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Appendices

A  PROOFS

A.1 PROOF OF LEMMA 4.1

Proof. The Lagrangian function of (4) is as follows:

L= Zw (a;]8)QT" (s, a;) UJZ’R’OM (ai]s) ( (e |))

old (a‘l| )

(Zﬂ' a7| 1) JFZBZ az‘ az‘ )

where A, and /3(a;|s) are the Lagrangian multiplier.

Then by the KKT condition we have
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so we can resolve 7 (a;|s) as
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From the complementary slackness we know that 3(a;|s)7?(a;|s) = 0, so we can rewrite (19) as
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) A+ Bials) = 0

(19)
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Tewa(ails) w
Wi(ai|s) = max {Wéld(ads)g (W) ,O} . 21
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A.2 PROOF OF PROPOSITION 4.2

Proof. To discuss the monotonicity of the policies p; and ¢;, let Q7*(0) and Q;(1) represent the

expected reward Alice will obtain by taking action % and u!, respectively. Simlilarly, we can also

define QP (0) and QZ (1) for Bob.

From the definition, we have Q7! ( )=¢qt-a+ (1—q)-b=>b+ (a—b)g. Similarly we can obtain
thatQt (1) =d+ (c— d)qs, Qt (0)=c+ (a—c)p: ande(l) =d+ (b—d)p;.
Combining (21) with the condition g(z) > 0, then we have
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From (22) we can find that
g ((c—d)qt+d+A{‘)

w

Pr1Sp & (el =1
& (c—d)g+d>(a—Dbg+b (23)
& (b+c—a—-dg>b—d
S ¢ >4

15



Under review as a conference paper at ICLR 2025

The critical step (23) is from the combination of the condition g(z) > 0 and the property g(x) is

non-decreasing.

Similarly we can obtain that p; > p = q41 < ;0 <P = G+1 > Q3 @ > § = pry1 <

pt; and ¢t < § = pyi1 > Py

A.3 PROOF OF COROLLARY 4.3

Proof. From the iteration of {p;} we have

w
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Let ¢ — oo in both side of (24), we know that
a—b)q* +b4+ 22
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As q* > @, we know that g((c—d)qudM:‘) < 1. So we can rewrite (25) as —=—

p* =0.
As for ¢*, we can follow a similar idea. From the iteration of {¢; } we have
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Let ¢ — oo in both side of (26) , we know that
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A.4 PROOF OF LEMMA 4.4

Proof. For any fixed ¢, consider the following difference
Y Tuew(@ls)Q7(s,a) = Y ey (ails) Y moh(a—ils)QT (s, aisay)
a a; a—;
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where 71:%~1 denotes 7}, x 72, % ---7wF Land 7 will be skipped if involved, and a1.;_1 has

similar meanings as a1.x—1 = a1 X a2 X - --ai—1. In (29) and (33), we use the triangle inequality
of the absolute value. In (30), we use the property Q™ (s,a) < ’"maj; = M from the definition of

Q-function. In (32), we insert N — 1 terms between 7, (a_;|s) and 7, d( i|s) to make sure the

adjacent two terms are only different in one individual policy.

By rewriting the conclusion above, for any agent ¢, we have

Zﬂnew(a\s) (s,a >Zﬂ'new a;ils) Zﬂ-old a_;i|$)Q™ (s, a;,a—;)
a

N
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Then, by applying (36) to¢ = 1,2,--- , N and add all these N inequalities together, we have
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a w ZDTV (Wrilew('|5)||77é1d("8)) .

17



Under review as a conference paper at ICLR 2025

A.5 PROOF OF PROPOSITION 4.5

Proof. By the definition of V*!¢ we have

Vyer(s) = =N Zzﬂ—old ails) ZP (a—i]s)Qp" (s, ai,a *WZDf mo1a(-[8) 110" (-[s))
Zzﬂ—new al| Zp Dld(s i, a 7szf new ||/0 ( | )) (37)
=~ Zzﬂﬁcw(aﬂs) Zﬂfi(afﬂs) (r(s, ai,a—) +yE [V (s)])

_WZDf new ||p ( | )) (38)
<. (expand Vo4 (") and repeat replacing mhg with 7t ) 39)
S Ve (s). (40)

In (37), we use the definition of 7?_ in (11). (38) is from the deﬁmtlon of Q"Om (s,a;,a—;). In (39),
we repeatedly expand V!4 according to its definition and replace T old with 7, by the optimality
of 7} ., like what we have done in (37). After we replace all 74 with 7}, then we obtain Vv (s)
according to the definition of V7w () in (40).

With the result V%14 (s) < V™ew (s), we know Q7' (s,a) = 1(s, a) + yE[V 14 (s)] < r(s,a) +
VE[V e (s")] = Qpre~ (s, @). O
A.6 PROOF OF THEOREM 4.6

Proof. From the Proposition 4.5, we know Vi, "' (s) > V™t (s). Thus, we just need to prove
Vmi(s) > Ve (s).

From the definition of V™ (s) we have

V™ (s Zm al|s)Q™ (s, a)
*N ZZW (as|s) Zﬂt 1 ( Tt (s, ai,a—;)

=1 a;

- WZ DTV 7Tt ||7Tt (¢ ‘5)) (4D)
N 5 Ste ) S mi(als) (0000 + 9B ()
=1 a; i
—WZDTV my (-|s) w1 (-]s)) (42)
>...  (expand V™ (s') and repeat replacing 7, * with 7, ;) (43)
>V (s). (44)

(41) is from Lemma 4.4, and (42) is from the definition of Q™ (s,ai,a—;). In (43), we repeatedly
expand V™ and replace the 7, * with 7rt71 by Lemma 4.4 like what we have done in (41). After we
replace all 7r; ¢ with 7,_",, then we obtain VIt (s)in (44) according to the definition of V7" (s).

From the inequalities Vi, "' (s) > V™ (s) > VT (s) = V™-1(s), we know that the sequence
{V™t} improves monotonically. Combining with the condition that the sequence {V™} is bounded,

we know that {V™*} will converge to V*. According to the definition, the sequence {Q™*} and {m;}
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will also converge to Q* and 7, respectively, where 7, satisfies the following fixed-point equation:

7t = argmaXZﬂi(aﬂs) Zﬂgi(a_ﬂs)Q*(s,ai, a—;) —wDpy (7°(:|s)[|7wL(-]s)) .

O
A.7 PROOF OF Drvy(pllq) < Du(p|lq)
Proof.
1 ? 1 ?
Diy(olla) = | (Z i - ql-|> -3 (Z VB~ V@l i+ m)
< <Z IV/Pi — Vi |2> (Z IV/Pi + Vi |2> (Cauchy-Schwarz inequality)
1
= 1 Di(plla) <2 + 22 \/piQi>
< Dii(plla).
O

B EXPERIMENTAL SETTINGS

B.1 MPE

The three tasks are based on the original Multi-Agent Particle Environment (MPE) (Lowe et al., 2017)
(MIT license) and were initially used in Agarwal et al. (2020) (MIT license). The objectives of these
tasks are:

» Simple Spread: N agents must occupy the locations of N landmarks.
* Line Control: N agents must line up between two landmarks.

* Circle Control: N agents must form a circle around a landmark.

The reward in these tasks is the distance between all the agents and their target locations. We select
these tasks to maintain consistency with DPO (Su & Lu, 2022b) but set the number of agents N = 10
for these three tasks in our experiment.

B.2 MULTI-AGENT MuJoCo

Multi-agent MuJoCo (Peng et al., 2021) (Apache-2.0 license) is a robotic locomotion task featuring
continuous action space for multi-agent settings. The robot is divided into several parts, each
containing multiple joints. Agents in this environment control different parts of the robot. The type
of robot and the assignment of joints determine the task. For example, the task "HalfCheetah-3x2"
means dividing the robot "HalfCheetah" into three parts, with each part containing two joints. Details
of our experiment settings in multi-agent MuJoCo are listed in Table 2. The configuration specifies
the number of agents and the joints assigned to each agent. "Agent obsk" defines the number of
nearest agents an agent can observe.

B.3 STARCRAFT2

SMAC (Samvelyan et al., 2019) (MIT license) is a widely used environment for multi-agent rein-
forcement learning (MARL). In SMAC, agents receive rewards when they attack or kill an enemy
unit. The rewards for an episode are normalized to a maximum of 20, regardless of the number
of agents, to ensure consistency across tasks. An episode is considered won if the agents kill all
enemy units. The observation space for agents depends on the number of units involved in the task.
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Table 2: The task settings of multi-agent MuJoCo

task configuration  agent obsk
HalfCheetah 3x2 2
Hopper 3x1 2
Walker2d 3x2 2
Ant 4x2 2

Typically, the observation is a vector with over 100 dimensions, containing information about all
units. Information about units outside an agent’s field of view is represented as zero in the observation
vector. More details on SMAC can be found in the original paper (Samvelyan et al., 2019). SMACv2
(Ellis et al., 2023) (MIT license) is an advanced version of SMAC. Unlike SMAC, SMACV2 allows
agents to control different types of units in different episodes, where the unit types are determined
by a distribution and a type list. Moreover, the initial positions of agents are randomly selected in
different episodes. With these properties, SMACV2 is more stochastic and difficult than SMAC. We
keep the configuration the same as the original paper (Ellis et al., 2023) among the selected tasks.

C TRAINING DETAILS

Our code of IPPO is based on the open-source code! of MAPPO (Yu et al., 2021) (MIT license).
The original IPPO and MAPPO is actually implemented as a CTDE method with parameter sharing
and centralized critics. We modify the code for individual parameters and ban the tricks used by
MAPPO for SMAC. The network architectures and base hyperparameters of TVPO, DPO and IPPO
are the same for all the tasks in all the environments. We use 3-layer MLPs for the actor and the
critic and use ReLU as non-linearities. The number of the hidden units of the MLP is 128. We train
all the networks with an Adam optimizer. The learning rates of the actor and critic are both Se-4.
The number of epochs for every batch of samples is 15 which is the recommended value in Yu et al.
(2021). For IPPO, the clip parameter is 0.2 which is the same as Schulman et al. (2017). For DPO, the
hyperparameter is set as the original paper (Su & Lu, 2022b) recommends. Our code of IQL is based
on the open-source code’ PyMARL (Apache-2.0 license) and we modify the code for individual
parameters. The default architecture in PYMARL is RNN so we just follow it and the number of the
hidden units is 128. The learning rate of IQL is also 5e-4. The architectures of the actor and critic of
IDDPG are 3-layer MLPs. The learning rates of the actor and critic are both 5Se-4. Our code of 12Q is
from the open source code® of the original paper (Jiang & Lu, 2022). We keep the hyperparameter of
12Q the same as the default value of the open-source code in our experiments.

Table 3: Hyperparameters for all the experiments

hyperparameter value
MLP layers 3
hidden size 128
non-linear ReLU
optimizer Adam
actor_lIr Se-4
critic_Ir Se-4
numbers of epochs 15
initial 8° 0.01
0 1.5
w 2
d 0.001

clip parameter for IPPO 0.2

"https://github.com/marlbenchmark/on-policy
2https://github.com/oxwhirl/pymarl
3https://github.com/jiechuanjiang/12Q
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Figure 7: Learning curves of the policy p and ¢ in the matrix game of KL-iteration, T V-iteration,
x2-iteration, and H-iteration over four different sets of initialization. Each row corresponds to one set
of initialization and each column corresponds to one type of iteration.

The version of the game StarCraft2 in SMAC is 4.10 for our experiments in all the SMAC tasks. We
set the episode length of all the multi-agent MuJoCo tasks as 1000 in all of our multi-agent MuJoCo
experiments. We perform the whole experiment with a total of four NVIDIA A100 GPUs. We have
summarized the hyperparameters in Table 3.

D ALGORITHM

Algorithm 1. The practical algorithm of TVPO

1: for episode =1 to M do
2: for ¢t = 1 to max_episode_length do
3 select action a; ~ 7(-|s)
4 execute a; and observe reward 7 and next state s’
5 collect (s, a;,r,s’)
6: end for
7: Update the critic according to (17)
8.
9
10:

Update the policy according to (15) or (18)
: Update * according to (16).
end for

E ADDITIONAL EMPIRICAL RESULTS

Figure 7 illustrates the learning curve of the policy p and ¢ in the matrix game of KL-iteration,
TV-iteration, X2-iterati0n, and H-iteration over four different sets of initialization. We can observe
the policies of all four kinds of iterations converge.

MPE is a popular environment in cooperative MARL. MPE is a 2D environment and the objects are
either agents or landmarks. Landmark is a part of the environment, while agents can move in any
direction. With the relation between agents and landmarks, we can design different tasks. We use the
discrete action space version of MPE and the agents can accelerate or decelerate in the direction of
the x-axis or y-axis. We choose MPE for its partial observability.

The empirical results in MPE are illustrated in Figure 8. We find that TVPO obtains the best
performance in all three tasks. In this environment, the policy-based algorithms, TVPO, DPO, and
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Figure 8: Learning curves of TVPO compared with IQL, IPPO, 12Q, and DPO in 10-agent simple
spread, 10-agent line control, and 10-agent circle control in MPE.

IPPO, outperform the value-based algorithms, IQL and 12Q. 12Q has a better performance than IQL
in all three tasks.

F DISCUSSION

F.1 A BRIEF INTRODUCTION OF BASELINE ALGORITHMS

We select these four baseline algorithms as representatives of fully decentralized algorithms. IQL
(Tan, 1993) is a basic value-based algorithm for decentralized learning. IPPO is a basic policy-
based algorithm for decentralized learning. Both IQL and IPPO (de Witt et al., 2020) do not have
convergence guarantees, to the best of our knowledge. DPO (Su & Lu, 2022b) and 12Q (Jiang & Lu,
2022) are the recent policy-based algorithm and value-based algorithm respectively, and both of them
have been proved to have convergence guarantee.

IQL, IDDPG, and IPPO are relatively simple to understand, where each agent updates its policy
through an independent Q-learning, DDPG, or PPO. These algorithms simply extend the single-agent
RL algorithms into the MARL setting. They are heuristic algorithms without convergence guarantees
in fully decentralized MARL.

The idea of DPO is to find a lower bound of the joint policy improvement objective as a surrogate
which can also be optimized in a decentralized way for each agent. The formulation of DPO is as
follows:

Ty == argmax > 7' (ails)QT (5, ai)—M\/DKL (7 (L)l (-]s)) —C-Dxu (7' (-]s) [ (-]s)) -

DPO has been proven to improve monotonically and converge in fully decentralized MARL.

12Q uses Q-learning from the perspective of QSS-value Q; (s, s’). The QSS-value is updated with the
following operator:

LQi(s,s') =1+~ maXgm e N (s') Qi(s, Sl’)a

where A (s') is the neighbor set of state s’. In the deterministic environment and with some assump-
tion about the transition probability, Q; (s, s") will converge to the same Q-function for each agent i,
so the joint policy of agents will also converge in fully decentralized MARL.

F.2 UNARY FORMULATION

Before proposing the f-divergence formulation, we have studied another formulation. This formu-
lation follows the idea of entropy regularization and the extra term is only related to the policy 7
instead of the divergence between 7 and 7', ;. We refer to this approach as the unary formulation.
Though we discovered that the unary formulation has more significant drawbacks, the properties of
the unary formulation inspire us in the proof of TVPO. So we would like to provide the properties
and some empirical results of the unary formulation here for discussion.

The unary formulation is

Tt = arg max Z 7 (ai|8) QT (s,a;) +w Z 7' (ai|s)d (ﬂ'i(ai|s)) . (45)

ajg
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This formulation (45) follows the idea of Yang et al. (2019) which discusses the regularization
algorithm in single-agent RL. From the perspective of regularization, the update rule (45) can be
seen as optimizing the regularized objective Jé(ﬂ') =E[>, 7" (ri(s,a;) + we (7 (a;]s)))], where
ri(s,a;) = Er—i [r(s,a;,a_;)]. The choice of ¢ is flexible, e.g., ¢(x) = — log x corresponds to en-
tropy regularization and independent SAC (Haarnoja et al., 2018); ¢(z) = 0 means (45) degenerates
to independent Q-learning (Tan, 1993); Moreover, there are many other options for ¢ corresponding
to different regularization (Yang et al., 2019). So we take (45) as the general unary formulation
of independent learning, where the ‘unary’ means the additional terms Y, 7*(as|s)¢ (7(ai]s)) is

only about one policy 7.

For further discussion of (45) , we can utilize the conclusion in Yang et al. (2019) as the following
lemma.

Lemma F.1. If ¢(z) in (0, 1] and satisfies the following conditions: (1) ¢(z) is non-increasing;
(2) ¢(1) = 0; (3) ¢(x) is differentiable; (4) f4(x) = x¢(z) is strictly concave, then we have that
go(x) = (f})~"(x) exists and g4(x) is decreasing. Moreover, the solution to the optimization
objective (45) can be described with gy (x) as follows:

(o) = max{y (2 =E00) g) 4o

where A satisfies Y, max{gy (M) ,0}=0.

w

Though it seems that ¢(x) needs to satisfy four conditions, actually ¢(z) = — logx for Shannon

entropy and ¢(x) = q%l (1 — 297 1) for Tsallis entropy are still qualified.

However, unlike the single-agent setting, the update rule in Lemma F.1 may result in the convergence
to sub-optimal policy or even oscillations in policy in fully decentralized MARL.

We further discuss (45) in the two-player matrix game and have the following proposition.

Proposition F.2. Suppose that g4(x) > 0 and g4(x) is continuously differentiable. If the payoff
matrix of the two-player matrix game satisfies b+ ¢ < a + d, and two agents Alice and Bob update
their policies with policy iteration as

T, = arg max > i ail)QT (s, ai) +w Y w(ai]s)e (w(ails)) (47)

a;

then we have (1) py > pi—1 = Gey1 > G5 (2) De < Pe—1 = Q1 < @5 (3) @ > G—1 = Pey1 >
pt; (4) @t < qs—1 = pry1 < Py

Proof. To discuss the monotonicity of the policies p; and q;, we need the solution in Lemma F.1.
Before applying the update rule (46), we need to calculate the decentralized critic given p; and ¢;.
Let Q{1(0) and Q7' (1) represent the expected reward Alice will obtain by taking action u% and ul
respectively. We can also define QF(0) and QF (1) for Bob.

From the definition, we have Q7*(0) = ¢; - a + (1 — q;) - b = b+ (a — b)g;. Similarly we could
obtain that Q{*(1) = d + (¢ — d)qs, QP (0) = ¢+ (a — ¢)p; and QE (1) = d + (b — d)p;.

With (46) and the condition g4 () > 0, we have

M —Q4(0) (b—a)g + A\ —b (d—c)g + M\ —d
pt+1=9¢(twt>=9¢< tw ¢ ),1—pt+1=9¢( tw ‘ )
b— M b d— M d
%(( a)g + A )+g¢(( g+ A ):1
w w
c—a)pr+AF —¢ d—bp+ 2B —d
Qt+1:9¢( )pe + A >,1_qt+1:g¢<( )Pt + At )
w w
c—a)pe+ B —¢ d—b)p:+ A —d
9¢(( ptw : >+g¢(( )ptw : >=
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We can rewrite these equations with some simplifications as follows,

ma(e) & OLZOTEMD 2D ) 2 @2ITE MG 2y g, ()
where A 4 () satisfies g4 (ma(z)) + g¢ (na(x)) =1 (48)
mB(m)é (C_a)pt —LAB(x)_C,nB(x)é (d b)pt :)‘B( ) d,hB(Z‘):g¢ (mB(l'))

where A g () satisfies g4 (mp(x)) + g4 (np(z)) = 1.

With these definitions, we know that p; 1 = h4(q:), ¢:+1 = h(p:) and the monotonicity of p; and
gt is determined by the property of function h4(z) and hp(z). By applying the chain rule to (48),
we have:

—gg (ma(z)) (b—a+ Xy(z)) + %gfp (na(z)) (d = ¢+ Ny(x)) =0
;o (b=a)gy(ma(x)) + (d — c)gy(na(z))
- A= 9, A (@) + () @
Then we have:
Wy(z) = %g; (ma(x)) (b—a+ Ny(x)) (Apply chain rule) (50)
L )
— b+ d)g;(mA( MFeACyEy (Substitute (49) for Xy (z)).  (51)

Let M =b+c—a—dand M’ = 2 then b/ (z) = M’ ng::g))))i";y::?;;) From the condition and

Lemma F.1 we know that M < 0 and g, () is decreasing which means g;,(z) < 0. Combining these
conditions together, we know 'y (z) > 0 and h 4 (x) is increasing which means that p; 11 = ha(q:)
is increasing over gy, which means that ¢, > q;—1 = pry1 > prand ¢ > G—1 = Pi41 > De-

M’ ggﬁ:g((:)) )) 12(72233(83) > 0 which could lead to the result

thatpy > pi_1 = @41 > qand py < pi_1 = qey1 < - O

Similarly, we can obtain that h/5 (z) =

Proposition F.2 actually tells us p;+1 = ha(q:) is increasing over ¢; and ¢;+1 = hp(p;) is increasing
over p when M = b+ ¢ — a — d < 0. Intuitively, we can find two typical cases for policy iterations
with Proposition F.2. In the first case, if in a certain iteration ¢ the conditions p; > p;—1 and ¢ > q;—1
are satisfied, then we know that py/ 1 > py g1 > g Vt' > t. As the sequences {p:} and {q:}
are both bounded in the interval [0, 1], we know that {p, } and {¢:} will converge to p* and ¢* . The
property of p* and ¢* is determined by [ 4(z) = hp(ha(z)) and Ig(z) = ha(hp(x)) respectively
as pry2 = hp(ha(p:)) and gi42 = ha(hp(g:)) and we have the following corollary.

Corollary F.3. |I/,(z)] < M’QUz, [I5(x)| < M’QUi, where Uy is a constant determined by ¢(x).

Proof. As gi,(x) is continuous, let U} £ max,e(o1] lgg (ma(x))l,

= maXge[o,1] |9§5(”A($)) >
Up £ maxgeoq lgy(mp(x))| and Up £ maxyeio |g)(np(x))|. Moreover, let Uy =
max{U},U%,U},U%}, then apply the chain rule to I’ (z) and we have
[Ua(@)| = [Wp(ha(z)) Wy (@)l
2 195 (nB(ha(2)))llgy(mp(ha(@)|  lgs(na(z)
|95 (ms (ha(2)))| + |9 (ns(ha(2)))] g, (ma(z))
2 195 (nW)llgy(mp@)| g5 (na())llgy(ma(z))]

)gg(ma(z))l
|

R PACYIES)] 42

(Lety = ha(z) € [0,1])

)
196 (mB(Y))] + 195 (nB(Y)] |95 (ma(@))] + lgg (na(2))]
~ a2 l96(maly ))I;\%(nB( y))l Ig;(mA(w))lgl%(nA(w))l 53)
< M"*U? (54)
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Figure 9: Learning curves of the unary formulation in two matrix game cases, where x-axis is iteration
steps. The first and second figures show the performance and the policies p and ¢ in the matrix game
case 2 respectively. The third and fourth figures show the performance and the policies p and g in the
matrix game case 3 respectively.

where (52) is from Proposition F.2, (53) is from the AM-GM inequality ab < %, and (54) is
from the definition of Uy. Similarly, we can obtain Iz (x)| < M’ QU(%. O

Combining Corollary F.3 and Banach fixed-point theorem, we can find that as Uy is a constant, if
|M'| < U%), then we can find a constant L such that |I/4(z)| < M/2U§ < L < 1, which means that

the iteration p; 11 = L4 (p¢) is a contraction and p* is the unique fixed-point of [ 4. This conclusion can
be seen as that a smaller | M’| corresponds to a larger probability of convergence. In this convergence
case, the converged policies p* and ¢* are usually not the optimal policy as the optimal policy is
deterministic, which can be seen in our empirical results.

In the second case, which may be more general, in iteration ¢, (p; — pt—1)(gt — g+—1) < 0, which
means p; > py—1 and ¢¢ < qz—1 or py < py—1 and g > q:—1. Without loss of generality, we assume
pr > pr—1 and ¢ < qy—1, then we know p,41 < p; and ¢;+1 < g from Proposition F.2. By induction
we can find that for any ¢’ > ¢, the sequence {py } and {qy } will increase and decrease alternatively,
which means that the policies may not converge but oscillate. We will show this in our experiments.
As the unary formulation may result in policy oscillation, we would like to find other formulations
for fully decentralized MARL.

F.3 VERIFICATION FOR UNARY FORMULATION

In this section, we choose ¢(x) = —logz corresponding to the entropy regularization as the
representation for the unary formulation. We build two cases to show the convergence to the sub-
optimal policy and the policy oscillation. We choose a = 5,b = 6,c = 3,d = 5 as case 2 and
a=7,b=>5¢c=4,d=06 as case 3. Both two cases satisfy the condition b + ¢ < a + d as discussed
above. We keep w = 0.1 for all the experiments on these two matrix games. The empirical results are
illustrated in Figure 9. We can find the policies p and ¢ improve monotonically to the convergence
(p*,q*) =~ (0.773,0.227) in case 2, which is a sub-optimal joint policy. However, in case 3, the
policies p and ¢ oscillate between 0 and 1 and do not converge. These results verify our discussion
about the limitation of the unary formulation.

F.4 NON-TRIVIAL SOLUTION TO ITERATION (13)

In this section, we will build a two-player matrix game like Table 1 to show the non-trivial solution to
iteration (13). In general, there is no closed-form solution to iteration (13). However, for the matrix
game case, we can show some properties of iteration (13). With the same definitions as previous
discussions, we can rewrite (13) in the matrix game as follows:

Pyl = arg[rorlﬂxz?Q?(O) +(1=p)Q (1) — wlp — pil. (55)
pel0,

Let f(p) = pQ7*(0) + (1 — p)Qi*(1) — wlp — p

We know that f(p) is a linear function of p in both intervals [0, p;] and [p, 1] and the maximums
of linear function are always achieved in the endpoints of one interval. Thus, we have p;4; =

, then pyy1 = argmax,c(o 1 f(p)-
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Figure 10: Learning curves of the iteration (13) in the matrix game (a, b, ¢,d) = (—4,7,6,4), where
x-axis is iteration steps. The first and second figures show the expectation J(7r;) and the policies p and
q in the matrix game case 4 respectively, where J(7r;) is calculated by the joint policy 7 = (¢, q¢)
and the payoff matrix.
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Figure 11: Learning curves of the iteration (13) and the DPO iteration in the matrix game (a, b, ¢, d) =
(—4,7,6,4), where x-axis is iteration steps. The first and second figures show the expectation J ()
and the policies p and ¢ of two iterations in the matrix game case 4 respectively, where J(7r;) is
calculated by the joint policy 7w, = (pt, ¢;) and the payoff matrix.

arg max,e o ,, 1} f (), which means we only need to consider

£(0) = Q1) — wpy
F1) = Q0) —w(l—py)
F(pe) = Q1) + pe(Q71(0) — Q7 (1)).

Next, we can build a matrix game with the property b = max{a, b, c,d} > ¢ > d > 0 > a. In this

case, M = 2||Q||,, =2band w = w = b. Then we consider the condition f(0) > f(p;). We
have

FO) = f(pe) = —pe (Q1(0) = Q1) +w) =—p (2b—d— (b+c—a—d)g)

= f0)>flp:) & ¢ 2-d o

> — q.
t b+c—a—d q

We need ¢ < 1 to ensure a feasible ¢; can be found, which means b < ¢ — a.

Thus, for a matrix game satisfying the condition ¢ — a > b = max{a,b,¢,d} > ¢ > d > 0 > a, we
can find a non-trivial solution to (13). To empirically verify this conclusion, we choose a matrix game
with (a,b,¢,d) = (—4,7,6,4) where § = % ~ 0.769.... For simplicity, we call this matrix game
as matrix game case 4. We also choose (pg, go) = (0.55,0.8) to ensure the condition ¢; > §. The
empirical results are illustrated in Figure 10. We can find the non-trivial update for the joint policy

which verifies our conclusion discussed before.

F.5 CoMPARING TVPO AND DPO

From the discussion in Section 4.2, we have an intuitive idea about the difference between DPO
and TVPO that the bound Dy of TVPO is tighter than v/ Dky, in DPO. A tighter bound means
the iteration will be less influenced by the trivial update. We would like to build a matrix game to
show this phenomenon. Fortunately, a previously discussed matrix game (a, b, ¢, d) = (—4,7,6,4)
satisfies our requirement. The DPO iteration has no closed-form solution and we haven’t found any
useful properties like Section F.4. Thus, we use a numerical method to solve the DPO iteration. First,
we keep the initial policy (pg, go) = (0.55, 0.8) for two iterations. The empirical results are included
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Figure 12: Learning curves of the DPO iteration with different initial policies in the matrix game
(a,b,c,d) = (—4,7,6,4), where x-axis is iteration steps. The three figures show the expectation
J(m¢), the policies p and ¢ of nine different initial policies in the matrix game case 4 respectively,
where J(;) is calculated by the joint policy ¢ = (pt, ¢:) and the payoff matrix.

in Figure 11. We can find that the TVPO iteration has a non-trivial update but the DPO iteration
only has trivial updates. This result can be evidence for our conclusion about the difference between
TVPO and DPO.

Table 4: The policy update types of DPO
iteration with different initial policies in the
matrix game (a,b,c¢,d) = (—4,7,6,4). T
represents the trivial policy update and NT'
represents the non-trivial policy update.

Moreover, we study the influence of the initial policies
on the DPO iteration. We select three candidate val-
ues C' = {0.2,0.55,0.8} for the initial policies. We
traverse all the values in C for (pg, qo) and conclude
the performances of all 9 combinations in Figure 12
and Table 4. We can find all 9 initial policies fall

into the trap of the trivial update due to the regular- 9o

L . .. 0.2 | 0.55 | 0.8
ization term /D1, in DPO. These empirical results Po

can partially exclude the impact of initial policies on 0.2 T | T T
the performances of the DPO iteration in this matrix 0.55 T T T
game. 0.8 T T T

F.6 DISCUSSIONS ABOUT USING GLOBAL STATE § IN THEORETICAL RESULTS.

Using the global state s for theoretical analysis has been a common practice in the study of multi-agent
reinforcement learning, especially in the setting of decentralized learning. There are many previous
works containing theoretical results in decentralized learning, which include both cooperative settings
(Jiang & Lu, 2022) and non-cooperative settings (Arslan & Yiiksel, 2016; Mao et al., 2022a; Zhang
et al., 2024). The main reason for this common practice is the difficulty in solving a POMDP, which
has been studied for decades in Papadimitriou & Tsitsiklis (1987); Mundhenk et al. (2000); Vlassis
et al. (2012). Additionally, the theoretical analysis of Dec-POMDP will be even more difficult in the
multi-agent setting. If we include partial observability in the analysis, we may not obtain anything
since the problem may be undecidable in Dec-POMDP (Madani et al., 1999).
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Figure 13: Learning curves of the TVPO and other baselines including IPG and INPG in the three
10_vs_10 SMAC-v2 tasks.
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Figure 14: Learning curves of the TVPO and IPPO with different clip parameters in the 10_vs_10
protoss.

For the comparison with the baseline IPG (Leonardos et al., 2021) and INPG (Fox et al., 2022), we
select three 10_vs_10 SMAC-v2 tasks. The empirical results are illustrated Figure 13. We can find
that IPG’s performance is not stationary and may drop with the progress of training compared with
other policy based algorithms. We think the main reason is that IPG lack the constraints about the
stepsize of policy iteration. We use the adaptive coefficient for INPG, and its performance is similar
to DPO, which is reasonable as their policy objectives are similar except for a square root term.

We also compare the influence of the hyperparameters on IPPO’s performance. We choose clip
parameters with values 0.1,0.2,0.3 for ablation study and select the 10_vs_10 protoss task for
experiments. The empirical results are ilustrated in Figure 14. We can see that the impact of this
hyperparameter is not significant.
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