
1 Supplementary Material

1.1 Social Impact

In this paper we demonstrated the potential of motion-based perception as an alternative to geometrical
(spatial) perception approaches. Motion-based perception can be used in a diverse set of robotics
and remote sensing applications. Moreover, it has the unique advantage of being resilient to effect of
distance and environmental factors (e.g. weather and lighting conditions). The methods proposed are
specially useful for long-range perception applications like autonomous driving, perimeter security,
or privacy preserving activity monitoring in public or private spaces. In specific, our focus was on
predictive accident prevention applications for autonomous driving with the goal of making the roads
safer for pedestrians.

Like any other remote perception technology, there are also risks involved with misuse of radar-
based perception especially in the context of activity monitoring. Radars in principle are capable of
analyzing activities of subjects from behind walls, from long distances and around corners. Therefore
they potentially can be used for malicious applications like surveillance and activity monitoring of
humans without their knowledge or consent. This motivates research on methods for detecting and
blocking radar signals in private spaces.

1.2 Ethics Statement

This study involved recording radar data from adult volunteers performing typical pedestrian activities
in a public space. We did not see risk of any significant harm to the participants or any privacy
concerns for each participant. Nevertheless, we acquired approvals from Stanford University’s IRB
and privacy offices before capturing any data (IRB protocol number 64473). Each participant signed
a consent form agreeing to have their recordings published as part of a public dataset before taking
part in the study. Doppler signals published as part of this dataset are categorized as unidentifiable
sensing modalities and any attempt to re-identify the subjects is not intended by the authors.

1.3 URL to Website

Please see project page: https://mvdoppler.github.io to access the data and the corresponding
Github repo https://github.com/soheilhr/MVDoppler for the code and dataset toolbox.

1.4 Statement of Responsibility

The authors assume responsibility outlined by the IRB and Privacy guidelines of Stanford University
regarding capture and publishing this dataset. The dataset is published under CC BY-NC-ND license.
The code is published under Apache License 2.0.

1.5 Data Maintenance Plan

The dataset is hosted on a Google Drive space maintained by Stanford University. In case of data
relocation, authors will ensure that a link to the dataset’s new location is present in the project page
mentioned above. Users can submit issues with the dataset both by submitting a git issue ticket in the
corresponding Github repository and by emailing the authors.

1.6 Data Format and Instructions on How to Access and Read Data

Doppler snapshots are stored in hdf5 format. Labels and all other metadata are saved in .csv and .json
formats. Detailed instructions on how to download and read the dataset together with example codes
are available at: https://github.com/soheilhr/MVDoppler

1.7 Implementation Details

1.7.1 Dataset Cleanup and Statistics Extraction

As it was explained above, MVDoppler is captured in 10 second episodes which are then cut into
smaller 1.28 second spectrograms each including one cycle of the human gait. We performed data
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quality control and cleanup on 3 different scales: During the data capture we periodically sanity
checked the captured data to ensure that the size of the captured data matches our expectation. We
then eliminated episodes which were significantly shorter than the expected length (due to packet-loss
in data transmission, radar malfunction or other issues in saving the data). We then cut the cleaned-up
episodes into smaller snapshots. Each snapshot was also manually checked one more time to ensure
it contains signal from the subjects. During the process above, we also extract location and velocity
point-clouds for each snapshot. The point clouds are then used to fuse data across the two radars and
estimate the 2D location and velocity vectors for multi-view snapshots. 2D location and velocity
vectors together with observed average SNR per view are also included as part of the dataset in the
form of a curated design table.

1.7.2 Training and Validation Details

In order to ensure unbiased training of baseline neural networks on the presented dataset, we randomly
split the dataset into 4 folds across subjects. We then randomly choose 10% of episodes of the training
folds to be hold-out as the validation set.

To help with faster convergence, we trained the models starting with a pre-trained MobileNetV2
(with imagenet weights). We then normalized each snapshot and duplicated it across the channel
dimension simulating the RGB channels of the networks inputs. Finally, we augment the inputs for
relative walking phase in the gait cycle by randomly cropping each 1.28second radar spectrogram
into a snapshot with length of 640ms.

For all single-radar models we used the Adam optimiser together with cosine annealing learning rate
decay and cross-entropy loss. We took a multi-step approach to train the baseline models: We first
tuned each hyperparameter shown in Table 1 using the validation performance of single-radar models
based on fold0. We then trained a model for each fold using an early stopping method with patience
of 10 epochs and a delta of 0.01 and based on the corresponding fold’s validation loss.

We used the pre-trained single-radar neural networks for fusion experiments. Based on the multi-
view representations embedded in weight-shared networks, we applied five fusion baselines. For
multi-level fusion, we adopted 1× 1 convolution to ensure that the output of each embedding level
corresponded to that of the last layer. The model was optimized with the same training procedures
as those employed in the single-radar case, with only the exception of batch size which was set to
32. On average each training session of the single radar required around 1.7 hours of GPU time
on an RTX2080ti GPU. The multi-radar experiments required varying durations with respect to the
fusion strategies, with the fusion methods of input, late-average, multi-average, late-transformer, and
multi-transformer taking 0.9, 0.8, 1.0, 1.4, and 2.0 hours on an RTX3090 GPU, respectively.

1.8 Relationship Between Observed Doppler and The Relative Direction of Motion

Radar

Figure 1: Target’s motion relative to the Radar’s line-of-sight axis.

The Doppler effect, also known as Doppler shift, refers to the alteration in frequency experienced
by a wave, whether it’s light, sound, or electromagnetic (EM) waves, when the source is in relative
motion with respect to the observer. For instance, if the source moves towards an observer at rest,
successive wave crests will reach the observer in shorter intervals than their predecessors, causing the
observer to receive waves of a higher frequency than those emitted by the source. As a result, the
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Doppler frequency in EM waves is contingent upon the relative motion between the source and the
observer. As shown in Figure 1, the Doppler frequency shift fD in radars can be described as

fD = −2v cos(θ)

c
, (1)

in which v is the absolute velocity of the object, θ is the angle between the object and line-of-sight
(LoS) axis of the radar, and c is speed of light. It is worth mentioning that the Doppler shift is
dependent both on the object’s absolute velocity v and its relative angle from the radar θ. Thus, when
a person is walking directly towards the radar, fD is maximized, while walking perpendicularly with
radar LoS, results in fD approaching 0.

1.9 Experiment and Setup Parameter Design

Table 1 provides details on the parameters selected for our experiments. The designed waveform
controls the resolution of each radar in range, angle, and Doppler. Since in our experiments simul-
taneous operation of two radars was required, we dedicated only 1GHz of bandwidth to each radar
instead of utilizing the entire supported bandwidth. We then designed other parameters with the goal
of maximizing the Doppler resolution, maximizing the frame duty cycle, and reducing the frame rate.

One important note in the design of the proposed experimental setup is that because of the different
operating frequencies of the two radars, the antenna beam patterns of the two radars do not align in
the elevation axis. To mitigate this issue, we tilted radar1 downwards for around 10 degrees, this
resulted in reducing the average SNR mismatch between the two radars to less than 1dB.

Table 1: Selected Parameters

Waveform Parameters Pre-processing Parameters

Operating
frequency

Radar0: 77.1-78.1 GHz
Radar1: 79.4-80.4 GHz Window size

128 chirps (slow-time)
1.5 m (range)
640 ms (time)

Chirp bandwidth 1 GHz Spectrogram FFT size 128

Samples per chirp 128 Spectrogram window
overlap 87.5%

Chirps per frame 128 Spectrogram windowing
function Hamming

Chirp rate 3.344 kHz Neural Networks Training Parameters

Frame rate 25 fps Learning rate 1.00E-04
Antennas Tx: 1 Rx: 1 Epochs 50

Scene Parameters Batch size
64 (single-radar)
32 (multi-radar)

Radar locations
Radar0: (5,0) m

Radar1: (0,10) m Optimiser Adam with Cosine LR
Annealing

Radar height 1m ϵ 1.00E-08
Radar vertical tilt

angles
Radar0: 0 degrees

Radar1: -10 degrees β1 0.9

Camera location Co-located with Radar0 β2 0.999

1.10 Participant Statistics

Table 2 provides detailed information regarding the participant diversity and number of snapshots
available per participant. As it can be seen, although the participants were not instructed to walk
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with any specific speed, the cross-subject variance of the natural walking speed is relatively low
comparing to the variance of each subject’s walking speed across different trajectories. The same
observation holds for the cross-subject variance of average SNR comparing to the SNR variance of
subjects across different trajectories. This is an evidence for importance of capturing the effect of
location and trajectories in Doppler datasets.

Table 2: Participant Statistics

Subject Sex Age Height
(cm)

BMI Number of Snapshots SNR (dB) Velocity
(m/s)Normal Phone Call Pockets Texting

0 male 26 175 23.6 1508 1560 1480 1556 40.69±4.14 0.92±0.23
1 male 29 182 N/A 2028 2338 2340 2278 40.33±4.94 1.07±0.30
2 male 34 180 N/A 2080 2204 2338 2286 40.70±4.18 0.95±0.29
3 male 30 165 22.3 2184 2340 1586 2310 40.87±4.52 0.85±0.17
4 female 21 165 N/A 2596 2284 2328 2326 40.24±4.58 0.85±0.26
5 female 25 167 21.2 4102 2312 2340 2286 39.14±4.62 1.11±0.31
6 male 29 170 25.1 1476 1448 1448 1414 40.72±4.69 1.03±0.21
7 male 24 172 16.9 2314 1524 1554 2300 39.34±4.48 0.90±0.23
8 male 27 180 N/A 1508 1534 1560 1530 41.16±4.74 1.05±0.24
9 female 22 162 22.0 2236 2080 2076 2258 39.36±4.45 0.91±0.22

10 male 32 189 32.1 2964 2522 4108 2832 42.40±4.19 0.87±0.17
11 male 24 188 N/A 1872 1820 1788 1942 39.62±4.47 1.10±0.31
12 male 24 180 19.6 2262 2310 1528 2304 40.83±4.27 0.93±0.27

1.11 Ablation Analysis

1.11.1 Effect of Training Snapshot Size

Figure 2 shows the single-radar classification accuracy (± standard deviation) for each task with
respect to different training snapshot window sizes. As it is expected, increasing the training window
size from one frame time (0.04s) to 1.12s leads to an increase in accuracy while resulting in a slower
prediction.

(a) Hand task (b) Distract task

Figure 2: Single-radar classification accuracy across different training snapshot window sizes.
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1.11.2 Effect of Baseline Model Size

Table 3 shows the single-radar classification accuracies (± standard deviation) for the two tasks using
different Convolutional Neural Nets as baselines. Apart from MobileNet, we used ResNet34 and
EfficientNet B0 as two larger alternative baselines. However, no significant difference in accuracy
was observed across the bench-marked baseline neural networks.

Table 3: Single-radar classification accuracy across different baseline models.

Model MobileNet ResNet34 EfficientNet B0

Hand 85.2±3.5 84.9±3.3 83.4±3.5
Distract 61.9±4.3 62.3±3.9 61.9±3.9
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