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ABSTRACT

Recent segmentation methods, which adopt large-scale data training and trans-
former architecture, aim to create one foundation model that can perform multiple
tasks. However, most of these methods rely on heavy encoder and decoder frame-
works, hindering their performance in real-time scenarios. To explore real-time
segmentation, recent advancements primarily focus on semantic segmentation
within specific environments, such as autonomous driving. However, they of-
ten overlook the generalization ability of these models across diverse scenarios.
Therefore, to fill this gap, this work explores a novel real-time segmentation set-
ting called real-time multi-purpose segmentation. It contains three fundamental
sub-tasks: interactive segmentation, panoptic segmentation, and video instance
segmentation. Unlike previous methods, which use a specific design for each task,
we aim to use only a single end-to-end model to accomplish all these tasks in
real-time. To meet real-time requirements and balance multi-task learning, we
present a novel dynamic convolution-based method, Real-Time Multi-Purpose
SAM (RMP-SAM). It contains an efficient encoder and an efficient decoupled
adapter to perform prompt-driven decoding. Moreover, we further explore different
training strategies and one new adapter design to boost co-training performance
further. We benchmark several strong baselines by extending existing works to
support our multi-purpose segmentation. Extensive experiments demonstrate that
RMP-SAM is effective and generalizes well on proposed benchmarks and other
specific semantic tasks. Our implementation of RMP-SAM achieves the optimal
balance between accuracy and speed for these tasks. The code is released at
https://github.com/xushilin1/RAP-SAM

1 INTRODUCTION

Recent advancements in computer vision, driven by transformer architectures (Dosovitskiy et al.,
2021; Carion et al., 2020; Wang et al., 2023b), focus on creating a single large-scale model versatile
enough to handle different tasks like detection and segmentation with a general-purpose design.
Several studies utilizing the same architectures (Wang et al., 2023a; Yan et al., 2023; Jain et al., 2023)
have shown superior performance across various tasks. Enjoying the benefit of the large-scale model
capacity and training data, the general-purpose models demonstrate strong performance on versatility
for specific applications (Kirillov et al., 2023; Jia et al., 2021). For image and video segmentation at
the semantic level, numerous studies (Cheng et al., 2022; Zhang et al., 2021; Li et al., 2022d; 2023e;
Jain et al., 2023) employing a universal design have surpassed previous models tailored for specific
image and video segmentation tasks. The Segment Anything Model (SAM) (Kirillov et al., 2023) is a
leading approach in interactive segmentation, offering a unified model for various interactions such
as point, bounding box, mask, and text input.
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Figure 1: We present real-time multi-purpose segmentation to segment and recognize objects for
image, video, and visual prompt inputs. In addition to benchmarking, we propose a simple yet
effective baseline, named RMP-SAM, which achieves the best performance and speed trade-off
among three different tasks. The larger dot indicates more parameters.

However, most of these studies face challenges in achieving real-time performance on devices
with limited computing resources due to their heavy encoders or cascaded decoders. Despite
their high-performance capabilities and versatility, this limitation hinders the practical use of these
advanced architectures in vision applications, such as editing tools on edge devices. In contrast,
several studies (Zhao et al., 2018; Hu et al., 2023) focus on real-time segmentation using specific
designs (e.g., efficient decoder fusion) but are often tailored to a specific application trained on a
particular dataset (e.g., COCO) or restricted to similar tasks like video semantic segmentation. To our
knowledge, no study investigates real-time, multi-purpose segmentation, where a single model can
perform universal segmentation tasks, including image, video, and SAM-like interactive segmentation.
For example, given a video input, we want to create a tool to perform various segmentation tasks on
the device, including interactive segmentation with visual cues, labeling the masks, and tracking the
masks.

Inspired by the abovementioned challenges, we focus on real-time multi-purpose segmentation and
efficiently investigate the novel issue of training versatile models. We pose a critical inquiry: Given
the limited computational resources and model capacity, how can we develop an efficient, multi-
purpose segmentation model? This entails creating a single model capable of segmenting, tracking,
and classifying each pixel in real-time, similar to performing interactive segmentation similar to
SAM. We present an illustration figure in Fig. 1(a).

First, we explore this problem by benchmarking existing methods. Specifically, we use the COCO (Lin
et al., 2014) and YouTube-VIS (Yang et al., 2019) for joint co-training, employing identical hyperpa-
rameters. Beyond the object queries used for image and video segmentation in prior research, our
approach incorporates visual prompt queries for interactive segmentation. However, none of these
works can achieve the best accuracy and speed trade-off on three tasks using one model. This is
because: 1) No previous works explore joint co-training for segmentation for different purposes. Thus,
extensive experiments are needed to gain a better understanding of meta-architecture. 2) Interactive
and semantic-level segmentation needs better strategies to balance each other. 3) Under the real-time
setting, several previous architectures (Yan et al., 2023; Li et al., 2022c) for multi-task learning may
not be practical.

To solve these issues, we present a real-time multi-purpose segment anything model (RMP-SAM). It
contains an efficient encoder and shared decoder with multiple queries as inputs. Unlike previous
works, we avoid cascaded transformers encoder layers and pixel-wise cross-attention decoder (Cheng
et al., 2022). Instead, we propose a pooling-based dynamic convolution to replace per-pixel cross-
attention to achieve better accuracy and speed trade-off. We represent all three tasks using queries
with shared dynamic convolution operation. According to different outputs, we can divide the
segmentation tasks into two types: one for class-agnostic masks (SAM-like) and the other for class-
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Table 1: Real-Time Segmentation Settings. Our multi-purpose segmentation supports more tasks in one
framework.

Property Image Seg Video Seg SAM-Like SAM-2-Like Ours: Real-Time Multi-Purpose Seg
Image Masks ✓ ✗ ✓ ✓ ✓
Video Masks ✗ ✓ ✗ ✓ ✓

Interactive ✗ ✗ ✓ ✓ ✓
Semantic Labels ✓ ✓ ✗ ✗ ✓

Multitasks ✗ ✗ ✗ ✗ ✓

Table 2: Comparison of Segmentation Methods. Our proposed RMP-SAM supports various segmentation tasks
and performs them in real-time.

Methods SS PS VIS Interactive Multi-Task in One Model Real Time
ICNet (Zhao et al., 2018) ✓ ✗ ✗ ✗ ✗ ✓

Bi-Seg (Yu et al., 2018) ✓ ✗ ✗ ✗ ✗ ✓
YOSO (Hu et al., 2023) ✓ ✓ ✗ ✗ ✗ ✓

Mobilie-VIS (Zhang et al., 2024) ✗ ✗ ✓ ✗ ✗ ✓
SAM (Kirillov et al., 2023) ✗ ✗ ✗ ✓ ✗ ✗

Mask2Former (Cheng et al., 2022) ✓ ✓ ✗ ✗ ✗ ✗
Video K-Net (Li et al., 2022d) ✗ ✓ ✓ ✗ ✗ ✗
OneFormer (Jain et al., 2023) ✓ ✓ ✗ ✗ ✓ ✗

RMP-SAM (Ours) ✓ ✓ ✓ ✓ ✓ ✓

specific masks (contains one mask and one class label). Two types have different goals and will
conflict during the multi-task learning process. Thus, we further explore four different architectures
in the case of various decoder designs. In particular, we find a single decoder with multiple queries
for different tasks can achieve good enough results and best speed and accuracy trade-off. Moreover,
we present an effective dual adapter design that better adapts shared knowledge of the same decoder.
The dual adapter contains an asymmetric design to better transfer shared features. To the best of our
knowledge, RMP-SAM is the first real-time multi-purpose segmentation model that can achieve the
best speed and accuracy trade-off on four different tasks, as shown in Fig. 1(b). Moreover, due to the
semantic level and interactive level segmentation ability, our model can create more new applications,
such as interactive video segmentation. In addition, we also verify our model in the SAM-like setting
by co-training with SAM-data, it also achieves comparable results. Extensive experiments show the
effectiveness of our design. The main contributions of this work are:

• We introduce real-time multi-purpose segmentation, a novel multi-task segmentation aiming
to segment objects for real-time image, video, and interactive inputs.

• We benchmark several real-time transformer-based segmentation approaches for the new
settings.

• We present a simple yet fast baseline named RMP-SAM. It contains a lightweight feature
extractor, a unified decoder, and two asymmetric adapters.

• Extensive experiments demonstrate that RMP-SAM achieves the best speed and accuracy
trade-off in the proposed benchmark and regular real-time semantic and panoptic segmenta-
tion benchmarks. We also show scalability across datasets and application demos.

2 REAL-TIME MULTI-PURPOSE SEGMENTATION

Problem Settings. Our proposed real-time multi-purpose segmentation contains three visual inputs:
image, video, and visual prompts (boxes and points). It predicts the corresponding masks, labels, and
instance IDs for the content within the given input. Basically, we adopt the definition of panoptic
segmentation Kirillov et al. (2019) for image inputs since it covers all concepts in the scene. For
video inputs, we segment and track each foreground instance (video instance segmentation). Given
visual prompts, we follow the SAM-like Zhang et al. (2023a); Zhou et al. (2023); Shu et al. (2023);
Xiong et al. (2023) setting for interactive segmentation, performing class-agnostic segmentation
according to the user’s inputs. Although recent advancements, such as SAM-2 (Ravi et al., 2024), have
attempted to unify the interactive segmentation task for both image and video inputs, our framework
emphasizes the importance of object semantics. It incorporates multi-task learning in a single shot.
Combined with interactive segmentation and video segmentation, we can also achieve interactive
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video segmentation as video object segmentation. As shown in Tab. 1 and Tab. 2, we compare
previous segmentation methods with and indicate that our method unifies different segmentation tasks
within a single framework. This approach enables more flexible usage across various segmentation
tasks, particularly regarding input modalities and predictions.

Datasets. For benchmarking, we use the well-known COCO dataset (Lin et al., 2014) for panoptic
and interactive segmentation. During the training of interactive segmentation, the boxes derived from
the ground truth, along with points randomly sampled from the masks, serve as visual prompts. For
testing, we obtain the center point of the mask as a visual prompt. For video segmentation, we adopt
the widely used YouTube-VIS 2019 dataset (Yang et al., 2019) for training. We do not use the SAM
data for our benchmarking. There are several reasons: (1) SAM data is not as well annotated as the
COCO dataset. (2) We only focus on object-level and scene-level segmentation, while SAM data
contain more granularity. (3) SAM data has no semantics, while our goal is to predict semantic labels
for real applications. To fairly compare with SAM-like models, we adopt the SAM-data training for
specific setting, as shown in Sec. 4.1.

3 PROPOSED METHOD

First, we revise panoptic segmentation, video instance segmentation, and interactive segmentation
under the unified formulation. When combined with a query-based segmentation model, object queries
can represent all entities within the scene, encompassing image-level objects, video-level tracked
objects, and prompt-based specific objects. For panoptic segmentation (Kirillov et al., 2019), given an
input image I ∈ RH×W×3, the objective is to generate a group of masks {yi}Ni=1 = {(mi, ci)}Ni=1
where ci denotes the class label of the binary mask mi and N is the number of queries, H × W
indicates the spatial dimensions. For video instance segmentation (Yang et al., 2019), given a video
clip input V ∈ RT×H×W×3, where T denotes the number of frames, the process aims to generate
an instance mask {yi}Ni=1 = {(mi, ci, di)}Ni=1 , where N represents the number of the tube masks
mi ∈ {0, 1}T×H×W , ci indicates the class label of the tube mi, and di identifies the instance ID for
each instance. For SAM-like segmentation (Kirillov et al., 2023), both the image I and visual prompts
P ∈ RK×2 (point prompts are used here) are taken as inputs. These prompts, which include points and
boxes, lead to the outputs of corresponding binary image masks {yi}Ki=1 = {mi ∈ {0, 1}H×W }Ki=1,
where K denotes the number of visual prompts. Each visual prompt is encoded into one object query,
which naturally can be the input of the decoder.

3.1 RMP-SAM ARCHITECTURE

Overall Architecture. As shown in Fig. 2, our RMP-SAM is built upon a simple encoder and
decoder architecture that can input images, videos, and visual prompts. Following SAM, we utilize
the prompt encoder to convert visual prompts into queries. These visual prompts and object queries
share the same decoder for the efficiency of computation and parameter size. However, the goals of
the two types of queries are different: the former pays more attention to the local details of the visual
prompts, while the latter considers the scene and temporal features. To better balance the results for
interactive segmentation and image/video segmentation, we design a prompt adapter and an object
adapter at the end of the decoder.

Lite Feature Extractor. Due to computation cost limitations, we avoid using previous meth-
ods (Cheng et al., 2022; Li et al., 2024b) that involve large backbones and heavier encoders. As
required by real-time constraint, we investigate lightweight backbones such as ResNet18 (He et al.,
2016) and TopFormer (Zhang et al., 2022). We incorporate a feature pyramid network with de-
formable convolution to enhance representation alignment and fuse multi-scale features in real-time.
When dealing with video input, we extract the spatial-temporal features. For simplicity, we use
Fimg ∈ RH

4 ×W
4 ×d for image inputs and Fvid ∈ RT×H

4 ×W
4 ×d for video inputs.

Unified Dynamic Convolution Decoder. The goal of the decoder is to refine the object query.
However, many of these methods (Cheng et al., 2021b; 2022), are not feasible for real-time settings due
to their reliance on heavily cascaded layers and pixel-wise cross-attention mechanisms. In contrast,
our method uses a pooling-based dynamic convolution framework (Zhang et al., 2021; Li et al., 2022d)
to enhance the efficiency of the decoder. Given object query Q ∈ RN×d and prompt query P ∈ RK×d,
the masks Mi are obtained by dot product with Fimg or Fvid. Here, i represents the decoder stage
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Figure 2: RMP-SAM overview. Our method contains three visual inputs: image, video, and visual prompts.
Utilizing positional encoding, we generate prompt queries from these visual prompts. The learnable object
queries, prompt queries, and the feature map F are directed to the multi-stage decoder. This process generates
multi-stage predictions and refined queries. These refined queries engage in cross-attention with F , resulting in
the final prediction.

index, N is the total number of object queries, and K is the number of visual prompts. According
to the inputs, the masks can be image masks for panoptic segmentation Mpan

i ∈ RN×H
4 ×W

4 and
interactive segmentation M iter

i ∈ RK×H
4 ×W

4 or tube masks M tube
i ∈ RN×T×H

4 ×W
4 . Then, we can

obtain the corresponding query features Xpan
i ∈ RN×d, Xiter

i ∈ RK×d, Xtube
i ∈ RN×d via mask

pooling:

Xpan
i =

W∑
u

H∑
v

Mpan
i−1 (u, v) · Fimg(u, v). (1)

For video tasks, we group the spatial-temporal features as follows:

Xtube
i =

T∑
t

W∑
u

H∑
v

M tube
i−1 (t, u, v) · Fvid(t, u, v), (2)

where u, v are the indices of spatial location, t is index of input frame. Since the dynamic convolution
performs similarly for each task, we use panoptic segmentation Xpan

i as an illustration. For interactive
segmentation, we adopt the same equation (Equ. 1). In our implementation, the learned query is
shared for both Qpan

i and Qtube
i .

In particular, we adopt the design of previous methods (Zhang et al., 2021; Sun et al., 2021; Li et al.,
2022c) to refine input queries Qpan

i with features Xpan
i which are grouped from their masks,

Q̂pan
i = DynamicConv(Xpan

i , Qpan
i−1), (3)

where the dynamic convolution uses the query features Xpan
i to generate parameters to weight

input queries Qpan
i−1 . Specifically, DynamicConv uses input query features Xpan

i to generate gating
parameters via a multilayer perceptron (MLP) and multiply back to the original query input Qpan

i−1 .
We adopt the same design (Zhang et al., 2021; Sun et al., 2021) by learning gating functions to update
the refined queries. The DynamicConv operation is based on:

Q̂pan
i = Gatex(X

pan
i )Xpan

i +Gateq(X
pan
i )Qpan

i−1 , (4)

where Gate is implemented with a fully connected layer followed by Layer Norm and a sigmoid
layer. We adopt two different gate functions, including Gatex and Gateq . The former is to weigh the
query features, while the latter is to weigh corresponding queries. Next, we adopt one self-attention
layer with feed-forward layers (Vaswani et al., 2017; Wang et al., 2021) to learn the correspondence
among each query and update them accordingly. This operation leads to the full correlation among
queries, shown as follows:

Qi = FFN(MHSA(Q̂i) + Q̂i), (5)
where MHSA means Multi Head Self Attention, FFN is the Feed Forward Network commonly used
in the current version of Transformers (Carion et al., 2020; Dosovitskiy et al., 2021). We adopt several
feed-forward layers on Qpan

i for mask classification and directly output the class scores. Then, we
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perform the inner product between the learned queries Qpan
i , and image features Fvid and Fimg . The

only difference for the video segmentation task is that we predict the tube mask rather than only a
single image mask. The entire process (Equ. 1, Equ. 2, Equ. 3 and Equ. 5) is repeated three times in
total.

Moreover, we also explore various decoupled designs, as shown in Fig. 3. In particular, as previous
works suggest, we also explore decoupled decoders and their corresponding adapters. Via our detailed
experiments, we do not find extra gains in the cases of decoupled decoders that introduce more
computation and parameter costs. Please refer to Sec. 4.2 for the detailed decoder design.

Light-Weight Decoupled Adapter. After the shared decoder, we also add two lightweight adapters,
Aobj and Aprompt to adapt the shared decoder’s knowledge better. In particular, we use the asymmet-
ric design. Aobj uses the same dynamic convolution design to refine the object query further, while
Aprompt uses pixel-wise cross-attention design. Our key insights are: (1) The interaction between
the whole scene feature and object queries is necessary for panoptic and video segmentation but not
for interactive segmentation. The visual prompts provide strong positional information, and they pay
more attention to local details features. (2) Despite the decoder being shared, the details are still
missing for interactive segmentation due to the pooling effect in Equ. 1, where we even find inferior
results after adopting a pooling-based adapter. More detailed adapter design can be found in Sec. 4.2.

3.2 TRAINING, INFERENCE, AND EXTENSION

Joint Image and Video Segmentation Co-training. Our goal is to train all segmentation tasks only
once jointly. All training targets are one entity label and mask for all three cases. The entity can
be thing, stuff, class-agnostic masks, and corresponding labels. Note that the instance masks with
the same ID d form the tube masks. During training, we apply Hungarian matching between the
predicted and ground-truth entity masks to assign object queries to video/image entities and then
supervise their predicted masks and classification. To unify label taxonomies across datasets, we
replace the learnable classifier with CLIP text embeddings following ViLD (Gu et al., 2021).

Following previous works (Cheng et al., 2022; Li et al., 2023e), the final loss function is given as
L = λclsLm_cls + λceLm_ce + λdiceLm_dice. Here, Lm_cls is the Cross-Entropy (CE) loss for mask
classification, and Lm_ce and Lm_dice are mask Cross-Entropy (CE) loss and Dice loss (Milletari
et al., 2016; Wang et al., 2020) for segmentation, respectively. By default, we set λcls = 2, λce =
5, λdice = 5.

Inference. We follow the same inference procedure of Mask2Former (Cheng et al., 2022) for image
segmentation. In panoptic segmentation, we merge the prediction of things and stuff according to
the sorted scores. For video instance segmentation, we use query matching rather than introducing
extra tracking components to generate instance ID, following previous work (Li et al., 2022d; Huang
et al., 2022; Li et al., 2023e). We adopt a near-online method for inference. We follow the original
SAM (Kirillov et al., 2023) for interactive segmentation tasks by providing box and point prompts
and obtaining the binary masks. All the parameters are shared across three different tasks.

Extension and Application. Since our model can perform various segmentation tasks, Our method
can be extended to more datasets and tasks, including semantic segmentation on ADE20k (Zhou
et al., 2017) or video panoptic segmentation on VIPSeg (Miao et al., 2022). Moreover, our method
can support prompt-driven video object segmentation by combining interactive segmentation with
a video instance segmentation framework. We put the details of the extension and application for
RMP-SAM in the appendix (Sec. 7.1).

4 EXPERIMENTS

Datasets. Our benchmark uses COCO (Lin et al., 2014) and YouTube-VIS 2019 (Yang et al., 2019)
datasets for benchmarking. COCO-SAM is constructed using ground truth boxes and points randomly
sampled from ground truth masks as visual prompt inputs. In addition, to verify the effectiveness and
generality of RMP-SAM, we also use other datasets, including ADE-20K (Zhou et al., 2017) and
VIP-Seg dataset (Miao et al., 2022) in Sec. 4.1.

Evaluation Metrics and Devices. For image segmentation, we adopt panoptic quality (PQ), which
can be further decomposed into the segmentation quality (SQ) and the recognition quality (RQ). For
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Table 3: Real-Time Multi-Purpose Segmentation benchmark. Our proposed RMP-SAM achieves the
best accuracy and speed trade-off on three tasks.

Method Backbone COCO-Panoptic COCO-SAM YouTube-VIS 2019 FLOPs Parameters FPSPQ SQ PQth PQst mIoU mAP

Mask2Former R18 35.6 77.5 39.0 30.3 54.7 38.6 89.8G 18.6M 31.2
MaskFormer R18 31.0 76.0 33.2 27.7 55.6 34.1 79.7G 18.5M 38.0

kMaX-DeepLab R18 27.8 71.0 30.3 24.1 16.9 23.1 87.1G 18.7M 15.0
YOSO R18 31.6 76.8 36.4 24.4 45.7 31.4 57.3G 18.7M 41.0

RMP-SAM(Ours) R18 39.9 78.6 43.3 34.8 52.7 38.7 60.5G 22.8M 40.3
Mask2Former R50 42.9 79.8 47.6 35.6 58.0 42.1 153G 45.2M 26.6
MaskFormer R50 37.4 77.3 41.2 31.8 58.8 40.0 143.0G 45.2M 34.3

kMaX-DeepLab R50 36.9 75.7 42.7 28.4 20.1 26.4 280.0G 51.4M 14.9
YOSO R50 37.3 76.9 42.7 29.2 49.2 40.7 119.0G 45.1M 36.3

RMP-SAM(Ours) R50 46.9 80.8 51.6 39.8 57.9 46.2 123.0G 47.2M 35.1
MaskFormer TopFormer 31.6 75.9 33.5 28.6 56.1 38.2 60.0G 12.8M 29.9

YOSO TopFormer 31.0 75.9 33.0 26.9 45.1 27.9 36.8G 12.9M 31.1
RMP-SAM(Ours) TopFormer 34.6 77.0 37.8 29.8 53.3 41.7 40.1G 15.0M 30.7

the VIS task, we use mAP as our primary metric. We further report the semantic segmentation results
(mIoU) and video panoptic segmentation results (STQ (Weber et al., 2021) and VPQ (Kim et al.,
2020)). Speed testing is conducted fairly on one A100 GPU for all models.

Re-implemented Baselines. Since no previous works explore joint co-training for image, video,
and interactive segmentation in one model. We re-implement several representative baselines using
the same codebase, including non-real-time models (Mask2Former (Cheng et al., 2022), kMaX-
DeepLab (Yu et al., 2022)) for reference. We benchmark multiple different methods, including
different backbones and decoders.

Implementation Details. We implement our models and all other baselines in PyTorch (Paszke
et al., 2019). We use the distributed training framework with 16 A100 GPUs. Each mini-batch has
two images per GPU, and each batch contains one data type. In particular, we adopt pseudo video
training on COCO by moving image masks with random directions. All the models are trained with
12 epochs. For data augmentation, we adopt large-scale jitter as previous works (Cheng et al., 2022)
to build strong baselines. For all models, we adopt the same training steps and optimizers. Refer to
the appendix (Sec. 7.1) for more details.

4.1 MAIN RESULTS

Our Benchmark Results. We list our benchmark results in Tab. 3. We benchmark recent state-of-
the-art methods using the same training and test settings. From the table, our proposed RMP-SAM
achieves the best speed and accuracy trade-off on all three visual segmentation tasks under the various
backbones. Mask2Former (Cheng et al., 2022) achieves similar or partially stronger results than
our method. However, their speed is still limited, and they are 7-8 FPS slower than our methods.
YOSO (Hu et al., 2023) runs as fast as our method. However, the performance gap is still significant.
Thus, our proposed RMP-SAM is a simple yet effective baseline for real-time and Multi-Purpose
settings.

Compare with SAM-like Methods. Tab. 4 provides a detailed comparison between our models
and previous SAM-like models. We report the results of mask AP of the COCO validation set, the
parameter count, and FLOPs of each model. We first generate bounding boxes for each image using
Mask R-CNN with ResNet50. Then, we send these bounding boxes to SAM-like models as box
prompts. Our method is co-trained using SAM data and demonstrates even better results than most
previous efficient SAM-like methods. It has strength in computational efficiency, with an additional
function for video instance segmentation and panoptic segmentation.

Comparison with Specific Design Models on VIP-Seg. In Tab. 5(a), we verify the effectiveness of
RMP-SAM on a more challenging video segmentation task, video panoptic segmentation (VPS) on
the VIP-Seg dataset. Compared with recent works (Li et al., 2023e; Miao et al., 2022), RMP-SAM
also archives the best speed and accuracy trade-off, despite RMP-SAM is not specifically designed
for VPS.

Comparison with Specific Design Models on ADE-20k. In Tab. 5(b), we further transfer RMP-SAM
on ADE-20k datasets. Since our method is a real-time model, we only list several representative
works for reference. Our method still achieves stronger results than recent work (Hu et al., 2023).
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Table 4: Comparison with SAM-like methods on COCO instance segmentation dataset. We first generate
bounding boxes using Faster R-CNN, which are used as visual prompts for segmentation. We report the results
of mask AP of the COCO validation set, the parameters, and the FLOPs.

Method mAP #Param. FLOPs(G) PS VIS Interactive

SAM-H (Kirillov et al., 2023) 35.6 641M 3000 ✗ ✗ ✗
TinySAM (Shu et al., 2023) 32.5 10M 42 ✗ ✗ ✗

MobileSAM (Zhang et al., 2023a) 32.1 10M 42 ✗ ✗ ✗
EdgeSAM (Zhou et al., 2023) 31.9 10M 22 ✗ ✗ ✗

EfficientSAM (Xiong et al., 2023) 32.4 10M - ✗ ✗ ✗
FastSAM (Zhao et al., 2023) 34.3 68M 344 ✗ ✗ ✗

RMP-SAM 33.2 47M 35 ✓ ✓ ✓
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Figure 3: Meta-architecture exploration. (a), Simple shared decoder design. (b), Decoupled decoder
design with two heads. (c), Shared decoder with decoupled adapter. (d), Decoupled decoder with the
decoupled adapters. Best viewed in color and zoom in.

Table 5: Compared with specifically designed segmentation models.

(a) Comparison with video segmentation method on
VIP-Seg validation set.

Method backbone VPQ STQ FPS
Clip-PanoFCN R50 22.9 31.5 8
Video K-Net R50 26.1 33.1 10
Tube-Link STDCv1 30.6 32.0 14
Tube-Link STDCv2 31.4 32.8 12

Ours R18 32.5 33.7 30

(b) Comparison with panoptic segmentation method on
ADE-20k validation set.

Method backbone PQ Parameters FLOPs

PanSegFormer R50 36.4 51M 214G
MaskFormer R50 34.7 45.2M 181G
Mask2Former R50 39.7 45.2M 226G

YOSO R50 38.0 45.1M 176G
RMP-SAM R50 38.3 47.2M 179G

4.2 ABLATION STUDY AND VISUAL ANALYSIS

Ablation on Meta-Architecture Design. In Tab. 6(a), we further explore the meta-architecture
design, as shown in Fig. 3. We use R50 as the backbone and keep the adapter unchanged. The
table shows that a shared decoder architecture achieves the best parameter and performance trade-
off. These findings may conflict with recent multi-task work (Li et al., 2022c) since the decoupled
decoders may have more capacity. We argue that since our feature extractors are weaker than those
works and the representation power is far from the heavier backbone such as Swin (Liu et al., 2021)
or ViT-large (Dosovitskiy et al., 2021), adding more capacity in the decoder may not boost the final
performance.

Effectiveness of Joint Co-training. We further explore the impact of each dataset in Tab. 6(b).
We find joint co-training with image and video data leads to better performance for video instance
segmentation but reduces the performance of panoptic segmentation. Adding COCO-SAM training
leads to a few performance drops. This is because the learning targets are different for object queries
and prompt queries.

Ablation on Shared Decoder Design. Tab. 6(c) shows using simple pooling-based dynamic convolu-
tion performs well under real-time settings, where we adopt ResNet18 as the backbone and keep the
adapter unchanged. In particular, there is no difference in panoptic segmentation results and a slight
gap for interactive segmentation. However, per-pixel cross-attention introduces extra computation
costs.

Ablation on Adapter Design. Then, we explore the adapter design in Tab. 6(d). In particular, we
use a pre-trained model without adapters for initialization to see the effect of different adapters.
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Frame 2Frame 1 Frame 3 Frame 4 Frame 5

Figure 4: The visualization results of YouTube-VIS 2019 and COCO datasets. The first two rows visualize five
frames of inputs. The same instances are in the same color. The third row shows the interactive segmentation
results with a single-point prompt (green color). The last row shows the panoptic segmentation results.

Table 6: Ablation study on RMP-SAM’s component design.

(a) Ablation on meta-architecture.

Setting COCO-Panoptic COCO-SAM Parameters

Fig. 3 (a) 43.8 54.2 46.3M
Fig. 3 (b) 44.0 55.2 53.6M
Fig. 3 (c) 44.6 56.7 47.3M
Fig. 3 (d) 45.2 56.2 54.6M

(b) Ablation on joint co-training. a: COCO-Panoptic.
b : YT-VIS 2019. c: COCO-SAM.

Setting COCO-Panoptic YT-VIS 2019 COCO-SAM

a 36.6 - -
b - 21.5 -

a + b 36.2 36.0 50.7
a + b + c 35.7 35.3 50.9

(c) Ablation on shared decoder design. DC: dynamic
convolution. DCG: dynamic convolution with gating.

Settings COCO-Panoptic COCO-SAM

Per-Pixel Cross-Attention 45.0 55.3
Pooling + DC 43.8 55.7

Pooling + DCG 44.6 56.7

(d) Ablation on adapter design. CA: cross-attention.
DC: dynamic convolution.

Aobj Aprompt COCO-Panoptic COCO-SAM

- - 44.2 53.2
CA CA 42.6 54.3
DC DC 44.7 52.1
DC CA 44.6 56.7
CA DC 44.5 56.2

In particular, we find that using asymmetric adapters works well for balanced results for object
queries and prompt queries since the goals of the two queries are different. The former needs the
spatio-temporal and scene-level context, while the latter only cares about the region context with the
input position as the guidance. Our adapter can also work with other architecture, as shown in the
appendix (Sec. 7.2).

Result Visualization. In Fig. 4, we give the three different visualization results on the YouTube-VIS
2019 and COCO datasets. We generate these visualization results using only a single model thanks to
the joint co-training strategy. The first three rows in Fig. 4 show the video instance segmentation.
The fourth row shows the interactive segmentation results with a single-point prompt (shown in green
color), and the last row shows the results of panoptic segmentation.

5 RELATED WORK

Universal Segmentation. Prior research has focused on designing segmentation models tailored for
specific tasks. Recent developments in this field (Dosovitskiy et al., 2021; Liu et al., 2021; Carion
et al., 2020; Zhang et al., 2021; Cheng et al., 2022; Yu et al., 2022; Li et al., 2021b; 2023c; Gu
et al., 2023; Yuan et al., 2022; Li et al., 2022c; 2023d; 2024b; Yuan et al., 2024; Yang et al., 2021b;
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2024) have shifted towards employing mask classification architectures, coupled with an end-to-
end set prediction objective, to facilitate universal segmentation. This approach has outperformed
specialized models (Chen et al., 2019; Kirillov et al., 2019; He et al., 2017; Li et al., 2021a; Huang
et al., 2019; Yuan et al., 2020; Zhao et al., 2017; Chen et al., 2018; Li et al., 2022b; 2020a; Chen
et al., 2017) across various segmentation tasks, including those involving images, videos, and point
clouds (Kim et al., 2022; Li et al., 2022d; 2023e; Cheng et al., 2021a; Xu et al., 2022). Specifically,
Mask2Former (Cheng et al., 2022) uses a masked-attention mechanism and surpasses the performance
of prior specific image segmentation models. Similarly, Tube-Link (Li et al., 2023e) outperforms
earlier models (Li et al., 2022d;b; Liu et al., 2020; Shin et al., 2023; Goel et al., 2021) tailored for
specific video segmentation tasks. Semantic-SAM (Li et al., 2023a), built on Mask-DINO (Li et al.,
2023b), employs a hybrid query design to facilitate panoptic and interactive segmentation within
a single framework. However, despite the strong performance of these works, their complexity,
stemming from the heavier encoder or the cascaded decoder designs, poses significant challenges
for integration into actual products. Slow processing speeds and substantial parameter overhead
primarily hinder these.

Efficient Model Design. This research direction primarily concentrates on the development of
efficient CNNs (Howard et al., 2017; Sandler et al., 2018; Howard et al., 2019; Iandola et al., 2016;
Zhang et al., 2018; Ma et al., 2018; Han et al., 2020), transformers (Maaz et al., 2022; Pan et al., 2022;
Mehta & Rastegari, 2022), and hybrid architectures (Zhang et al., 2023b; Ma et al., 2022; Chen et al.,
2022b; Li et al., 2022a; Zhou et al., 2022), aimed at advancing visual representation learning. Most
research investigates backbone design within the constraints of real-time processing and parameter
efficiency. These studies are orthogonal to our work, which primarily explores the impact of data,
task, and decoder design. Additionally, our work employs efficient models as encoders and presents
detailed benchmarks and analyses of the encoder’s effects.

Efficient Segmentation. Previous studies (Zhao et al., 2018; Li et al., 2020b; Yu et al., 2018; Hu
et al., 2023; Hong et al., 2021; Wan et al., 2023; Yu et al., 2021; Mehta et al., 2018) on efficient
segmentation have predominantly concentrated on closed-set and specific domains. In particular, a
significant portion of this research (Li et al., 2020b; Hu et al., 2023; Mehta et al., 2019) is dedicated
to driving scenarios. Recently, various studies (Zhang et al., 2022; Wan et al., 2023; Zhou et al.,
2023) have developed efficient segmentation techniques that facilitate model execution on mobile
devices. Mobile SAM (Zhang et al., 2023a) introduces a streamlined encoder distillation method.
Fast SAM (Zhao et al., 2023) employs a single-stage instance segmentation framework that directly
decodes class-agnostic masks. Recently, multiple studies have been conducted on efficient panoptic
segmentation (Sun et al., 2023; Hu et al., 2023; Mohan & Valada, 2021) and rapid video instance
segmentation (Yang et al., 2021a; Zhang et al., 2024). However, these real-time segmentation methods
are limited to specific tasks. We contend that a multi-purpose model capable of real-time performance
would have wide-ranging applications in editing, tracking, and segmentation functionalities within
various products.

Interactive Segmentation. Interactive segmentation (Kirillov et al., 2023; Chen et al., 2022a; Sofiiuk
et al., 2022; Lin et al., 2020; 2022) distinguishes objects by actively incorporating user inputs.
Recently, SAM (Kirillov et al., 2023) has shown remarkable segmentation outcomes by leveraging
multiple user interaction inputs and training on SA-1B data. Inspired by SAM, several studies (Zhang
et al., 2023a; Zhou et al., 2023) have concentrated on employing a lighter image encoder to adapt
SAM for real-time scenarios.

6 CONCLUSION

In this work, we explore a new challenging setting, real-time multi-purpose segmentation, to explore
multi-task segmentation in one efficient model. To achieve this, we first benchmark existing image
segmentation approaches by extending their query for video and interactive segmentation. However,
no work can achieve the best speed and accuracy trade-off on all three sub-tasks. To solve this
problem, we introduce RMP-SAM, a real-time segmentation model. It has a simple shared decoder
with two key designs: shared dynamic convolution and asymmetric adapters. These designs lead to
the best trade-off between speed and accuracy on three segmentation tasks. The proposed RMP-SAM
model is versatile and effective for various tasks, including image segmentation, video segmentation,
and iterative segmentation. To our knowledge, no real-time model can achieve this goal. The proposed
benchmark and RMP-SAM baseline can facilitate future research in this new setting.
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7 APPENDIX

In this appendix, we add a deeper discussion on our RMP-SAM with existing unified methods from
different views in Sec. 7.1. Next, we present more detailed results to support the benchmark and our
proposed RMP-SAM in Sec. 7.2. Then, in Sec. 7.3, we present a more detailed visual comparison
using our model. Finally, in Sec. 7.4, we discuss several failure cases and potential future work.
Moreover, we have appended a short video to introduce our work briefly and append the code for
reference.

7.1 MORE METHOD DETAILS

More Implementation Details. We implement our proposed RMP-SAM and benchmark methods
using PyTorch and train them in the same environment. For kMaX-DeepLab (Yu et al., 2022), we
excluded the auxiliary semantic segmentation loss, instance discrimination loss, and preserving
PQ-style loss alignment with Mask2former (Cheng et al., 2022) for a fair comparison. We utilize
the AdamW (Loshchilov & Hutter, 2019) optimizer with a weight decay of 0.05, and the learning
rate is set to 1e-4 for all methods. We warm up the learning rate in the first 500 iterations using a
linearly increased strategy and decay the learning rate at 8 and 11 epochs by a factor of 10. For data
augmentation, we use the large-scale jittering (LSJ) augmentation (Ghiasi et al., 2020) with a random
scale sampled from the range of 0.1 to 2.0 and followed by a fixed size crop to 1024×1024. For joint
dataset training, we sample clip images with a ratio of 1: 25: 1 for COCO-panoptic, Youtube-2019,
and SAM datasets. For a fair comparison with efficient SAM models, we adopt the SAM dataset for
fine-tuning. In particular, we adopt the co-trained checkpoint and fine our visual prompt segmentation
branch using 10% SAM dataset. The training follows the previous works (Zhang et al., 2023a).

More Inference Details. For video instance segmentation, we adopt simple object query matching (Li
et al., 2022d; Huang et al., 2022) for all methods to keep the fair comparison to assign instance ID.
We mainly use point prompts for interactive segmentation, which are more challenging than box
prompts. For panoptic segmentation, all hyperparameters are the same. The FPS is obtained on one
40GB A100 GPU for the main paper and supplementary.

Detailed Comparison with SAM-2. We present a more detailed comparison with SAM-2 (Ravi
et al., 2024) here. (1) For functionality, SAM-2 mainly focuses on video object segmentation and
interactive segmentation. Compared with SAM, it adds mask tracking ability on given visual prompts,
while our method mainly explores multi-purpose and multi-task real-time segmentation. We unify
panoptic segmentation, video instance segmentation, and interactive segmentation in one model with
the requirements in real time. (2) For data scale and diversity, SAM-2 builds a large scale dataset
and mainly has one purpose: Video Object Segmentation. Our RMP-SAM only involves a small set
of public data sources and has multiple purposes: segmentation, mask labeling, mask tracking, and
panoptic segmentation. (3) For goals, SAM-2 aims at the production level with large-scale datasets
(including internal datasets) co-training. Our RMP-SAM aims at efficient model design and performs
well under real-time constraints. (4) Last, our work is concurrent with SAM-2 since our work is also
inspired by pioneering SAM.

7.2 MORE EXPERIMENT RESULTS

Benchmark More Methods. In Tab. 7, we benchmark more models and backbones (Zhang et al.,
2021; Maaz et al., 2022; Mehta & Rastegari, 2022) as the supplementary to main paper. Again, for
various backbones and different heads, our model can achieve better or comparable results across
three different tasks while running in real-time. In particular, compared with the dynamic kernel-
based method, K-Net, our approach achieves better performance on the R18 and R50 backbones and
comparable results on the lightweight backbones (EdgeNexT).

Scale Up Joint Co-training. In the bottom of Tab. 7, we further scale up our model on a large
backbone, ConvNeXt large (Liu et al., 2022). From the table, we find there are significant gains in
all settings while still running with 8 FPS. This means our proposed multi-purposed segmentation
still has room to balance the accuracy and inference speed when adopting the large model. This also
verifies the scalability of RMP-SAM.
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Method Backbone COCO-Panoptic COCO-SAM YouTube-VIS 2019 FLOPs Parameters FPSPQ SQ PQth PQst mIoU mAP

YOSO EdgeNexT 31.8 74.5 35.6 26.1 47.4 35.4 40G 15.3M 28.6
K-Net R18 33.1 75.7 36.8 27.4 53.6 34.8 124G 25.6M 30.4
K-Net R50 39.2 78.2 43.9 31.6 56.3 41.7 171G 38.5M 20.9
K-Net EdgeNexT 38.0 76.7 42.5 31.4 55.7 44.0 108G 19.5M 30.5

Mask2Former EdgeNexT 39.8 78.8 43.6 34.0 54.2 - 73G 12.0M 25.6
RMP-SAM R18 39.9 78.6 43.3 34.8 52.7 38.7 60.5G 22.8M 40.3
RMP-SAM R50 46.9 80.8 51.6 39.8 57.9 46.2 123.0G 47.2M 35.1
RMP-SAM EdgeNexT 38.0 77.7 42.1 31.9 54.8 46.3 44G 14.3M 31.5
RMP-SAM ConvNeXt-L 52.3 82.5 58.6 42.8 61.1 55.6 700G 239M 8.6

Table 7: Benchmark More Models on Real-Time multi-purpose Segmentation. The GFLOPs are
obtained with 1333× 800 inputs.

Table 8: Explore adapter Design on More Methods. We apply our dual adapter on the Mask2Former
architecture and find it works well.

Method Backbone PQ mIoU
Mask2Former R50 43.2 57.0

Mask2Former + adapter R50 43.0 58.1

Table 9: Compared with real-time click-based interactive segmentation model.

Method 1-IoU FPS FLOPs

SAM(L) 55.7 1.2 1315.0
Semantic-SAM(L) 57.0 2.3 745.8G
RMP-SAM (ours) 57.9 35.1 123.0G

Explore Dual Adapter Design on Other Methods. We explore the effectiveness of our dual
adapter on Mask2Former (Cheng et al., 2022) and add the adapter module to the last decoder layer
of Mask2Former. As shown in Tab. 8, Mask2Former with adapter will improve 1.1 mIoU score
compared with origin Mask2Former for interactive segmentation and only drop 0.3 PQ for panoptic
segmentation. This result indicates that the adapter module applies to our method and can be
generalized to other methods.

Single-granularity Interactive Segmentation. In Tab. 9, we evaluate the 1-click mIoU (denoted as
1-IoU) for SAM (Kirillov et al., 2023), Semantic-SAM (Li et al., 2023a) and our model on COCO
Val2017. Our model surpasses SAM and Semantic-SAM in 1-IoU performance while also being
faster and requiring less computation.

Comparison with Recent Efficient SAM Models. As shown in Tab. 4, we compare our method
with SAM-like methods for coco instance segmentation. In Tab. 10, Tab. 11, Tab. 12. Our method
can achieve the stronger results than these counterparts, indicating the effectiveness of model design.
We also provide visualization in Fig. 5 for easier and direct comparison.

Comparison with Strong Video Segmentation Models. Several works explore stronger video
segmentation designs. We argue the scope of our research is orthogonality to the works. Firstly, since
our method is not designed for specific models and our method is trained on multiple purposes tasks,
directly comparing our method with previous works (Li et al., 2023e; Zhang et al., 2023c) may not
be fair. As our core goal is unifying multiple tasks in real-time scenarios and adopting a multi-task
co-training strategy, our method may not perform the best on a single task. Secondly, The work (Li
et al., 2024a) also designs a unified model for video segmentation tasks. However, it cannot perform
SAM-like segmentation in real time. We adopt joint image-video data co-training rather on image or
video data. Thus, we can keep SAM-like segmentation, panoptic segmentation, and video instance
segmentation in one model and run in real time. Thirdly, all these methods focus on achieving strong
results rather than real-time design. The work (Zhang et al., 2023c) uses extra transformer encoders
after heavy Mask2Former architectures, bringing more computation costs. We follow the work (Li
et al., 2023e; Zhang et al., 2023c), with the modification on replacing pre-training on COCO with
our co-training on COCO, COCO-SAM, and YTVIS-2019. Then, we follow the works (Li et al.,
2023e; Zhang et al., 2023c) and finetune the pre-trained model on YTVIS-2019. As shown in Tab. 14,
nevertheless, we achieved an mAP of 47.2 when using the ResNet-50 backbone. To provide more
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Table 10: Compared with SAM-like methods on COCO instance segmentation. We adopt the Mask
R-CNN with ResNet50 as a detector. The bounding box obtained from Mask R-CNN is adopted as
a box prompt for SAM-like methods. We report average precision at various thresholds. The APs,
APm, and APl mean the mean average precision for small, medium, and large objects.

Method mAP AP50 AP75 APs APm APl #param. FLOPs(G)

SAM-H 35.6 54.9 38.4 17.2 39.1 51.4 641M 3000
TinySAM 32.7 53.6 34.0 15.5 35.3 48.3 10M 42

MobileSAM 32.3 53.0 33.6 14.7 25.3 48.6 10M 42
EdgeSAM 32.2 53.4 33.3 14.8 35.0 47.0 10M 22

EfficientSAM 32.6 53.3 33.9 16.2 35.2 47.1 10M -
RMP-SAM(Ours) 33.5 54.6 35.4 14.3 36.3 50.8 47M 35

Table 11: Compared with SAM-like methods on COCO instance segmentation and adopt Mask
R-CNN with ResNet101 as a detector.

Method mAP AP50 AP75 APs APm APl #param. FLOPs(G)

SAM-H 38.4 59.4 41.3 24.1 46.9 56.9 641M 3000
TinySAM 35.4 57.8 36.9 17.6 39.2 51.8 10M 42

MobileSAM 34.9 57.2 36.2 17.0 38.9 52.1 10M 42
EdgeSAM 34.9 57.6 36.2 17.3 38.9 50.3 10M 22

EfficientSAM 35.2 57.6 36.5 18.2 39.0 51.0 10M -
RMP-SAM(Ours) 35.6 58.0 36.9 17.4 40.2 53.3 47M 35

comparison, we use ConvNext-L as our backbone and train a model based on the joint co-training
described in the paper, achieving a result of 62.2. The results indicate our method can still achieve
comparable results with these expert models.

Testing the efficiency across different GPU platforms. We have evaluated several methods from
Table 2 across multiple GPU platforms, including A100-40G, A10-22G, and 3090-24G. Unfortunately,
we currently do not have access to a V100 GPU and are unable to provide its corresponding results.

All model results for each specific GPU are generated on the same machine. The FPS and GFlops
values are calculated using a 1333 x 800 pixels resolution image. We report these results with the
ResNet-18 backbone.

7.3 VISUAL COMPARISON

Attention Map Visualization. As shown in Fig. 6, we generate the heatmap to illustrate our
integrated multi-tasks, which include panoptic segmentation, interactive segmentation, and video
instance segmentation. We sample four continuous frames from the YouTube-VIS 2019 validation set
and visualize a randomly selected object. The heatmap is the attention score between object/prompt
query and image features. The results indicate that despite using a shared decoder across different

FLOPs(G)

mAP
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Figure 5: The visualization results of SAM-like methods on COCO instance segmentation. We adopt
the ViTDet with ViT-b as the detector. The larger dot means more parameters.
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Table 12: Compared with SAM-like methods on COCO instance segmentation and adopt ViTDet
with ViT-b as a detector.

Method mAP AP50 AP75 APs APm APl #param. FLOPs(G)

SAM-H 45.7 69.4 49.8 26.9 49.0 64.1 641M 3000
TinySAM 39.2 64.5 40.4 23.7 42.3 55.7 10M 42

MobileSAM 38.3 63.5 39.3 22.3 41.7 55.3 10M 42
EdgeSAM 39.0 64.8 40.1 23.8 42.3 54.5 10M 22

EfficientSAM 39.4 64.9 40.9 23.8 42.3 55.3 10M -
RMP-SAM 41.0 65.9 42.5 24.2 44.7 57.3 47M 35

Table 13: Testing the efficiency across different GPU platforms.

Method GPU FLOPs Parameters FPS

Mask2Former A100-40G 89.8G 18.6M 31.2
kMaX-DeepLab A100-40G 87.1G 18.7M 15.0

YOSO A100-40G 57.3G 18.7M 41.0
RMP-SAM A100-40G 60.5G 22.8M 40.3

Mask2Former A10-22G 89.8G 18.6M 10.1
kMaX-DeepLab A10-22G 87.1G 18.7M 4.3

YOSO A10-22G 57.3G 18.7M 13.6
RMP-SAM A10-22G 60.5G 22.8M 14.2

Mask2Former 3090-24G 89.8G 18.6M 25.6
kMaX-DeepLab 3090-24G 87.1G 18.7M 9.0

YOSO 3090-24G 57.3G 18.7M 31.4
RMP-SAM 3090-24G 60.5G 22.8M 32.0

Table 14: Comparison with stronger video instance segmentation methods. Our RMP-SAM can
achieve comparable results with more functionalities on image panoptic segmentation and interactive
segmentation.

Method Backbone Youtube-VIS 2019 COCO-SAM COCO-Panoptic
UniVS R50 47.4 - -
DVIS R50 51.2 - -

Tube-Link R50 52.8 - -
RMP-SAM R50 47.2 - -

UniVS Swin-L 60.0 - -
DVIS Swin-L 63.9 - -

Tube-Link Swin-L 64.6 - -
RMP-SAM ConvNeXt-L 62.2 60.8 52.0

tasks, each task can effectively learn. This indicates that our design is effective and can significantly
reduce the computational complexity of the model.

Comparison on Youtube-VIS dataset. In Fig. 7, we compare our RMP-SAM (right) with a strong
baseline Mask2Former (left) with the same ResNet50 backbone. Our methods achieve more consistent
tracking and segmentation results in these examples.

Comparison on COCO Panoptic Segmentation dataset. In Fig. 8, We demonstrate that our
RMP-SAM model surpasses K-Net in panoptic segmentation tasks. RMP-SAM exhibits enhanced
accuracy in processing complex scenes and maintaining fine details, especially in segmenting object
edges and managing overlapping objects.

More Interactive Segmentation Results. In Fig. 9, we present further visualizations of interactive
segmentation, showcasing segmentation outcomes for ’things’ and ’stuff’. In these visualizations,
green dots signify manually specified prompts. Our model exhibits precise segmentation abilities
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Image

PS
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VIS

Figure 6: The heatmap shows the results of three distinct tasks: panoptic, interactive, and video
instance segmentation, represented by PS, IS, and VIS, respectively. The four test images are
sampled from the YouTube-VIS 2019 validation set, and the heatmap is the attention score between
object/prompt query and image features. The red point in IS is the point prompt.

RAP-SAM Mask2Former

Figure 7: When compared to the Mask2Former(right) on the YouTube-VIS 2019 dataset, our RMP-
SAM (left) demonstrates superior performance in recognizing and segmenting objects in certain
scenarios, and it also holds an advantage in detailing edges.
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RAP-SAM

K-Net

Figure 8: When compared with K-Net (bottom) on the COCO dataset, our RMP-SAM (top) shows a
significant advantage, achieving more accurate segmentation of foreground and background, with
smoother edges.
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Things

Stuff

Figure 9: Here are additional results of interactive segmentation. For point prompts or box prompts,
RMP-SAM segments out the corresponding object based on the spatial location of the prompt. We
have provided both segmentation results for ’things’ and ’stuff’, demonstrating that RMP-SAM can
segment both while maintaining strong performance.

Figure 10: Failure modes of RMP-SAM in image/video segmentation.

for ’things’ and ’stuff’. Notably, our model accurately identifies and segments the object even when
prompt points are situated on object boundaries.

7.4 LIMITATIONS AND FUTURE WORK

Failure Cases Analysis. We also analyze failure cases in video/image segmentation and identify
two typical failure modes of RMP-SAM. Firstly, as illustrated in Fig. 10, when faced with multiple
objects with high overlap, RMP-SAM struggles to fully recognize them, resulting in the omission
of several masks. Secondly, in crowded scenarios, RMP-SAM faces challenges on recognizing and
segmenting all instances with a limited number of instance kernels.

Future Work Discussion. There are several directions to explore for real-time multi-purpose
segmentation. The first direction is to achieve better-balanced performance on image, video, and
interactive segmentation (since there is still a lot of room for performance, as shown in the last row of
Tab. 7). The second direction is to speed up the model and deploy the model on the edge device, such
as the iPhone. The third direction is to explore different knowledge distillation approaches to transfer
the vision foundation model in real-time multi-purpose models. These will be our future work.
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