
Alternating Updates for Efficient Transformers

Anonymous Author(s)
Affiliation
Address
email

Abstract

It has been well established that increasing scale in deep transformer networks leads1

to improved quality and performance. However, this increase in scale often comes2

with prohibitive increases in compute cost and inference latency. We introduce3

Alternating Updates (AltUp), a simple-to-implement method to increase a model’s4

capacity without the computational burden. AltUp enables the widening of the5

learned representation, i.e., the token embedding, while only incurring a negligible6

increase in latency. AltUp achieves this by working on a subblock of the widened7

representation at each layer and using a predict-and-correct mechanism to update8

the inactivated blocks. We present extensions of AltUp, such as its applicability9

to the sequence dimension, and demonstrate how AltUp can be synergistically10

combined with existing approaches, such as Sparse Mixture-of-Experts models, to11

obtain efficient models with even higher capacity. Our experiments on benchmark12

transformer models and language tasks demonstrate the consistent effectiveness13

of AltUp on a diverse set of scenarios. Notably, on SuperGLUE and SQuAD14

benchmarks, AltUp enables up to 87% speedup relative to the dense baselines at15

the same accuracy.16

1 Introduction17

Contemporary machine learning models have been remarkably successful in many domains, ranging18

from natural language [6, 20] to computer vision [53, 38]. Many of these successes have come in19

part through sheer scale. A vast amount of empirical studies justify the conventional wisdom that20

bigger (models and data sets) is better [19, 24]. Accordingly, state-of-the-art Transformer [46] models21

often contain billions of parameters and are trained for weeks on enormously large data sets using22

thousands of AI accelerators. Their immense size leads to prohibitive compute and energy costs [34]23

and prevents their deployment to resource-constrained applications [30].24

To alleviate these costs and enable scalability of modern Transformers, a recent line of works25

have proposed techniques to increase the capacity of models without drastically increasing the26

computational costs via conditional computation. A notable paradigm is sparsely-activated networks,27

such as Mixture-of-Experts (MoE) models [10, 56, 33, 1, 27, 41, 43]. The main idea of MoE is to28

effectively widen each network layer by accessing dynamically invoked parameters, i.e., experts,29

where each expert corresponds to a small subset of disjoint parameters that can be acted on by the30

input. During training and inference, a given input to the network is routed to a small subset of31

experts (parameters) to compute the output. As a result, the computation cost remains small relative32

to the total number of parameters. This scheme enables models with higher capacity with only a33

relatively small increase in computation.34

While prior approaches in conditional computation have predominantly focused on the processing35

power of transformers, there is a research gap in efficiently incorporating widened learned represen-36

tations. Recent works have empirically and theoretically established that a wider token representation37

(i.e., a larger model dimension) helps in learning more complicated functions by enabling more38

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

information to be packed in the representation vectors [19, 24, 52]. This phenomenon is also evident39

in modern architectures of increasing capability. For instance, the representation dimension grows40

from 512 (small) to 768 (base) and 1024 (large, 3B, and 11B) in T5 models [35], and from 409641

(8B) to 8192 (64B) and 18432 (540B) in PaLM models [6]. A widened representation dimension42

also significantly improves performance for dual encoder retrieval models [31, 32]. However, naively43

widening the learned representation requires accordingly increasing the model dimension (see Fig. 1),44

which quadratically increases the amount of computation in the feedforward computation. In light45

of the above, a natural question arises: can we leverage the benefit of wider representations without46

incurring the additional cost of wider transformer layers?47

x N / 2

embedding layer (2x width)

transformer layer (2x width)

transformer layer (2x width)

(a) 2x Wider Model

 x N / 2

embedding layer (2x width)

transformer layer
(1x width)

lightweight corrector

lightweight
predictor

transformer layer
(1x width)

lightweight corrector

lightweight
predictor

(b) 2x Wider Model with AltUp

Figure 1: An illustration of widening the token representation without (left) and with Alternating Up-
dates (right). This widening causes a near-quadratic increase in computation in a vanilla transformer
due to the increased layer width. In contrast, Alternating Updates keeps the layer width constant and
efficiently computes the output by operating on a sub-block of the representation at each layer.

In this paper, we address this research gap by introducing Alternating Updates (AltUp), a technique48

to incorporate wider representations in a simple and efficient way. AltUp operates by partitioning the49

widened representation vector into blocks, processing only a single block at each layer, and using50

an efficient prediction mechanism to infer the outputs of the other blocks (see Fig. 1). Processing a51

single block in each transformer layer enables AltUp to simultaneously keep the model dimension,52

hence the computation cost, constant and take advantage of using an increased token dimension.53

Unlike prior approaches, e.g., Sparse Mixture of Experts, AltUp is easy to implement, requires54

minimal hyperparameter tuning, and does not necessitate sharding. Moreover, since AltUp focuses on55

increasing the representation dimension, it can be applied synergistically with orthogonal techniques56

like MoE [57] to obtain complementary performance gains.57

In particular, our contributions are:58

1. We introduce Alternating Updates (AltUp) to bridge the research gap in efficiency techniques59

by enabling wider representations with little additional computation cost. AltUp is simple-60

to-implement, requires minimal hyperparameter tuning, and does not necessitate sharding.61

2. We develop two notable extensions of AltUp: (i) Recycled-AltUp, a faster variant of AltUp62

that requires virtually no additional learnable parameters and (ii) Sequence-AltUp, an63

extension of the AltUp idea to the sequence dimension.64

3. We present an extensive evaluation of AltUp on T5 models on various benchmark language65

tasks. Our experimental results show that AltUp and its variants uniformly lead to models66

with improved speed-accuracy trade-offs. Notably, on SuperGLUE and SQuAD benchmarks,67

AltUp enables up to 87% speedup relative to the dense baselines at the same accuracy.68

2

2 Related Work69

Prior work is rich with a diverse set of techniques to increase the efficiency of contemporary70

transformer models. Here, we cover the most relevant subset of state-of-the-art techniques and refer71

the interested reader to [45] for a more comprehensive survey.72

Recent works have introduced extremely large, yet scalable models with the use of conditional routing73

of inputs to a learnable subset of parameters. These sparsely-activated models have achieved state-of-74

the-art performance on various benchmarks [10] and exhibit favorable theoretical properties [4, 1].75

Notably, the Sparse Mixture of Experts (SMoE) [43, 54, 22] family of models use a learned softmax76

probability distribution to conditionally direct the computation to experts, i.e., subsets of network77

parameters. By routing the computation to a small subset of parameters on an input-dependent78

basis, SMoE leads to higher capacity models with a relatively small and controllable increase in79

computation. Switch Transformers [11] show that routing to a single expert on an input-dependent80

basis reduces computation and outperforms prior SMoE approaches on language tasks. Follow-up81

work on SMoE include those that improve the load balancing of experts [57, 28], use reinforcement82

learning to learn the routing function [7], and leverage smooth top-k expert selection [18] (see [10]83

for a survey). Other choices for the routing function include non-learnable ones such as Locality84

Sensitivity Hashing (LSH) [33] which generally maps similar inputs to the same expert, Hash Layers85

that use token-based hashing [41], and language-specific deterministic routing [9]. Residual Mixture86

of Experts [49] separates the expert weights into input-independent and input-dependent components.87

Conditionally accessing external memory is another related approach to vastly increase model88

capacity at the cost of a relatively small increase in computation [14, 13]. For examples, Memorizing89

Transformers [51], Memformer [50], and Product key memory [26] leverage dynamic memory to90

encode and retrieve relevant information. Additional works include those that use an immensely91

large untrainable corpus, such as Wikipedia, REALM [17], or a 2 trillion token database, RETRO [2].92

These prior works that focus on routing(expert)-based mechanisms often necessitate complicated,93

sharded implementations due to the sheer number of additional parameters that they introduce — often94

on the order of billions. Our work, on the other hand, is simple-to-implement and requires virtually95

no hyperparameter tuning. Moreover, AltUp can be synergistically combined with sparsely-activated96

models like MoE to obtain complementary improvements in efficiency.97

Additional relevant works in the realm of efficient transformers include Funnel transformers [8],98

Reformers [25], Performers [5], Big-Bird [55], and LongT5 [16], among others. These works notably99

present methods to reduce the quadratic cost of the attention mechanism of transformers. Another100

flavor of methods complementary to our work is that of adaptive computation, e.g., CALM [42],101

DynaBERT [21] CascadeBERT [29] and DeeCap [12], where different amounts of computational102

power is allotted on an example-specific basis via some type of early-exit strategy. AltUp achieves its103

efficiency via the orthogonal direction of conditionally leveraging wider token representations, and104

hence can be easily combined with these techniques.105

3 Alternating Updates106

In this section, we introduce the method of Alternating Updates (AltUp), an approach to enable107

increased token dimension with little additional computation cost.108

3.1 Background109

At a high level, a standard transformer with L layers generates a d-dimensional representation by110

applying a sequence of layers transformer layers L1, . . . ,LL as follows. For a particular input token111

within a sequence of length N , the initial token representation x1 ∈ Rd is computed by an embedding112

table lookup. Subsequently, this d-dimensional representation is refined across the transformer layers113

by iteratively computing xi+1 = Li(xi) for each layer i ∈ [L]; here and throughout [N] denotes the114

set {1, . . . , N} for N ∈ N. Each transformer layer Li : Rdmodel → Rdmodel has width dmodel (with115

dmodel = d in the standard setting) and contains an attention block and a FeedForward (FFN) block.116

The width of the layer dmodel controls the dimensions of the matrices involved in the attention and117

FFN blocks. Consequently, the computation cost of attention and FFN scales with O(N2dmodel)118

and O(Nd2model), respectively. The output, xL+1 is the output token representation generated by119

the transformer. This computation is usually followed by a linear layer operation that maps from120

3

the d-dimensional representation xL+1 to |V|-dimensional logits (in O(|V|d) time), followed by a121

softmax non-linearity to generate the probabilities over the vocabulary V .122

Increasing the representation dimension d is a way to enhance the capacity of the transformer model,123

as a wider representation enables the transformer to store richer information about the input and helps124

in learning more complicated functions [19, 24, 52]. Naively widening the token representation d125

requires widening each layer as well, since dmodel must match d in a standard transformer model.126

However, the computation time of each transformer layer grows roughly quadratically with dmodel,127

notably for relatively short input sequences. This means that, growing the token dimension from d to128

2d, for example, leads to a model that is at least 2 times (and closer to 4 times for small N) slower129

than the original model with a d-dimensional representation.130

3.2 Alternating Updates131

The core idea of Alternating Updates is to widen the representation vector, but perform computation132

with a d-dimensional sub-block, and estimate the updated representation using a Predict-Compute-133

Correct algorithm, as illustrated in Figure 1, right. More specifically, AltUp expands the representation134

width from d to Kd, for integers K > 1, d > 0 (for example, K = 2 in Fig. 1), but uses layers of135

width dmodel = d (not dmodel = Kd) to transform the representation vector. By keeping the width of136

each transformer layer constant, AltUp avoids incurring the quadratic increase in computation cost137

that would otherwise be present with a naive expansion of the representation.138

Alg. 1 depicts the details of the per-layer computation involved in a transformer with AltUp with a Kd-139

dimensional representation vector. The input to the AltUp layer is assumed to be the concatenation140

of d-dimensional contiguous subblocks xold = concat(x1
old, x

2
old, ..., x

K
old) ∈ RdK . Inspired by141

predictor-corrector methods used to solve ordinary differential equations [3], AltUp first generates a142

prediction x̂i for each of the subblocks i ∈ [K] (Line 1). This prediction takes the form of a mixture143

of subblocks x̂i =
∑K

j=1 pi,jx
j
old, where pi,j ∈ R for i, j ∈ [K] are learnable scalars. Subsequently,144

one of the K sub-blocks is chosen and the computation with the unexpanded transformer layer of145

width dmodel = d is performed on this sub-block (Line 2). Finally, the result of this computation is146

used in the correction step to generate the updated representation for each sub-block (Line 3).147

Algorithm 1 Alternating Updates (AltUp) Layer
Input: xold = concat(x1

old, x
2
old, ..., x

K
old) ∈ RdK : dK-dimensional input representation vector

to the layer, where xj
old ∈ Rd, j = 1, 2, ...,K are contiguous sub-blocks of xold.

Output: xnew ∈ RdK : The layer’s dK-dimensional output representation.
1: Predict: for each i ∈ [K], predict the updated representation with a trainable linear map:

x̂i =

K∑
j=1

pi,jx
j
old,

where pi,j ∈ R, i, j ∈ [K] are trainable scalars.
2: Compute: select a sub-block j∗ ∈ [K] and update this block with L:

x̃j∗ = L(xj∗

old).

3: Correct: for each i ∈ [K], correct the prediction with the computation result:

xi
new = x̂i + gi(x̃

j∗ − x̂j∗),

where gi ∈ R, i ∈ [K] are trainable scalars.

Computation time We see from Alg. 1 that AltUp introduces negligible amount of additional148

computation per layer, as the prediction and correction steps involve only vector addition and scalar-149

vector multiplications (O(d) operations). Thus, relative to the computation cost of a transformer layer150

with width d (which we incur on Line 2 in AltUp), the cost of AltUp is only an additionalO(dK2) per151

token, where d is the original model dimension and K is the factor of increase in the representation152

dimension (typically K = 2 or K = 4, see Sec. 5). This additionalO(dK2) cost per token is a factor153

4

of d smaller than theO(d2K2) per token cost of the FFN block alone in a K-times wider transformer154

layer. In fact, an AltUp layer does not lead to an increased computation time relative to a d-width155

transformer layer asymptotically, since the O(dK2) additional cost per token per layer is dominated156

by the cost of the FFN block as K � d in practice. At a higher level, AltUp requires using an157

embedding table with width Kd and invoking the final linear operation with Kd-dimensional vectors.158

The initial embedding lookup using a wider table and the linear + softmax operation with Kd (instead159

of d) dimensional vectors may lead to a perceptible increase in computation time. However, since we160

only incur this additional cost in the beginning and the end, these factors are often inconsequential,161

and increasingly so for deeper transformers. Nevertheless, we present an extension to AltUp in Sec. 4162

that avoids this slowdown altogether for specialized applications.163

Parameter count AltUp introduces K2+K additional learnable parameters per layer, where K2 is164

due to pi,j , i, j ∈ [K] and K is a result of gi, i ∈ [K]. Since K � d, this is an imperceptible amount165

of additional parameters per layer in practice. Zooming out, AltUp with an expansion factor of K166

requires a Kd-width embedding table, and consequently requires (K − 1)|V|d additional parameters,167

where |V| is the vocabulary size. In Sec. 4, we present a variant that requires no additional embedding168

parameters to be added to the model.169

Selection of sub-blocks The selection of the sub-block j∗ for the computation step in Algorithm 1170

can be any user-specified technique. We consider two simple, deterministic selection methods in this171

paper and leave more sophisticated methods for future work: (i) same: choose the same sub-block172

for all the layers in a neural network and (ii) alternating (default method): for a sequence of layers,173

alternating through the sub-blocks, that is, if the sub-blocks are indexed with zero-based index, then174

sub-block ` mod K is selected for the computation step for layer ` ∈ [L]. This alternating selection175

is the default for Algorithm 1 (hence the name Alternating Updates). We compare the two selection176

methods empirically in the supplementary material and find that using alternating blocks performs177

better empirically.178

4 AltUp Extensions179

In this section, we present extensions of the core AltUp idea introduced in the previous section.180

4.1 Recycled-AltUp: Faster AltUp via embedding recycling181

Embed lookup (d-dim)

Recycle by
concatenating embed

Embed lookup Embed lookup 2d embedding

N transformer layers with AltUp (2x)

Output representation (2d-dimensional)

d-dim subvector d-dim subvector subdivide into d-dim
chunks

d-dim repr. add chunks to downproject
to d-dimensional repr.

final softmax final softmax computation
with respect to d-dim repr.

Figure 2: Recycled-AltUp with K = 2.

The AltUp formulation presented in Sec. 3 adds182

an insignificant amount of per-layer computa-183

tion, however, it does require using a K-times184

wider embedding table. In certain scenarios185

where the vocabulary V is very large, this may186

lead to a non-trivial amount of added computa-187

tion for the initial embedding lookup and the fi-188

nal linear + softmax operation. A colossal vocab-189

ulary may also lead to an undesirable amount of190

added embedding parameters. Recycled-AltUp191

is an extension of AltUp that avoids these com-192

putational and parameter costs by keeping the193

embedding table’s width d-dimensional.194

Figure 2 depicts an example application of Re-195

cycled AltUp with K = 2. The general idea is196

to recycle the initial d-dimensional lookup by197

replicating the d-dimensional lookup K times.198

Hence, Recycled-AltUp virtually adds no addi-199

tional parameters relative to the baseline width d model. Subsequently, the regular AltUp layers200

(Alg. 1) are applied until the last linear + softmax operation. To avoid the computational cost of this fi-201

nal operation, Recycled AltUp downprojects the Kd-dimensional representation vector xL+1 ∈ RdK202

to a d-dimensional representation by simply elementwise-adding the d-dimensional contiguous sub-203

blocks inO(Kd) time. Applying the linear + softmax operation on this down-projected vector implies204

that the computation cost of this operation is nowO(|V|d) rather thanO(K|V|d), effectively reducing205

5

the amount of computation by O((K − 1)|V|d). Our results in Sec. 5 show that Recycle-AltUp’s206

improved speed and reduced parameter count may make it more appealing for certain applications.207

4.2 Sequence-AltUp: Extension of AltUp to the sequence dimension208

Here, we introduce Sequence-AltUp, a natural extension of Alternating Updates to reduce the apparent209

sequence length. This extension is motivated by the computation cost associated with the cost of the210

attention mechanism for long input sequence lengths. Our approach is similar in its goal to that of prior211

techniques focused on designing efficient attention mechanisms to reduce the quadratic dependency212

of attention cost on the sequence length: Funnel transformers [8], Reformers [25], Performers [5],213

Big-Bird [55], and LongT5 [16]. Similar to the Funnel transformer [8] and Conformer [15], Sequence-214

AltUp uses a simple striding operation to reduce the sequence length. Only sampled tokens are215

processed by the transformer layer while the rest of the tokens require little computation, leading to a216

computation cost reduction by a factor of k, where k is the stride parameter.

(a) Stride-and-skip (b) Sequence-AltUp

Figure 3: An illustration of Sequence-AltUp (right) and the baseline Stride-and-skip method (left).
Sequence-AltUp has virtually the same computation cost as Stride-and-skip, but enables contextual
information passing to the skipped tokens.

217

Figure 3 depicts the baseline stride-and-skip technique (left) and the proposed Sequence-AltUp218

method (right). Given an input sequence of vectors (x0, x1, ..., xT−1) to a transformer layer L,219

we propose the following extension of Algorithm 1 to reduce the effective sequence length by a220

factor of k. First, we apply a lightweight predictor on the full sequence to obtain a predicted output221

ŷ = (ŷ0, ..., ŷT−1). Next, we subsample the input with a fixed stride k and apply L on the subsampled222

input and get computed output ỹ = (ỹ0, ỹk, ỹ2k, ..., ỹb(T−1)/kc∗k) = L(x0, xk, ..., xb(T−1)/kc∗k).223

Finally, we use a lightweight corrector to combine ŷ and ỹ to form the final output sequence. This224

design allows unsampled token vectors to obtain contextual information, even though they are not225

processed by the transformer layer directly—analogous to the inactivated sub-blocks in original AltUp.226

In contrast, a simple stride-and-skip approach (Figure 3, left) lacks the ability to bring contextual227

information to the skipped tokens. We present the full algorithm pseudocode and implementation228

details of Sequence-AltUp in the supplementary material.229

5 Results230

In this section, we apply AltUp and its variants to benchmark language models and tasks. We proceed231

by outlining the experimental setting below. In Secs. 5.1 and 5.2 we present the performance of232

AltUp on standard benchmarks with varying configurations and model sizes; in Secs. 5.3 and 5.4233

we evaluate the performance of AltUp extensions and demonstrate their effectiveness. We present234

the full details of our evaluations and additional experimental results in the supplementary; namely,235

the supplementary contains additional evaluations that demonstrate the synergistic combination of236

AltUp with other conditional compute techniques, additional finetune results, and complementary237

ablation studies. Overall, our results consistently show that AltUp and its variants enable sizeable238

performance gains, e.g., up to 87% faster models, across all evaluations on standard benchmarks.239

6

Setting We performed all of our experiments using T5-model architectures [35] of varying sizes240

(small, base, large, and 3B) which we pretrained on the C4 dataset for 500, 000 steps with a batch size241

of 256. The pretrained models were then finetuned on either the GLUE [48], SuperGLUE (SG) [47],242

SQuAD [37] or Trivia-QA (closed-book) [23, 40] benchmark tasks for a further 50, 000 steps with a243

batch-size of 256. The pretraining task is to predict corrupted text spans, and the finetuning tasks are244

re-cast into text generation tasks. We report both pretraining and finetuning metrics: for pretraining,245

we report span prediction accuracy on a hold-out validation set, and for finetuning, we follow the246

same recipe as the T5 models, see [35] for more details. The supplementary contains the full details247

of our evaluations and hyperparameters.248

5.1 Alternating updates on benchmarks249

First, we investigate whether incorporating AltUp on a baseline model leads to an unambiguously250

better model when we consider the predictive performance and actual observed latency (not theoretical251

FLOPS). To this end, we compare the dense T5-Base/Large/XL models to models augmented with252

AltUp with K = 2 on GLUE, SuperGLUE, SQuAD, and TriviaQA (closed-book) finetuning tasks.253

Figure 4 plots the performance and normalized speed of the evaluated models.254

(a) GLUE (b) SuperGLUE

B + AltUp2x

L + AltUp2x

B

L

XL
87% rel. speedup

34% rel. speedup

(c) SQuAD (d) Trivia-QA

Figure 4: Evaluations of AltUp on T5 models of various sizes and popular benchmarks. AltUp
consistently leads to sizeable speedups relative to baselines at the same accuracy. Latency is measured
on TPUv3 with 8 cores. Relative speedup is defined as latency delta divided by AltUp latency.

As the figure depicts, models augmented with AltUp are uniformly faster than the extrapolated255

dense models at the same accuracy. For example, we observe that a T5 large model augmented with256

AltUp leads to a 27%, 39%, 87%, and 29% speedup on GLUE, SuperGLUE, SQuAD, and Trivia-QA257

benchmarks, respectively. Moreover, we see that AltUp’s relative performance improves as we apply258

it to larger models (compare relative speedup of T5 Base + AltUp to that of T5 Large + AltUp). This259

demonstrates the scalability of AltUp to and its improved performance on even larger models. Overall,260

AltUp consistently leads to models with better predictive performance than the corresponding261

baseline models with the same speed on all model sizes and benchmarks.262

7

5.2 AltUp with varying representation size263

In the previous subsection, we had used a value of K = 2 for the runs with AltUp. As discussed in264

Sec. 3, K controls the width of the representation vector, and is the only hyperparameter required by265

AltUp. Can we obtain even more performant models by using a larger expansion factor K? Here, we266

compare the performance of AltUp with K = 2 to AltUp with a larger expansion factor K = 4.267

Table 1: Performance of AltUp with varying representation dimension scaling parameter K on T5.
Model Pretrain Accuracy GLUE SG SQuAD (EM/F1) TriviaQA (EM/F1)
S 61.21 75.83 59.52 76.44/84.97 19.03/22.83
S + AltUp (K=2) 61.86 76.82 59.60 77.51/85.79 19.27/22.95
S + AltUp (K=4) 62.00 76.40 59.54 76.38/84.86 19.07/22.84
B 66.42 84.25 73.56 83.78/91.19 23.1/27.56
B + AltUp (K=2) 66.96 85.32 75.80 85.24/92.36 24.35/28.78
B + AltUp (K=4) 67.18 84.95 78.91 84.82/92.07 24.41/28.90
L 69.13 87.23 81.21 86.77/93.56 26.15/30.76
L + AltUp (K=2) 69.32 88.20 82.75 87.81/94.29 27.10/32.04
L + AltUp (K=4) 69.55 88.42 82.94 87.59/94.02 27.36/32.42

Table 1 summarizes the results with AltUp instantiated on T5 small, base, and large sized models268

with hyperparameter K = 2 and K = 4. We observe that a larger value of K = 4 leads to strict269

improvements in pretrain accuracy over AltUp with K = 2 for all models (Table 1, column 2). This270

is perhaps intuitive, as a wider representation vector enables more information to be learned during271

the pretraining stage. Interestingly, however, a larger K does not always lead to better finetune272

performance, especially for smaller models. For example, despite having a worse pretrain accuracy,273

AltUp with K = 2 is better than AltUp with K = 4 on all finetune tasks GLUE, SuperGLUE, and274

SQuAD. We see a similar phenomenon occur for the Base model, but here K = 4 is better on GLUE;275

and on Large, the trend reverses: K = 4 is better on every metric except for SQuAD. Our results276

indicate that a larger value of K has potential to increase the performance of models on pretrain and277

fine-tune metrics when AltUp is applied to larger models. We note that there is an inherent trade-off278

between a larger factor K and trainability, however, as a larger value of K leads to less frequent279

activation of each sub-block which may impair performance. We envision that practitioners can pick280

a value of K other than the default K = 2 to optimize performance on an application-specific basis.281

5.3 Recycled-AltUp282

Next, we consider the performance of the lightweight extension of AltUp, Recycled-AltUp, introduced283

in Sec. 4. We apply Recycled-AltUp with K = 2 to T5 base, large, and XL models and compare its284

pretrain accuracy and speed to those of baselines. We record both the training speed and inference285

speed of the resulting models. Since Recycled-AltUp does not require an expansion in the embedding286

table dimension (see Sec. 4), we remark that the models augmented with it have virtually the same287

number of trainable parameters as the baseline models.288

Figure 5: Recycled-AltUp on T5-B/L/XL compared to baselines. Recycled-AltUp leads to strict
improvements in pretrain performance without incurring any perceptible slowdown.

The results of our experiments are shown in Fig. 5. The figures for both the training and inference289

speed show that models with Recycled-AltUp clearly improve over baselines in pretrain accuracy,290

8

without any perceptible slowdown. While Recycled-AltUp’s predictive strength generally falls below291

that of standard AltUp (cf., pretrain values for AltUp in Table 1), its improved speed and reduced292

parameter count may make it more suitable for certain applications. We present additional fine-tuning293

results with Recycled-AltUp in the supplementary material; overall, our results demonstrate that294

Recycled-AltUp is similarly effective on fine-tuning tasks.295

5.4 Sequence-AltUp296

Here, we evaluate Sequence-AltUp (from Sec. 4) to reduce the apparent sequence length for the297

T5 base model. In particular, we apply average pooling, stride-and-skip, and Sequence-AltUp to298

the encoder layers to reduce the apparent input sequence length. We apply stride-and-skip and299

Sequence-AltUp to layers 2, . . . , L− 1 of the encoder, rather than all the layers, with stride length 4300

as we found that this configuration results in a better accuracy/speed trade-off for both techniques. For301

average pooling, the sequence length is immutably reduced from the start according to the method.302

Table 2: Performance and pretrain speed of different methods for sequence length reduction on T5.
Model Pretrain Accuracy Finetune GLUE Finetune SG Speed

S 61.21 59.52 76.44/84.97 166.1
B (Baseline) 66.42 73.56 83.78/91.19 52.4
Average pooling 63.89 57.85 71.37/81.87 91.9
Stride-and-Skip 65.02 65.98 79.72/87.64 79.4
Sequence-AltUp 65.39 66.94 81.67/89.37 74.9

Table 2 presents the comparisons on pretrain and finetune metrics (GLUE and SuperGLUE) and303

pretrain speed (measured by the number of sequences per second per core). The table additionally304

lists the relevant metrics for T5 Base (which is the baseline model) and T5 Small as reference305

points in the table. We observe that average pooling gives a large speed-up, but suffers from severe306

quality degradation, especially on the finetune metrics where it performs even worse than T5 small.307

Stride-and-skip and Sequence-AltUp, on the other hand, offer an improved quality and speed trade-off308

relative to T5 Base. In particular, Sequence-AltUp is only slightly slower than stride-and-skip (yet,309

still ≈ 40% faster than the baseline), but is much closer to the baseline model’s quality.310

6 Conclusion311

We propose the method of Alternating Updates (AltUp) to increase the capacity of modern transformer312

models without incurring a significant increase in latency. Our approach bridges the research gap313

in efficient transformers by enabling the use of wider token representations without widening the314

transformer layers. AltUp utilizes lightweight prediction and correction steps to update a wider315

representation vector without increasing the transformer layer’s computation cost. As a result,316

we achieve strong performance improvements on language modeling and language understanding317

benchmarks. We present extensions of AltUp that enable additional gains in efficiency. Given its318

orthogonal scope, AltUp can be synergistically applied with existing techniques like MoE. On popular319

language understanding and QA benchmarks, AltUp enables up to 87% speedup relative to the dense320

baselines at the same accuracy.321

Limitations and future work A current limitation of the technique we propose is the lack of a322

deep theoretical understanding of its properties due to the complicated nature of rigorously analyzing323

transformer models. An interesting open question is whether it would be possible to analyze AltUp324

by relating its performance to a block compressed layer, and transitively relating that to a wide layer325

without block compression. A deeper understanding of AltUp may also shed light on the optimal326

hyperparameter K on an application-specific basis. In future work, we plan to conduct a theoretical327

investigation of alternating updates to develop a deeper understanding of its effectiveness across328

differing applications. We also plan to experiment with the use of a very large expansion factor K.329

Broader Impact Training and deploying modern neural network models consumes colossal330

amounts of resources. This leads to detrimental effects on the environment and hampers the331

widespread applicability and democratization of AI. We envision that AltUp can serve as a valuable332

component of efficient architectures of the future and help alleviate these negative impacts.333

9

References334

[1] Cenk Baykal, Nishanth Dikkala, Rina Panigrahy, Cyrus Rashtchian, and Xin Wang. A theoretical335

view on sparsely activated networks. arXiv preprint arXiv:2208.04461, 2022. 1, 3336

[2] Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie337

Millican, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark,338

et al. Improving language models by retrieving from trillions of tokens. In International339

Conference on Machine Learning, pages 2206–2240. PMLR, 2022. 3340

[3] John Charles Butcher. Numerical methods for ordinary differential equations. John Wiley &341

Sons, 2016. 4342

[4] Zixiang Chen, Yihe Deng, Yue Wu, Quanquan Gu, and Yuanzhi Li. Towards understanding343

mixture of experts in deep learning. arXiv preprint arXiv:2208.02813, 2022. 3344

[5] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,345

Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking346

attention with performers. arXiv preprint arXiv:2009.14794, 2020. 3, 6347

[6] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam348

Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:349

Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022. 1, 2350

[7] Aidan Clark, Diego de Las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini, Jordan351

Hoffmann, Bogdan Damoc, Blake Hechtman, Trevor Cai, Sebastian Borgeaud, et al. Unified352

scaling laws for routed language models. In International Conference on Machine Learning,353

pages 4057–4086. PMLR, 2022. 3354

[8] Zihang Dai, Guokun Lai, Yiming Yang, and Quoc Le. Funnel-transformer: Filtering out355

sequential redundancy for efficient language processing. Advances in neural information356

processing systems, 33:4271–4282, 2020. 3, 6357

[9] Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal,358

Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, et al. Beyond english-359

centric multilingual machine translation. J. Mach. Learn. Res., 22(107):1–48, 2021. 3360

[10] William Fedus, Jeff Dean, and Barret Zoph. A review of sparse expert models in deep learning.361

arXiv preprint arXiv:2209.01667, 2022. 1, 3, 15362

[11] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion363

parameter models with simple and efficient sparsity, 2021. 3, 16364

[12] Zhengcong Fei, Xu Yan, Shuhui Wang, and Qi Tian. Deecap: dynamic early exiting for efficient365

image captioning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern366

Recognition, pages 12216–12226, 2022. 3367

[13] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint368

arXiv:1410.5401, 2014. 3369

[14] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-370

Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou,371

et al. Hybrid computing using a neural network with dynamic external memory. Nature,372

538(7626):471–476, 2016. 3373

[15] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han,374

Shibo Wang, Zhengdong Zhang, Yonghui Wu, et al. Conformer: Convolution-augmented375

transformer for speech recognition. arXiv preprint arXiv:2005.08100, 2020. 6376

[16] Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung,377

and Yinfei Yang. Longt5: Efficient text-to-text transformer for long sequences. arXiv preprint378

arXiv:2112.07916, 2021. 3, 6379

10

[17] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval380

augmented language model pre-training. In International Conference on Machine Learning,381

pages 3929–3938. PMLR, 2020. 3382

[18] Hussein Hazimeh, Zhe Zhao, Aakanksha Chowdhery, Maheswaran Sathiamoorthy, Yihua Chen,383

Rahul Mazumder, Lichan Hong, and Ed Chi. Dselect-k: Differentiable selection in the mixture384

of experts with applications to multi-task learning. Advances in Neural Information Processing385

Systems, 34:29335–29347, 2021. 3386

[19] Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling laws for387

transfer. arXiv preprint arXiv:2102.01293, 2021. 1, 2, 4388

[20] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza389

Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.390

Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022. 1391

[21] Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Dynabert: Dynamic392

bert with adaptive width and depth. Advances in Neural Information Processing Systems,393

33:9782–9793, 2020. 3394

[22] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures395

of local experts. Neural computation, 3(1):79–87, 1991. 3396

[23] Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large397

scale distantly supervised challenge dataset for reading comprehension. arXiv preprint398

arXiv:1705.03551, 2017. 7399

[24] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,400

Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language401

models. arXiv preprint arXiv:2001.08361, 2020. 1, 2, 4402

[25] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer.403

arXiv preprint arXiv:2001.04451, 2020. 3, 6404

[26] Guillaume Lample, Alexandre Sablayrolles, Marc’Aurelio Ranzato, Ludovic Denoyer, and405

Hervé Jégou. Large memory layers with product keys. Advances in Neural Information406

Processing Systems, 32, 2019. 3407

[27] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,408

Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with condi-409

tional computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020. 1410

[28] Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. Base layers:411

Simplifying training of large, sparse models. In International Conference on Machine Learning,412

pages 6265–6274. PMLR, 2021. 3413

[29] Lei Li, Yankai Lin, Deli Chen, Shuhuai Ren, Peng Li, Jie Zhou, and Xu Sun. Cascadebert:414

Accelerating inference of pre-trained language models via calibrated complete models cascade.415

arXiv preprint arXiv:2012.14682, 2020. 3416

[30] Lucas Liebenwein, Cenk Baykal, Brandon Carter, David Gifford, and Daniela Rus. Lost in417

pruning: The effects of pruning neural networks beyond test accuracy. Proceedings of Machine418

Learning and Systems, 3:93–138, 2021. 1419

[31] Yi Luan, Jacob Eisenstein, Kristina Toutanova, and Michael Collins. Sparse, dense, and420

attentional representations for text retrieval. Transactions of the Association for Computational421

Linguistics, 9:329–345, 2021. 2422

[32] Aditya Menon, Sadeep Jayasumana, Ankit Singh Rawat, Seungyeon Kim, Sashank Reddi, and423

Sanjiv Kumar. In defense of dual-encoders for neural ranking. In International Conference on424

Machine Learning, pages 15376–15400. PMLR, 2022. 2425

[33] Rina Panigrahy, Xin Wang, and Manzil Zaheer. Sketch based memory for neural networks. In426

International Conference on Artificial Intelligence and Statistics, pages 3169–3177. PMLR,427

2021. 1, 3, 15428

11

[34] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel429

Rothchild, David So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network430

training. arXiv preprint arXiv:2104.10350, 2021. 1431

[35] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,432

Yanqi Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified433

text-to-text transformer. J. Mach. Learn. Res., 21(140):1–67, 2020. 2, 7, 14434

[36] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi,435

Ammar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-436

experts inference and training to power next-generation ai scale. In International Conference437

on Machine Learning, pages 18332–18346. PMLR, 2022. 15438

[37] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions439

for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016. 7440

[38] Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André441

Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.442

Advances in Neural Information Processing Systems, 34:8583–8595, 2021. 1443

[39] Adam Roberts, Hyung Won Chung, Anselm Levskaya, Gaurav Mishra, James Bradbury, Daniel444

Andor, Sharan Narang, Brian Lester, Colin Gaffney, Afroz Mohiuddin, Curtis Hawthorne, Aitor445

Lewkowycz, Alex Salcianu, Marc van Zee, Jacob Austin, Sebastian Goodman, Livio Baldini446

Soares, Haitang Hu, Sasha Tsvyashchenko, Aakanksha Chowdhery, Jasmijn Bastings, Jannis447

Bulian, Xavier Garcia, Jianmo Ni, Andrew Chen, Kathleen Kenealy, Jonathan H. Clark, Stephan448

Lee, Dan Garrette, James Lee-Thorp, Colin Raffel, Noam Shazeer, Marvin Ritter, Maarten449

Bosma, Alexandre Passos, Jeremy Maitin-Shepard, Noah Fiedel, Mark Omernick, Brennan450

Saeta, Ryan Sepassi, Alexander Spiridonov, Joshua Newlan, and Andrea Gesmundo. Scaling451

up models and data with t5x and seqio. arXiv preprint arXiv:2203.17189, 2022. 14452

[40] Adam Roberts, Colin Raffel, and Noam Shazeer. How much knowledge can you pack into the453

parameters of a language model? arXiv preprint arXiv:2002.08910, 2020. 7454

[41] Stephen Roller, Sainbayar Sukhbaatar, Jason Weston, et al. Hash layers for large sparse models.455

Advances in Neural Information Processing Systems, 34:17555–17566, 2021. 1, 3456

[42] Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Q Tran, Yi Tay, and457

Donald Metzler. Confident adaptive language modeling. arXiv preprint arXiv:2207.07061,458

2022. 3459

[43] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,460

and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts461

layer. arXiv preprint arXiv:1701.06538, 2017. 1, 3, 15462

[44] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory463

cost. In International Conference on Machine Learning, pages 4596–4604. PMLR, 2018. 14464

[45] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey.465

ACM Computing Surveys (CSUR), 2020. 3466

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,467

Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural468

Information Processing Systems, volume 30, 2017. 1469

[47] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix470

Hill, Omer Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose471

language understanding systems. Advances in neural information processing systems, 32, 2019.472

7473

[48] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.474

Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv475

preprint arXiv:1804.07461, 2018. 7476

12

[49] Lemeng Wu, Mengchen Liu, Yinpeng Chen, Dongdong Chen, Xiyang Dai, and Lu Yuan.477

Residual mixture of experts. arXiv preprint arXiv:2204.09636, 2022. 3478

[50] Qingyang Wu, Zhenzhong Lan, Jing Gu, and Zhou Yu. Memformer: The memory-augmented479

transformer. arXiv preprint arXiv:2010.06891, 2020. 3480

[51] Yuhuai Wu, Markus N Rabe, DeLesley Hutchins, and Christian Szegedy. Memorizing trans-481

formers. arXiv preprint arXiv:2203.08913, 2022. 3482

[52] Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. arXiv preprint483

arXiv:2011.14522, 2020. 2, 4484

[53] Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui485

Wu. Coca: Contrastive captioners are image-text foundation models. arXiv preprint486

arXiv:2205.01917, 2022. 1487

[54] Seniha Esen Yuksel, Joseph N Wilson, and Paul D Gader. Twenty years of mixture of experts.488

IEEE transactions on neural networks and learning systems, 23(8):1177–1193, 2012. 3489

[55] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santi-490

ago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers491

for longer sequences. Advances in neural information processing systems, 33:17283–17297,492

2020. 3, 6493

[56] Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew Dai,494

Zhifeng Chen, Quoc Le, and James Laudon. Mixture-of-experts with expert choice routing.495

arXiv preprint arXiv:2202.09368, 2022. 1496

[57] Barret Zoph, Irwan Bello, S ameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer,497

and William Fedus. Designing effective sparse expert models. arXiv preprint arXiv:2202.08906,498

2022. 2, 3, 16499

13

Supplementary Material for Alternating Updates for Efficient Transformers500

In this supplementary, we present the full details and hyperparameters of our evaluations, provide501

details of our algorithmic contributions, and present complementary empirical results that support the502

effectiveness the presented work.503

A Experimental Setup504

We experiment with various T5 baseline model sizes: small (S), base (B), large (L), and XL. The base505

(B), large (L), and XL models follow the same model configurations as in the T5 paper, while the small506

model is shallower than the T5 paper [35] to cover a larger range of model sizes (4 encoder/decoder507

layers instead of 8 encoder/decoder layers). In particular, we use the T5 version 1.1 models with gated508

GELU feedforward network and pre layer norm. The models are implemented on top of the T5X [39]509

codebase. During pretraining, we use 256 batch size, Adafactor optimizer [44] with base learning rate510

1.0 and reciprocal square-root decay with 10000 warmup steps, and zero dropout. During finetuning,511

we use 256 batch size, Adafactor optimizer with constant learning rate of 0.001 and 0.1 dropout.512

Unless explicitly stated, we pretrain for 500k steps and finetune for 50k steps. Our experiments were513

implemented in Python and run on TPUv3 with 8 cores.514

B Parameter Counts and Speed515

Here, we present the number of additional parameters needed by adding AltUp, its speed, and its516

pretrain accuracy on T5 models of varying sizes. In the following tables, the embedding parame-517

ters include input embedding table parameters (shared between encoder and decoder) and output518

embedding table. Non-embedding parameters include all the transformer blocks. Train speed is519

measured by number of examples per second per core. Table 3 documents the parameter count and520

training speed comparison. Note that Alternating Updates increases the number of embedding param-521

eters while leaving the non-embedding parameters roughly the same. Since the narrow transformer522

layer computation is not changed by alternating updates and since the predict and correct steps are523

lightweight (see Sec. 3), we incur a relatively small increase in the computation cost compared to a524

dense 2x width model.525

Model # emb params # non-emb params train speed

S 3.29E+07 3.78E+07 166.1
S + AltUp 6.58E+07 3.99E+07 119.4
B 4.93E+07 1.98E+08 52.4
B + AltUp 9.87E+07 2.12E+08 42.3
L 6.58E+07 7.17E+08 17.1
L + AltUp 1.32E+08 7.68E+08 14.4

Table 3: Model size and train speed comparisons on T5X models with AltUp instantiated with K = 2.

Table 4 documents the parameter count, training speed and pretrain accuracy comparison when the526

representation dimension is scaled up with AltUp or dense scaling. Note that Alternating Updates527

increases the number of embedding parameters while leaving the non-embedding parameters roughly528

the same, providing an efficient way to scale up the representation dimension relative to a K-times529

wider model.530

Table 5 contains pretrain performances for T5 XL sized models. We note the AltUp technique531

continue to offer quality boost at the billion parameters scale (note that T5XL has roughly 3B532

parameters), suggesting that AltUp is a robust technique for increasing model capacity for modern533

large language models.534

C Combination with MoE535

Here, we investigate whether AltUp can be combined with orthogonal techniques, namely MoE,536

to obtain additive performance gains in pretrain accuracy for T5 small, base, and large models. In537

14

Model # emb params # non-emb params Train speed Pretrain accuracy

T5 Base 4.93E+07 1.98E+08 52.4 65.29
T5 Base + AltUp2x 9.87E+07 2.12E+08 42.3 65.78
T5 Base + Dense2X 9.87E+07 3.97E+08 32.9 66.45
T5 Base + AltUp4x 1.97E+08 2.41E+08 28.1 66.00
T5 Base + Dense4X 1.97E+08 7.93E+08 12.6 67.01

Table 4: AltUp compared with dense scaling evaluated at 250k pretrain steps.

Model # emb params # non-emb params Train speed Pretrain accuracy

T5 XL 1.32E+08 2.72E+09 3.6 70.01
T5 XL + AltUp2x 2.63E+08 2.92E+09 3.0 70.61

Table 5: Pretrain performances for T5 XL sized models. Pretrain accuracy is measured at 400k steps.
AltUp continues to offer a performance boost even on the scale of models with billions of parameters.

particular, we consider the partial experts setting similar to [36, 33], where at each layer, in addition538

to the layer’s module, we route the input to a smaller expert module and combine the outputs of the539

main and auxiliary modules as the input to the subsequent layer (see Fig. 6).540

(a) Mixture of Experts (b) Mixture of Partial Experts

Figure 6: The partial experts setting in the context of the evaluations in Sec. C. The standard MoE
model (left) routes the inputs to one or more of n experts based on a routing function. Mixture of
Partial Experts (right) always routes the input to the main expert and additionally routes the input to
one or more partial experts; the output is a function of the main expert’s and partial experts’ outputs.

The MoE layer routes an input token x to k of n experts where each expert is itself a parametrized
subnetwork (e.g., a fully-connected layer). Following [10], we let {Ei(·)}i∈[n] and Ei(x) denote the
set of experts and the output of lookup the input token x to expert i, respectively. For an input token
x, a learnable weight matrix W is applied to obtain the logits h(x) = Wx. The lookup probabilities
are computed by taking the softmax of h(x)

pi(x) =
exp(hi(x))∑

j∈[n] exp(hj(x))
∀i ∈ [n].

The token x is routed to the expert(s) T ⊂ [n] with the top-k probabilities p(x). Since this operation
is not differentiable, the output y is computed as a probability weighted combination of the experts’
outputs to enable gradients to propagate back to the router parameters [43], i.e.,

y =
∑
i∈T

pi(x)Ei(x).

15

For MoE, we used the simplified implementation of the top-1 softmax routing of [11]. We use 128541

experts each per encoder and decoder layer, with each expert representing a 2 layer fully-connected542

neural network with hidden dimension 16. For sake of the synergistic demonstration even with the543

core MoE implementation, we did not incorporate a sophisticated mechanism for load balancing such544

as load balancing loss [11] or router z loss [57]. We use multiplicative jitter noise sampled from a545

uniform distribution over [1 − ε, 1 + ε]din with ε = 0.01. The router matrix W was initialized by546

drawing from a zero mean Normal distribution with standard deviation 2× 10−2.547

Method T5 Small T5 Base T5 Large

Baseline 59.10 63.35 65.58
MoE [57] 59.42 63.62 65.71
AltUp (K=2) 59.67 63.97 65.73
AltUp (K=2) + MoE 59.91 64.13 65.95

Table 6: Pretrain accuracy at 100k steps of T5 models augmented with Alternating Updates (see
Sec. 3) and MoE. MoE synergistically combines with Alternating Updates and enables further
increases in model capacity.

Table 6 synthesizes the pretraining performance on the C4 dataset at 100k training steps of AltUp548

and compared techniques on T5 Small, Base, and Large models. Perhaps most notably, we show that549

combining AltUp and MoE leads to even further sizable improvements in the pretrain performance550

(last row of Table 6). For example, the combination of MoE and AltUp improves over the baseline by551

0.81, over AltUp alone by 0.24, and over MoE alone by 0.49. For all model sizes, the combination552

of AltUp and MoE is synergistic and leads to significant improvements compared to not only the553

baseline, but also to each approach in isolation.554

D Alternating updates with varying block selection555

In this section, we present empirical results on the alternating updates technique and comparison556

with other techniques that widen token representation vectors. We increase the token representation557

dimension by a factor of 2 (corresponding to K = 2 in Algorithm 1) unless otherwise specified. The558

model capacity increase comes from a wider embedding table at the bottom layer of the model while559

the transformer layers remain the same, which results in minimal additional computation cost.560

Model Pretrain Accuracy Finetune GLUE Finetune SG Finetune SQuAD (EM/F1)

S (baseline) 61.21 75.83 59.52 76.44/84.97
S + Sum 61.67 77.54 59.63 75.06/83.82
S + SameUp 61.91 77.75 60.81 76.85/85.51
S + AltUp 61.86 76.82 59.60 77.51/85.79
B (baseline) 66.42 84.25 73.56 83.78/91.19
B + Sum 66.82 84.85 75.2 84.36/91.36
B + SameUp 66.82 84.06 74.15 84.41/91.76
B + AltUp 66.96 85.32 75.80 85.24/92.36
L (baseline) 69.13 87.23 81.21 86.77/93.56
L + Sum 69.09 86.18 78.93 86.19/93.08
L + SameUp 69.45 87.95 82.72 87.65/94.13
L + AltUp 69.32 88.20 82.75 87.58/94.27

Table 7: Comparison of Algorithm 1 with various sub-block selection methods on T5-S/B/L.

In Table 7, we compare the summation method (Sum) in which additional embedding vectors are561

added to the token representation vector, Algorithm 1 with same block selection (SameUp), and562

Algorithm 1 with alternating block selection (AltUp), all on top of the T5 version 1.1 small (S), base563

(B), and large (L) models. We observe the Prediction-Compute-Correct scheme as described in Sec. 3564

with same and alternating block selection methods outperforms the summation method. For the565

small models, same block selection method performs better in most tasks, while for the base and566

16

large models, alternating block selection method performs better in most tasks. We note all three567

methods bring improvements in both pretraining and finetuning, and AltUp is generally the most568

effective one. While pretraining accuracies for all three methods are mostly similar, differences in569

finetuning metrics are large, and AltUp generally achieves roughly twice the gains of the other two570

variants. Moreover, we observe that the gains of AltUp in pretraining accuracies show diminishing571

returns when model sizes grows, but the gains in finetuning metrics do not.572

E Sequence-AltUp Details573

Here, we provide the full pseudocode of Sequence-AltUp from Sec. 4 (see Alg. 2).574

Algorithm 2 AltUp extension to sequence dimension
Input: A sequence of vectors x = (x0, x2, ..., xT−1), where xi ∈ Rd. Transformer layer L and

stride parameter k.
Output: A sequence of vectors y = (y0, y2, ..., yT−1).

1: Prediction: predict the output sequence with a trainable linear map:

ŷi = a1xi + a2xbi/kc∗k

for i = 0, 1, ..., T − 1, where a1, a2 ∈ R are trainable scalars;
2: Computation: subsample the input sequence with stride k and apply the transformer layer on

the subsampled sequence:

(ỹ0, ỹk, ..., ỹb(T−1)/kc∗k) = L(x0, xk, ..., xb(T−1)/kc∗k);

3: Correction: correct the prediction with the computation result:

yi = ŷi + b(ỹbi/kc∗k − ŷbi/kc∗k)

for i = 0, 1, ..., T − 1, where b ∈ R is a trainable scalar.

F Recycled-AltUp Fine-tune Evaluations575

We conclude the supplementary material by presenting evaluations with Recycled-AltUp as described576

in Sec. 4. Table 8 presents the results of our pretrain and fine-tune evaluations on T5 Small, Base,577

and Large. The pretrain accuracy is the one reported at 500k steps, and we fine-tune for an additional578

50k steps for the fine-tune evaluations.579

Model Pretrain Acc. GLUE SG SQuAD (EM/F1) TriviaQA (EM/F1)

S 61.21 75.83 59.52 76.44/84.97 19.03/22.83
S + Recycled-AltUp 61.33 77.24 59.12 77.76/85.64 19.06/22.77
S + AltUp 61.86 76.82 59.60 77.51/85.79 19.27/22.95
B 66.42 84.25 73.56 83.78/91.19 23.1/27.56
B + Recycled-AltUp 66.63 85.60 74.83 84.81/91.93 22.72/27.15
B + AltUp 66.96 85.32 75.80 85.24/92.36 24.35/28.78
L 69.13 87.23 81.21 86.77/93.56 26.15/30.76
L + Recycled-AltUp 69.30 87.91 82.53 87.37/93.88 27.51/32.38
L + AltUp 69.32 88.20 82.75 87.81 / 94.29 27.10/32.04

Table 8: The performance of baseline, Recycled-AltUp, and AltUp on pretrain and fine-tune evaluation
metrics. Recycled-AltUp and AltUp were instantiated with K = 2 for all evaluations.

Consistent with our results presented in the main body of our paper, we observe that AltUp and580

Recycled-AltUp both provide clear and consistent gains over the baseline on virtually all pretrain581

and fine-tune metrics. As conjectured in Sec. 4 Recycled-AltUp generally does not provide the full582

benefits of AltUp in terms of pretrain and fine-tune accuracies, however, this gap seems to shrink583

for larger models. Moreover, Recycled-AltUp has the appeal that it practically adds no additional584

17

parameters to the model and, as a result, has roughly the same speed as the baseline model (see585

Fig. 5). We envision that Recycled-AltUp’s improved speed and reduced parameter count may make586

it more appealing for certain applications.587

18

	Introduction
	Related Work
	Alternating Updates
	Background
	Alternating Updates

	AltUp Extensions
	Recycled-AltUp: Faster AltUp via embedding recycling
	Sequence-AltUp: Extension of AltUp to the sequence dimension

	Results
	Alternating updates on benchmarks
	AltUp with varying representation size
	Recycled-AltUp
	Sequence-AltUp

	Conclusion
	Experimental Setup
	Parameter Counts and Speed
	Combination with MoE
	Alternating updates with varying block selection
	Sequence-AltUp Details
	Recycled-AltUp Fine-tune Evaluations

