3
hidden size 128
non-linear ReLU
optimizer Adam
actor_lr 5e-4
critic_lr 5e-4

numbers of epochs 15
initial βi 0.01

δ 1.5
ω 2
d 0.001

clip parameter for IPPO 0.2

1https://github.com/marlbenchmark/on-policy
2https://github.com/oxwhirl/pymarl
3https://github.com/jiechuanjiang/I2Q

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00

pr
ob

ab
ilit

y

Matrix Game

KL_p_init_1
KL_q_init_1

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

TV_p_init_1
TV_q_init_1

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

Chi_p_init_1
Chi_q_init_1

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

H_p_init_1
H_q_init_1

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00

pr
ob

ab
ilit

y

Matrix Game

KL_p_init_2
KL_q_init_2

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

TV_p_init_2
TV_q_init_2

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

Chi_p_init_2
Chi_q_init_2

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

H_p_init_2
H_q_init_2

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00

pr
ob

ab
ilit

y

Matrix Game

KL_p_init_3
KL_q_init_3

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

TV_p_init_3
TV_q_init_3

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

Chi_p_init_3
Chi_q_init_3

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

H_p_init_3
H_q_init_3

0 10 20 30 40 50
iterations

0.00

0.25

0.50

0.75

1.00

pr
ob

ab
ilit

y

Matrix Game

KL_p_init_4
KL_q_init_4

0 10 20 30 40 50
iterations

0.00

0.25

0.50

0.75

1.00
Matrix Game

TV_p_init_4
TV_q_init_4

0 10 20 30 40 50
iterations

0.00

0.25

0.50

0.75

1.00
Matrix Game

Chi_p_init_4
Chi_q_init_4

0 10 20 30 40 50
iterations

0.00

0.25

0.50

0.75

1.00
Matrix Game

H_p_init_4
H_q_init_4

Figure 7: Learning curves of the policy p and q in the matrix game of KL-iteration, TV-iteration,
χ2-iteration, and H-iteration over four different sets of initialization. Each row corresponds to one set
of initialization and each column corresponds to one type of iteration.

The version of the game StarCraft2 in SMAC is 4.10 for our experiments in all the SMAC tasks. We
set the episode length of all the multi-agent MuJoCo tasks as 1000 in all of our multi-agent MuJoCo
experiments. We perform the whole experiment with a total of four NVIDIA A100 GPUs. We have
summarized the hyperparameters in Table 3.

D ALGORITHM

Algorithm 1. The practical algorithm of TVPO

1: for episode = 1 to M do
2: for t = 1 to max_episode_length do
3: select action ai ∼ πi(·|s)
4: execute ai and observe reward r and next state s′

5: collect ⟨s, ai, r, s′⟩
6: end for
7: Update the critic according to (17)
8: Update the policy according to (15) or (18)
9: Update βi according to (16).

10: end for

E ADDITIONAL EMPIRICAL RESULTS

Figure 7 illustrates the learning curve of the policy p and q in the matrix game of KL-iteration,
TV-iteration, χ2-iteration, and H-iteration over four different sets of initialization. We can observe
the policies of all four kinds of iterations converge.

MPE is a popular environment in cooperative MARL. MPE is a 2D environment and the objects are
either agents or landmarks. Landmark is a part of the environment, while agents can move in any
direction. With the relation between agents and landmarks, we can design different tasks. We use the
discrete action space version of MPE and the agents can accelerate or decelerate in the direction of
the x-axis or y-axis. We choose MPE for its partial observability.

The empirical results in MPE are illustrated in Figure 8. We find that TVPO obtains the best
performance in all three tasks. In this environment, the policy-based algorithms, TVPO, DPO, and

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e6

40

35

30

25

20

15

m
ea

n
ep

iso
de

 re
wa

rd
s

simple spread

DPO
IPPO
TVPO
IQL
I2Q

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e6

50

40

30

20

10
line control

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e6

40

30

20

10
circle control

Figure 8: Learning curves of TVPO compared with IQL, IPPO, I2Q, and DPO in 10-agent simple
spread, 10-agent line control, and 10-agent circle control in MPE.

IPPO, outperform the value-based algorithms, IQL and I2Q. I2Q has a better performance than IQL
in all three tasks.

F DISCUSSION

F.1 A BRIEF INTRODUCTION OF BASELINE ALGORITHMS

We select these four baseline algorithms as representatives of fully decentralized algorithms. IQL
(Tan, 1993) is a basic value-based algorithm for decentralized learning. IPPO is a basic policy-
based algorithm for decentralized learning. Both IQL and IPPO (de Witt et al., 2020) do not have
convergence guarantees, to the best of our knowledge. DPO (Su & Lu, 2022b) and I2Q (Jiang & Lu,
2022) are the recent policy-based algorithm and value-based algorithm respectively, and both of them
have been proved to have convergence guarantee.

IQL, IDDPG, and IPPO are relatively simple to understand, where each agent updates its policy
through an independent Q-learning, DDPG, or PPO. These algorithms simply extend the single-agent
RL algorithms into the MARL setting. They are heuristic algorithms without convergence guarantees
in fully decentralized MARL.

The idea of DPO is to find a lower bound of the joint policy improvement objective as a surrogate
which can also be optimized in a decentralized way for each agent. The formulation of DPO is as
follows:

πi
t+1 == argmax

πi

∑
ai

πi(ai|s)Qπt
i (s, ai)−M̂ ·

√
DKL

(
πi(·|s)∥πi

t(·|s)
)
−C·DKL

(
πi(·|s)∥πi

t(·|s)
)
.

DPO has been proven to improve monotonically and converge in fully decentralized MARL.

I2Q uses Q-learning from the perspective of QSS-value Qi(s, s
′). The QSS-value is updated with the

following operator:

ΓQi(s, s
′) = r + γmaxs′′∈N (s′) Qi(s

′, s′′),

where N (s′) is the neighbor set of state s′. In the deterministic environment and with some assump-
tion about the transition probability, Qi(s, s

′) will converge to the same Q-function for each agent i,
so the joint policy of agents will also converge in fully decentralized MARL.

F.2 UNARY FORMULATION

Before proposing the f -divergence formulation, we have studied another formulation. This formu-
lation follows the idea of entropy regularization and the extra term is only related to the policy πi

instead of the divergence between πi and πi
old. We refer to this approach as the unary formulation.

Though we discovered that the unary formulation has more significant drawbacks, the properties of
the unary formulation inspire us in the proof of TVPO. So we would like to provide the properties
and some empirical results of the unary formulation here for discussion.

The unary formulation is

πi
new = argmax

πi

∑
ai

πi(ai|s)Qπold
i (s, ai) + ω

∑
ai

πi(ai|s)ϕ
(
πi(ai|s)

)
. (45)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

This formulation (45) follows the idea of Yang et al. (2019) which discusses the regularization
algorithm in single-agent RL. From the perspective of regularization, the update rule (45) can be
seen as optimizing the regularized objective J i

ϕ(π) = E
[∑

t γ
t
(
ri(s, ai) + ωϕ

(
πi(ai|s)

))]
, where

ri(s, ai) = Eπ−i [r(s, ai, a−i)]. The choice of ϕ is flexible, e.g., ϕ(x) = − log x corresponds to en-
tropy regularization and independent SAC (Haarnoja et al., 2018); ϕ(x) = 0 means (45) degenerates
to independent Q-learning (Tan, 1993); Moreover, there are many other options for ϕ corresponding
to different regularization (Yang et al., 2019). So we take (45) as the general unary formulation
of independent learning, where the ‘unary’ means the additional terms

∑
ai
πi(ai|s)ϕ

(
πi(ai|s)

)
is

only about one policy πi.

For further discussion of (45) , we can utilize the conclusion in Yang et al. (2019) as the following
lemma.

Lemma F.1. If ϕ(x) in (0, 1] and satisfies the following conditions: (1) ϕ(x) is non-increasing;
(2) ϕ(1) = 0; (3) ϕ(x) is differentiable; (4) fϕ(x) = xϕ(x) is strictly concave, then we have that
gϕ(x) = (f ′

ϕ)
−1(x) exists and gϕ(x) is decreasing. Moreover, the solution to the optimization

objective (45) can be described with gϕ(x) as follows:

πi
new(ai|s) = max{gϕ

(
λs −Qπold

i (s, ai)

ω

)
, 0}, (46)

where λs satisfies
∑

ai
max{gϕ

(
λs−Q

πold
i (s,ai)

ω

)
, 0} = 0.

Though it seems that ϕ(x) needs to satisfy four conditions, actually ϕ(x) = − log x for Shannon
entropy and ϕ(x) = k

q−1 (1− xq−1) for Tsallis entropy are still qualified.

However, unlike the single-agent setting, the update rule in Lemma F.1 may result in the convergence
to sub-optimal policy or even oscillations in policy in fully decentralized MARL.

We further discuss (45) in the two-player matrix game and have the following proposition.

Proposition F.2. Suppose that gϕ(x) ≥ 0 and gϕ(x) is continuously differentiable. If the payoff
matrix of the two-player matrix game satisfies b+ c < a+ d, and two agents Alice and Bob update
their policies with policy iteration as

πi
t+1 = argmax

πi

∑
ai

πi(ai|s)Qπt
i (s, ai) + ω

∑
ai

πi(ai|s)ϕ
(
πi(ai|s)

)
, (47)

then we have (1) pt > pt−1 ⇒ qt+1 > qt; (2) pt < pt−1 ⇒ qt+1 < qt; (3) qt > qt−1 ⇒ pt+1 >
pt; (4) qt < qt−1 ⇒ pt+1 < pt.

Proof. To discuss the monotonicity of the policies pt and qt, we need the solution in Lemma F.1.
Before applying the update rule (46), we need to calculate the decentralized critic given pt and qt.
Let QA

t (0) and QA
t (1) represent the expected reward Alice will obtain by taking action u0

A and u1
A

respectively. We can also define QB
t (0) and QB

t (1) for Bob.

From the definition, we have QA
t (0) = qt · a + (1 − qt) · b = b + (a − b)qt. Similarly we could

obtain that QA
t (1) = d+ (c− d)qt, QB

t (0) = c+ (a− c)pt and QB
t (1) = d+ (b− d)pt.

With (46) and the condition gϕ(x) ≥ 0, we have

pt+1 = gϕ

(
λA
t −QA

t (0)

ω

)
= gϕ

(
(b− a)qt + λA

t − b

ω

)
, 1− pt+1 = gϕ

(
(d− c)qt + λA

t − d

ω

)
gϕ

(
(b− a)qt + λA

t − b

ω

)
+ gϕ

(
(d− c)qt + λA

t − d

ω

)
= 1

qt+1 = gϕ

(
(c− a)pt + λB

t − c

ω

)
, 1− qt+1 = gϕ

(
(d− b)pt + λB

t − d

ω

)
gϕ

(
(c− a)pt + λB

t − c

ω

)
+ gϕ

(
(d− b)pt + λB

t − d

ω

)
= 1.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

We can rewrite these equations with some simplifications as follows,

mA(x) ≜
(b− a)x+ λA(x)− b

ω
, nA(x) ≜

(d− c)x+ λA(x)− d

ω
, hA(x) = gϕ (mA(x))

where λA(x) satisfies gϕ (mA(x)) + gϕ (nA(x)) = 1 (48)

mB(x) ≜
(c− a)pt + λB(x)− c

ω
, nB(x) ≜

(d− b)pt + λB(x)− d

ω
, hB(x) = gϕ (mB(x))

where λB(x) satisfies gϕ (mB(x)) + gϕ (nB(x)) = 1.

With these definitions, we know that pt+1 = hA(qt), qt+1 = hB(pt) and the monotonicity of pt and
qt is determined by the property of function hA(x) and hB(x). By applying the chain rule to (48),
we have:

1

ω
g′ϕ (mA(x)) (b− a+ λ′

A(x)) +
1

ω
g′ϕ (nA(x)) (d− c+ λ′

A(x)) = 0

⇒ λ′
A(x) = −

(b− a)g′ϕ(mA(x)) + (d− c)g′ϕ(nA(x))

g′ϕ(mA(x)) + g′ϕ(nA(x))
. (49)

Then we have:

h′
A(x) =

1

ω
g′ϕ (mA(x)) (b− a+ λ′

A(x)) (Apply chain rule) (50)

=
1

ω
(b+ c− a− d)

g′ϕ(nA(x))g
′
ϕ(mA(x))

g′ϕ(mA(x)) + g′ϕ(nA(x))
(Substitute (49) for λ′

A(x)). (51)

Let M = b+c−a−d and M ′ = M
ω , then h′

A(x) = M ′ g′
ϕ(nA(x))g′

ϕ(mA(x))

g′
ϕ(mA(x))+g′

ϕ(nA(x)) . From the condition and

Lemma F.1 we know that M ′ < 0 and gϕ(x) is decreasing which means g′ϕ(x) < 0. Combining these
conditions together, we know h′

A(x) > 0 and hA(x) is increasing which means that pt+1 = hA(qt)
is increasing over qt, which means that qt > qt−1 ⇒ pt+1 > pt and qt > qt−1 ⇒ pt+1 > pt.

Similarly, we can obtain that h′
B(x) = M ′ g′

ϕ(nB(x))g′
ϕ(mB(x))

g′
ϕ(mB(x))+g′

ϕ(nB(x)) > 0 which could lead to the result
that pt > pt−1 ⇒ qt+1 > qt and pt < pt−1 ⇒ qt+1 < qt.

Proposition F.2 actually tells us pt+1 = hA(qt) is increasing over qt and qt+1 = hB(pt) is increasing
over pt when M = b+ c− a− d < 0. Intuitively, we can find two typical cases for policy iterations
with Proposition F.2. In the first case, if in a certain iteration t the conditions pt > pt−1 and qt > qt−1

are satisfied, then we know that pt′+1 > pt′ qt′+1 > qt′ ∀t′ ≥ t. As the sequences {pt} and {qt}
are both bounded in the interval [0, 1], we know that {pt} and {qt} will converge to p∗ and q∗ . The
property of p∗ and q∗ is determined by lA(x) ≜ hB(hA(x)) and lB(x) ≜ hA(hB(x)) respectively
as pt+2 = hB(hA(pt)) and qt+2 = hA(hB(qt)) and we have the following corollary.

Corollary F.3. |l′A(x)| ≤M ′2U2
ϕ, |l′B(x)| ≤M ′2U2

ϕ , where Uϕ is a constant determined by ϕ(x).

Proof. As g′ϕ(x) is continuous, let U1
A ≜ maxx∈[0,1] |g′ϕ(mA(x))|, U2

A ≜ maxx∈[0,1] |g′ϕ(nA(x))|,
U1
B ≜ maxx∈[0,1] |g′ϕ(mB(x))| and U2

B ≜ maxx∈[0,1] |g′ϕ(nB(x))|. Moreover, let Uϕ =

max{U1
A, U

2
A, U

1
B , U

2
B}, then apply the chain rule to l′A(x) and we have

|l′A(x)| = |h′
B(hA(x))h

′
A(x)|

= M ′2 |g
′
ϕ(nB(hA(x)))||g′ϕ(mB(hA(x)))|

g′ϕ(mB(hA(x)))	+	g′ϕ(nB(hA(x)))
g′ϕ(nA(x))		g′ϕ(mA(x))
g′ϕ(mA(x))	+	g′ϕ(nA(x))

(52)

= M ′2 |g
′
ϕ(nB(y))||g′ϕ(mB(y))|

g′ϕ(mB(y))	+	g′ϕ(nB(y))
g′ϕ(nA(x))		g′ϕ(mA(x))
g′ϕ(mA(x))	+	g′ϕ(nA(x))

(Let y = hA(x) ∈ [0, 1])

≤M ′2 |g
′
ϕ(mB(y))|+ |g′ϕ(nB(y))|

2

|g′ϕ(mA(x))|+ |g′ϕ(nA(x))|
2

(53)

≤M ′2U2
ϕ (54)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0 10 20 30 40 50
iterations

5.0

5.2

5.4

5.6

m
ea

n
ep

iso
de

 re
wa

rd
s

Matrix Game Case 2

mean_episode_rewards

0 10 20 30 40 50
iterations

0.0

0.2

0.4

0.6

0.8

pr
ob

ab
ilit

y

Matrix Game Case 2

p
q

0 10 20 30 40 50
iterations

4.00

4.25

4.50

4.75

5.00

5.25

m
ea

n
ep

iso
de

 re
wa

rd
s

Matrix Game Case 3

mean_episode_rewards

0 10 20 30 40 50
iterations

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y

Matrix Game Case 3

p
q

Figure 9: Learning curves of the unary formulation in two matrix game cases, where x-axis is iteration
steps. The first and second figures show the performance and the policies p and q in the matrix game
case 2 respectively. The third and fourth figures show the performance and the policies p and q in the
matrix game case 3 respectively.

where (52) is from Proposition F.2, (53) is from the AM-GM inequality ab ≤ (a+b)2

2 , and (54) is
from the definition of Uϕ. Similarly, we can obtain |l′B(x)| ≤M ′2U2

ϕ .

Combining Corollary F.3 and Banach fixed-point theorem, we can find that as Uϕ is a constant, if
|M ′| < 1

Uϕ
, then we can find a constant L such that |l′A(x)| ≤M ′2U2

ϕ ≤ L < 1, which means that
the iteration pt+1 = lA(pt) is a contraction and p∗ is the unique fixed-point of lA. This conclusion can
be seen as that a smaller |M ′| corresponds to a larger probability of convergence. In this convergence
case, the converged policies p∗ and q∗ are usually not the optimal policy as the optimal policy is
deterministic, which can be seen in our empirical results.

In the second case, which may be more general, in iteration t, (pt − pt−1)(qt − qt−1) < 0, which
means pt > pt−1 and qt < qt−1 or pt < pt−1 and qt > qt−1. Without loss of generality, we assume
pt > pt−1 and qt < qt−1, then we know pt+1 < pt and qt+1 < qt from Proposition F.2. By induction
we can find that for any t′ ≥ t, the sequence {pt′} and {qt′} will increase and decrease alternatively,
which means that the policies may not converge but oscillate. We will show this in our experiments.
As the unary formulation may result in policy oscillation, we would like to find other formulations
for fully decentralized MARL.

F.3 VERIFICATION FOR UNARY FORMULATION

In this section, we choose ϕ(x) = − log x corresponding to the entropy regularization as the
representation for the unary formulation. We build two cases to show the convergence to the sub-
optimal policy and the policy oscillation. We choose a = 5, b = 6, c = 3, d = 5 as case 2 and
a = 7, b = 5, c = 4, d = 6 as case 3. Both two cases satisfy the condition b+ c < a+ d as discussed
above. We keep ω = 0.1 for all the experiments on these two matrix games. The empirical results are
illustrated in Figure 9. We can find the policies p and q improve monotonically to the convergence
(p∗, q∗) ≈ (0.773, 0.227) in case 2, which is a sub-optimal joint policy. However, in case 3, the
policies p and q oscillate between 0 and 1 and do not converge. These results verify our discussion
about the limitation of the unary formulation.

F.4 NON-TRIVIAL SOLUTION TO ITERATION (13)

In this section, we will build a two-player matrix game like Table 1 to show the non-trivial solution to
iteration (13). In general, there is no closed-form solution to iteration (13). However, for the matrix
game case, we can show some properties of iteration (13). With the same definitions as previous
discussions, we can rewrite (13) in the matrix game as follows:

pt+1 = argmax
p∈[0,1]

pQA
t (0) + (1− p)QA

t (1)− ω|p− pt|. (55)

Let f(p) = pQA
t (0) + (1− p)QA

t (1)− ω|p− pt|, then pt+1 = argmaxp∈[0,1] f(p).

We know that f(p) is a linear function of p in both intervals [0, pt] and [pt, 1] and the maximums
of linear function are always achieved in the endpoints of one interval. Thus, we have pt+1 =

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0 5 10 15
iterations

2

3

4

5

re
wa

rd
s

Matrix Game Case 4

theory_return

0 5 10 15
iterations

0.0

0.2

0.4

0.6

0.8

pr
ob

ab
ilit

y

Matrix Game Case 4

p
q

Figure 10: Learning curves of the iteration (13) in the matrix game (a, b, c, d) = (−4, 7, 6, 4), where
x-axis is iteration steps. The first and second figures show the expectation J(πt) and the policies p and
q in the matrix game case 4 respectively, where J(πt) is calculated by the joint policy πt = (pt, qt)
and the payoff matrix.

0 5 10 15
iterations

2

3

4

5

re
wa

rd
s

Matrix Game Case 4

TV_iteration
DPO_iteration

0 5 10 15
iterations

0.0

0.2

0.4

0.6

0.8

pr
ob

ab
ilit

y

Matrix Game Case 4

TV_iteration_p
TV_iteration_q
DPO_iteration_p
DPO_iteration_q

Figure 11: Learning curves of the iteration (13) and the DPO iteration in the matrix game (a, b, c, d) =
(−4, 7, 6, 4), where x-axis is iteration steps. The first and second figures show the expectation J(πt)
and the policies p and q of two iterations in the matrix game case 4 respectively, where J(πt) is
calculated by the joint policy πt = (pt, qt) and the payoff matrix.

argmaxp∈{0,pt,1} f(p), which means we only need to consider

f(0) = QA
t (1)− ωpt

f(1) = QA
t (0)− ω(1− pt)

f(pt) = QA
t (1) + pt(Q

A
t (0)−QA

t (1)).

Next, we can build a matrix game with the property b = max{a, b, c, d} > c > d > 0 > a. In this
case, M = 2∥Q∥∞ = 2b and ω = (N−1)M

N = b. Then we consider the condition f(0) > f(pt). We
have

f(0)− f(pt) = −pt
(
QA

t (0)−QA
t (1) + ω

)
= −pt (2b− d− (b+ c− a− d)qt)

⇒ f(0) > f(pt) ⇔ qt >
2b− d

b+ c− a− d
≜ q̃.

We need q̃ < 1 to ensure a feasible qt can be found, which means b < c− a.

Thus, for a matrix game satisfying the condition c− a > b = max{a, b, c, d} > c > d > 0 > a, we
can find a non-trivial solution to (13). To empirically verify this conclusion, we choose a matrix game
with (a, b, c, d) = (−4, 7, 6, 4) where q̃ = 10

13 ≈ 0.769.... For simplicity, we call this matrix game
as matrix game case 4. We also choose (p0, q0) = (0.55, 0.8) to ensure the condition qt > q̃. The
empirical results are illustrated in Figure 10. We can find the non-trivial update for the joint policy
which verifies our conclusion discussed before.

F.5 COMPARING TVPO AND DPO

From the discussion in Section 4.2, we have an intuitive idea about the difference between DPO
and TVPO that the bound DTV of TVPO is tighter than

√
DKL in DPO. A tighter bound means

the iteration will be less influenced by the trivial update. We would like to build a matrix game to
show this phenomenon. Fortunately, a previously discussed matrix game (a, b, c, d) = (−4, 7, 6, 4)
satisfies our requirement. The DPO iteration has no closed-form solution and we haven’t found any
useful properties like Section F.4. Thus, we use a numerical method to solve the DPO iteration. First,
we keep the initial policy (p0, q0) = (0.55, 0.8) for two iterations. The empirical results are included

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0 5 10 15
iterations

0

1

2

3

4

re
wa

rd
s

Matrix Game Case 4

DPO_init_1
DPO_init_2
DPO_init_3
DPO_init_4
DPO_init_5

DPO_init_6
DPO_init_7
DPO_init_8
DPO_init_9

0 5 10 15
iterations

0.2

0.4

0.6

0.8

pr
ob

ab
ilit

y

Matrix Game Case 4

DPO_init_1_p
DPO_init_2_p
DPO_init_3_p
DPO_init_4_p
DPO_init_5_p

DPO_init_6_p
DPO_init_7_p
DPO_init_8_p
DPO_init_9_p

0 5 10 15
iterations

0.2

0.4

0.6

0.8

pr
ob

ab
ilit

y

Matrix Game Case 4

DPO_init_1_q
DPO_init_2_q
DPO_init_3_q
DPO_init_4_q
DPO_init_5_q

DPO_init_6_q
DPO_init_7_q
DPO_init_8_q
DPO_init_9_q

Figure 12: Learning curves of the DPO iteration with different initial policies in the matrix game
(a, b, c, d) = (−4, 7, 6, 4), where x-axis is iteration steps. The three figures show the expectation
J(πt), the policies p and q of nine different initial policies in the matrix game case 4 respectively,
where J(πt) is calculated by the joint policy πt = (pt, qt) and the payoff matrix.

in Figure 11. We can find that the TVPO iteration has a non-trivial update but the DPO iteration
only has trivial updates. This result can be evidence for our conclusion about the difference between
TVPO and DPO.

Table 4: The policy update types of DPO
iteration with different initial policies in the
matrix game (a, b, c, d) = (−4, 7, 6, 4). T
represents the trivial policy update and NT
represents the non-trivial policy update.

p0

q0
0.2 0.55 0.8

0.2 T T T
0.55 T T T
0.8 T T T

Moreover, we study the influence of the initial policies
on the DPO iteration. We select three candidate val-
ues C = {0.2, 0.55, 0.8} for the initial policies. We
traverse all the values in C for (p0, q0) and conclude
the performances of all 9 combinations in Figure 12
and Table 4. We can find all 9 initial policies fall
into the trap of the trivial update due to the regular-
ization term

√
DKL in DPO. These empirical results

can partially exclude the impact of initial policies on
the performances of the DPO iteration in this matrix
game.

F.6 DISCUSSIONS ABOUT USING GLOBAL STATE s IN THEORETICAL RESULTS.

Using the global state s for theoretical analysis has been a common practice in the study of multi-agent
reinforcement learning, especially in the setting of decentralized learning. There are many previous
works containing theoretical results in decentralized learning, which include both cooperative settings
(Jiang & Lu, 2022) and non-cooperative settings (Arslan & Yüksel, 2016; Mao et al., 2022a; Zhang
et al., 2024). The main reason for this common practice is the difficulty in solving a POMDP, which
has been studied for decades in Papadimitriou & Tsitsiklis (1987); Mundhenk et al. (2000); Vlassis
et al. (2012). Additionally, the theoretical analysis of Dec-POMDP will be even more difficult in the
multi-agent setting. If we include partial observability in the analysis, we may not obtain anything
since the problem may be undecidable in Dec-POMDP (Madani et al., 1999).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

G ADDITIONAL EXPERIMENTS FOR REBUTTAL

0.0 0.5 1.0 1.5 2.0
steps 1e6

2

4

6

8

10

m
ea

n
ep

iso
de

 re
wa

rd
s

10 vs 10 terran

TVPO
DPO
IPPO
IQL

I2Q
IPG
INPG

0.0 0.5 1.0 1.5 2.0
steps 1e6

5.0

7.5

10.0

12.5

15.0

10 vs 10 protoss

TVPO
DPO
IPPO
IQL

I2Q
IPG
INPG

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e6

2

4

6

8

10

12
10 vs 10 zerg

TVPO
DPO
IPPO
IQL

I2Q
IPG
INPG

Figure 13: Learning curves of the TVPO and other baselines including IPG and INPG in the three
10_vs_10 SMAC-v2 tasks.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
steps 1e6

5.0

7.5

10.0

12.5

15.0

m
ea

n
ep

iso
de

 re
wa

rd
s

10 vs 10 protoss

TVPO
IPPO_clip_param_0.1
IPPO_clip_param_0.2
IPPO_clip_param_0.3

Figure 14: Learning curves of the TVPO and IPPO with different clip parameters in the 10_vs_10
protoss.

For the comparison with the baseline IPG (Leonardos et al., 2021) and INPG (Fox et al., 2022), we
select three 10_vs_10 SMAC-v2 tasks. The empirical results are illustrated Figure 13. We can find
that IPG’s performance is not stationary and may drop with the progress of training compared with
other policy based algorithms. We think the main reason is that IPG lack the constraints about the
stepsize of policy iteration. We use the adaptive coefficient for INPG, and its performance is similar
to DPO, which is reasonable as their policy objectives are similar except for a square root term.

We also compare the influence of the hyperparameters on IPPO’s performance. We choose clip
parameters with values 0.1, 0.2, 0.3 for ablation study and select the 10_vs_10 protoss task for
experiments. The empirical results are ilustrated in Figure 14. We can see that the impact of this
hyperparameter is not significant.

28

	Proofs
	Proof of Lemma 4.1
	Proof of Proposition 4.2
	Proof of Corollary 4.3
	Proof of Lemma 4.4
	Proof of Proposition 4.5
	Proof of Theorem 4.6
	Proof of DTV(pq) DH(pq)

	Experimental Settings
	MPE
	Multi-Agent MuJoCo
	StarCraft2

	Training Details
	Algorithm
	Additional Empirical Results
	Discussion
	A Brief introduction of baseline algorithms
	Unary Formulation
	Verification for Unary Formulation
	Non-Trivial Solution to Iteration (13)
	Comparing TVPO and DPO
	Discussions about using global state s in theoretical results.

	Additional experiments for Rebuttal

