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Efficient Perceiving Local Details via Adaptive Spatial-Frequency
Information Integration for Multi-focus Image Fusion

Anonymous Authors

ABSTRACT
Multi-focus image fusion (MFIF) aims to combine multiple images
with different focused regions into a single all-in-focus image. Exist-
ing unsupervised deep learning-based methods only fuse structural
information of images in the spatial domain, neglecting potential
solutions from the frequency domain exploration. In this paper, we
make the first attempt to integrate spatial-frequency information
to achieve high-quality MFIF. We propose a novel unsupervised
spatial-frequency interaction MFIF network named SFIMFN, which
consists of three key components: Adaptive Frequency Domain
Information Interaction Module (AFIM), Ret-Attention-Based Spa-
tial Information Extraction Module (RASEM), and Invertible Dual-
domain Feature Fusion Module (IDFM). Specifically, in AFIM, we
interactively explore global contextual information by combining
the amplitude and phase information of multiple images separately.
In RASEM, we design a customized transformer to encourage the
network to capture important local high-frequency information by
redesigning the self-attention mechanism with a bidirectional, two-
dimensional form of explicit decay. Finally, we employ IDFM to fuse
spatial-frequency information without information loss to generate
the desired all-in-focus image. Extensive experiments on different
datasets demonstrate that our method significantly outperforms
state-of-the-art unsupervised methods in terms of qualitative and
quantitative metrics as well as the generalization ability.

CCS CONCEPTS
• Computing methodologies→ Image representations.

KEYWORDS
multi-focus, image fusion, spatial-frequency interaction, customized
transformer

1 INTRODUCTION
Constrained by the focused capability of optical imaging devices,
objects may appear blurred in local regions due to being out of the
depth-of-field (DoF) during the imaging process. To this end, the
multi-focus image fusion (MFIF) aims to extract complementary
information from images with multiple focused regions to generate
an all-in-focus image. MFIF has been applied to many applications
such as microscopic imaging [21, 31], image segmentation [55],
image classification [9] and image recognition [16].
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Figure 1: After transforming images into the frequency do-
main using discrete Fourier transform (DFT), the edges of
focused regions can be highlighted by filtering signals at ap-
propriate frequencies (the child in source image A and the
woman in source image B).

Traditional MFIF algorithms are typically categorized into spatial
domain-based methods and transform domain-based methods. In
the former method, an all-in-focus image is obtained by weighting
the content of the source images [4, 19, 22, 37, 52]. These methods
typically have lower computational complexity, but their perfor-
mance heavily depends on hand-made prior. The transform domain-
based methods first convert the source images into the transform
domain, then fuse the transformed coefficients, and finally obtain
the fused image through the corresponding inverse transforma-
tion. The typical methods include sparse representation methods
[44, 50], multi-scale methods [2, 5, 17], gradient domain-basedmeth-
ods [30, 53] and hybrid methods [24]. However, after undergoing
domain transformation, coefficient fusion, and inverse transforma-
tion, the attenuation of the signal and the accumulation of errors
become particularly evident. Moreover, most traditional methods
often fail to fully consider the local gradient changes in the source
images, leading to challenges such as correctly identifying small
defocused (focused) regions within larger focused (defocused) areas.

In recent years, many deep learning-based MFIF methods [8, 27,
28, 47, 49] have emerged. These methods employ deep networks
to learn priors from numerous training samples. However, it is
challenging to collect all-in-focus image data in practical scenarios,
making it challenging to train deep models in a supervised manner.
Existing deep learning-based methods operate on the source images
in the spatial domain. However, by applying the discrete Fourier
transform (DFT) to convert images into the frequency domain,
we observe that the edges of focused regions can be highlighted
by filtering signals at appropriate frequencies as shown in Figure
1. Motivated by this observation, we aim to investigate potential
unsupervised MFIF approaches in the frequency domain.

Different from the local receptive field property of convolutional
operator, the visual transformer (ViT) capture long-range depen-
dencies by employing the multi-head global attention mechanism
among different ordered input feature segments [7, 34, 35, 38, 54].

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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In this paper, we aim to leverage ViT to establish long-range de-
pendencies between multiple images focusing on different regions.
Recently, Retentive Network (RetNet) [33] has garnered significant
attention in the field of natural language processing (NLP), primar-
ily due to its explicit decay mechanism. In MFIF, our objective is to
enable the network to accurately detect the critical focused areas
in each source image. To this end, we attempt to redesign RetNet
into a 2D form and integrate it with ViT to make it applicable to
image data.

Based on the above analysis, we first attempt to investigate the
MFIF task from the perspective of spatial-frequency information
integration. We design a novel unsupervised MFIF network that effi-
ciently perceives the local details of different source images through
the interaction of spatial and frequency domains. It comprises three
core components: Adaptive Frequency Domain Information Inter-
action Module (AFIM), Ret-Attention-Based Spatial Information
Extraction Module (RASEM), and Invertible Dual-domain Feature
Fusion Module (IDFM). Specifically, in AFIM, after transforming
paired source images into the frequency domain through DFT, we
separate their amplitude and phase information. These components
are further interactively integrated to explore the global contextual
details of the fused images. In RASEM, we design a customized
transformer with bidirectional, 2D explicit decay self-attention
mechanism, used to capture long-range dependencies among fea-
tures of multiple source images while effectively perceiving local
focused regions in each image. Finally, an invertible neural network
information fusionmodule IDFM is introduced to avoid information
loss during the spatial-frequency domain features fusion process.
Extensive experiments on different datasets demonstrate that our
proposed method significantly outperforms state-of-the-art unsu-
pervised methods in terms of quantitative metrics, visual quality,
and generalization ability. Our contributions can be summarized as
follows:

• We propose a novel unsupervised MFIF framework SFIMFN
that adaptively integrates high-low frequency information
from the spatial and frequency domains of multiple source
images. To the best of our knowledge, this is the first attempt
to investigate the MFIF task from the perspective of spatial-
frequency information integration.

• We design a customized transformer for MFIF. By redesign-
ing the self-attention mechanism into a bidirectional, two-
dimensional form of explicit decay, the network can perceive
the locally focused regions more effectively.

• Extensive experiments on different datasets demonstrate that
our method significantly outperforms SOTA unsupervised
methods. The necessity and effectiveness of each module
also be further demonstrated through ablation experiments.

2 RELATEDWORK
2.1 Spatial domain-based MFIF methods
Spatial domain-based methods primarily rely on the focus mea-
sure, which compute directly in the spatial domain to generate the
fused image based on the decision map with high efficiency. The
spatial domain-based methods can be further divided into pixel-
based [3, 25], block-based [10], and region-based methods [19].
Pixel-based and block-based approaches rely on pixel activity-level

measurement function or algorithms to evaluate the pixel activity
and obtain a rule-based saliency map, generating a focus decision
map for each source image [29, 32]. De et al. [10] first introduced
the quadtree decomposition into the MFIF. Later, Wang et al. [36]
proposed an MFIF model based on quad-tree decomposition and
edge-weighted focus detection to decompose the source image into
appropriately sized blocks. In contrast, region-based algorithms can
provide more precise differentiation between the focused regions
and the defocused regions, but the fusion performance heavily re-
lies on the segmentation algorithm [11, 12]. Accurately determining
pixel focus capability can be challenging when artifacts and bound-
ary effects are incorrectly assessed, possibly leading to suboptimal
visual results.

2.2 Transform domain-based MFIF methods
Transform domain-based methods mainly consist of three stages:
decomposing the source image into a series of multi-scale high-low
frequency coefficients, designing different fusion rules for coeffi-
cient fusion, and finally reconstructing the selected coefficients
to obtain the fusion results. Since Burt et al. [6] first proposed a
MFIF method based on the Laplacian pyramid, various multi-scale
decomposition methods have been used for image fusion, including
the discrete wavelet transform (DWT) [43], discrete cosine trans-
form (DCT) [2] and non-subsampled contourlet transform (NSCT)
[1]. In summary, transform domain-based methods perform well in
preserving edge details and boundaries due to their similarity to
human visual processing, but their sensitivity to high-frequency
components can lead to image distortion if not handled carefully.

2.3 Deep learning-based MFIF methods
Benefiting from the powerful representation capability of deep neu-
ral networks, some deep learning-based MFIF methods have been
proposed, which can be categorized into supervised [13, 20, 23, 45,
46] and unsupervised methods [8, 15, 28, 39–41, 48]. In terms of
supervised models, Liu et al. [23] proposed a classification-based
image fusion model, introducing the convolutional neural network
(CNN) into MFIF firstly. Recently, Li et al. [20] presented a diffusion-
based MFIF method named FusionDiff, which used diffusion model
to fuse two source images by iteratively performing multiple de-
noising operations. However, real multi-focus image datasets are
severely lacking. Xu et al. introduced a new unsupervised model
for MFIF based on gradients and connected regions [39]. Then
they designed a unified densely connected network [41] for dif-
ferent types of image fusion tasks. Zhang et al. [48] proposed a
new unsupervised GAN-based model with adaptive and gradient
joint constraints for MFIF by extracting and reconstructing infor-
mation. Hu et al. [15] proposed a novel framework ZMFF that use
parameterized networks to successfully mine the deep priors of
clear fused image and the corresponding focus maps. Ma et al. [28]
introduced a method based on CNN and SwinTransformer [26]
to extract features containing both local and global information
and fuse these features intra-domain and cross-domain. However,
the above methods all operate on images in the spatial domain,
neglecting to explore contextual information from the frequency
domain.
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Figure 2: The overall framework of SFIMFN. It consists of three key parts: Adaptive Frequency Domain Information Interaction
Module (AFIM), Ret-Attention-Based Spatial Information Extraction Module (RASEM), and Invertible Dual-domain Feature
Fusion Module (IDFM).

3 METHOD
Figure 2 shows the overall architecture of our spatial-frequency
interaction MFIF network SFIMFN, which mainly consists of three
parts, Adaptive Frequency Domain Information Interaction Module
(AFIM), Ret-Attention-Based Spatial Information Extraction Mod-
ule (RASEM), and Invertible Dual-domain Feature Fusion Module
(IDFM). The details will be illustrated below.

3.1 Adaptive Frequency Domain Information
Interaction Module

Fourier transform is commonly utilized to analyze the frequency
components of images. When dealing with images that have mul-
tiple color channels, the Fourier transform is computed indepen-
dently for each color channel. Given an image 𝑥 ∈ 𝑅𝐻×𝑊 ×𝐶 , the
Fourier transform F transfers it to Fourier domain as the complex
component F (𝑥):

F (𝑥) (𝑢, 𝑣) = 1
√
𝐻𝑊

𝐻−1∑︁
ℎ=0

𝑊 −1∑︁
𝑤=0

𝑥 (ℎ,𝑤) 𝑒− 𝑗2𝜋
(
ℎ
𝐻
𝑢+ 𝑤

𝑊
𝑣

)
, (1)

The amplitude component A (𝑥) (𝑢, 𝑣) and the phase component
P (𝑥) (𝑢, 𝑣) are expressed as:

A (𝑥) (𝑢, 𝑣) =
√︁
𝑅2 (𝑥) (𝑢, 𝑣) + 𝐼2 (𝑥) (𝑢, 𝑣), (2)

P (𝑥) (𝑢, 𝑣) = arctan
[
𝐼 (𝑥) (𝑢, 𝑣)
𝑅 (𝑥) (𝑢, 𝑣)

]
, (3)

where𝑅 (𝑥) and 𝐼 (𝑥) represent the real and imaginary part of F (𝑥)
respectively. In this paper, the Fourier transform and its inverse
process are independently computed on each channel of the feature
maps. In AFIM, for two source images 𝐴 and 𝐵, which are focused
on different areas, we first conduct shallow feature extraction on

each of them using 1 × 1 convolutional layers:
𝑓 𝑒𝑎𝑡𝐴 = 𝐶𝑜𝑛𝑣1×1 (𝐴) ,
𝑓 𝑒𝑎𝑡𝐵 = 𝐶𝑜𝑛𝑣1×1 (𝐵) ,

(4)

then we get their amplitude and phase information individually
through discrete Fourier transform (DFT):

A (𝑓 𝑒𝑎𝑡𝐴) ,P (𝑓 𝑒𝑎𝑡𝐴) = F (𝑓 𝑒𝑎𝑡𝐴) ,
A (𝑓 𝑒𝑎𝑡𝐵) ,P (𝑓 𝑒𝑎𝑡𝐵) = F (𝑓 𝑒𝑎𝑡𝐵) ,

(5)

whereA (·) andP (·) indicate the amplitude and phase respectively.
Then, we integrate the amplitude and phase information of the two
images separately, and use two convolutional networks to learn the
fused amplitude and phase features, respectively:

𝐹𝑎𝑚𝑝 = 𝐶𝑁 (𝐶𝑎𝑡 (A (𝑓 𝑒𝑎𝑡𝐴) ,A (𝑓 𝑒𝑎𝑡𝐵))) ,
𝐹𝑝ℎ𝑎 = 𝐶𝑁 (𝐶𝑎𝑡 (P (𝑓 𝑒𝑎𝑡𝐴) ,P (𝑓 𝑒𝑎𝑡𝐵))) ,

(6)

where 𝐹𝑎𝑚𝑝 and 𝐹𝑝ℎ𝑎 are the fused amplitude and phase features,
respectively.𝐶𝑁 (·) represents a simple convolutional network. The
interaction of frequency domain components enhances the global
frequency representation. Subsequently, we employ the inverse
discrete Fourier transform (IDFT) to convert the fused amplitude
and phase components of 𝐹𝑎𝑚𝑝 and 𝐹𝑝ℎ𝑎 back to the spatial domain:

𝑓 𝑒𝑎𝑡𝑓 = F −1
(
𝐹𝑎𝑚𝑝 , 𝐹𝑝ℎ𝑎

)
. (7)

whereF −1 (·) is the IDFT operation and 𝑓 𝑒𝑎𝑡𝑓 represents the global
information representation obtained after information processing
in the Fourier domain.

3.2 Ret-Attention-Based Spatial Information
Extraction Module

We aim to utilize transformer to establish long-range dependencies
among multiple source images, enhancing the boundaries between
different focused regions. In MFIF, the high-frequency signals in
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the focused regions are significantly more pronounced than in the
unfocused regions. Therefore, we attempt to extend the unidirec-
tional, explicit decay self-attention mechanism from RetNet to a
bidirectional, two-dimensional form, making neighboring pixels
in the focused local regions to provide more information to each
other. In RetNet, the retention layer is defined as:

𝑄 =
(
𝑋𝑊𝑄

)
⊙ Θ, 𝐾 = (𝑋𝑊𝐾 ) ⊙ Θ, 𝑉 = 𝑋𝑊𝑉

Θ𝑛 = 𝑒𝑖𝑛𝜃 , 𝐷𝑛𝑚 =

{
𝛾𝑛−𝑚, 𝑛 ≥ 𝑚
0, 𝑛 < 𝑚

Retention (𝑋 ) =
(
𝑄𝐾⊤ ⊙ 𝐷

)
𝑉 ,

(8)

where 𝛾, 𝜃 ∈ R𝑑 are both scalar, 𝑛 and𝑚 represent the indices of
tokens,Θ is the complex conjugate ofΘ, and𝐷 ∈ R |𝑥 |× |𝑥 | combines
causal masking and exponential decay along relative distance as
one matrix. It also can be written as:

𝑜𝑛 =

𝑛∑︁
𝑚=1

𝛾𝑛−𝑚
(
𝑄𝑛𝑒

𝑖𝑛𝜃
) (
𝐾𝑚𝑒

𝑖𝑚𝜃
)†
𝑣𝑚, (9)

To adapt the retention for image data, we first extend the retention
to two dimensions, where for each token, its output becomes:

𝑜𝑛 =

𝑁∑︁
𝑚=1

𝛾 |𝑛−𝑚 |
(
𝑄𝑛𝑒

𝑖𝑛𝜃
) (
𝐾𝑚𝑒

𝑖𝑚𝜃
)†
𝑣𝑚, (10)

where 𝑁 is the number of tokens. It also can be written as:

𝐵𝑖𝑅𝑒𝑡 (𝑋 ) =
(
𝑄𝐾⊤ ⊙ 𝐷𝐵𝑖

)
𝑉 ,

𝐷𝐵𝑖𝑛𝑚 = 𝛾 |𝑛−𝑚 | ,
(11)

where 𝐵𝑖𝑅𝑒𝑡 (·) denotes the retention with bidirectional modeling
ability. We further extend the one-dimensional retention to two
dimensions. We represent the two-dimensional coordinate of the

Figure 3: Illustration of 𝐷2𝑑 .

𝑛-th token as (𝑥𝑛, 𝑦𝑛). As shown in Figure 3, based on the 2D
coordinates of each token, we modify each element in the matrix
𝐷 to be the Manhattan distance between the corresponding token
pairs at their respective positions. Thus, the 1D decay coefficients
can be transformed into 2D form:

𝐷2𝑑
𝑛𝑚 = 𝛾 |𝑥𝑛−𝑥𝑚 |+|𝑦𝑛−𝑦𝑚 | , (12)

For the joint embedding 𝑋 (𝐴, 𝐵) of the source images 𝐴 and 𝐵,
we generate its corresponding joint queries 𝑄𝐴𝐵 , keys 𝐾𝐴𝐵 , and
values 𝑉𝐴𝐵 . Finally, we use Softmax to introduce nonlinearity to
the network to get the spatial feature 𝑓 𝑒𝑎𝑡𝑠 :

𝑓 𝑒𝑎𝑡𝑠 =

(
𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑄𝐴𝐵𝐾

⊤
𝐴𝐵

)
⊙ 𝐷2𝑑

)
𝑉𝐴𝐵 . (13)

In RASEM, a customized transformer is designed to establish long-
range dependencies between multiple source images and enhance
the capacity to perceive local high-frequency signals.

3.3 Invertible Dual-domain Feature Fusion
Module

Figure 4: The details of 𝜌 (·) and 𝜂 (·).

Different from pure convolution layers, the invertible network
have the property of information-lossless during the information
transformation process. In IDFM, we aim to avoid information loss
during the fusion of frequency domain feature 𝑓 𝑒𝑎𝑡𝑓 and spatial
domain feature 𝑓 𝑒𝑎𝑡𝑠 . As detailed in the Figure 2, given spatial
feature 𝑓 𝑒𝑎𝑡0𝑠 and frequency domain feature 𝑓 𝑒𝑎𝑡0

𝑓
, the output of

IDFM will be calculated as:

𝑓 𝑒𝑎𝑡1
𝑓
= 𝑓 𝑒𝑎𝑡0

𝑓
⊙ 𝑒𝑥𝑝

(
𝜌

(
𝑓 𝑒𝑎𝑡1𝑠

))
+ 𝜂

(
𝑓 𝑒𝑎𝑡1𝑠

)
, (14)

𝑓 𝑒𝑎𝑡1𝑠 = 𝑓 𝑒𝑎𝑡0𝑠 + 𝜙
(
𝑓 𝑒𝑎𝑡0

𝑓

)
, (15)

where 𝑒𝑥𝑝 (·) is Exponential function inmathematical, and 𝜌 (·) and
𝜂 (·) represent the scale and translation functions from the channels
of frequency domain feature 𝑓 𝑒𝑎𝑡0

𝑓
to the channels of spatial feature

𝑓 𝑒𝑎𝑡0𝑠 , respectively. ⊙ is the Hadamard product. Note that functions
𝜌 (·) and 𝜂 (·) are not necessarily invertible, so we implement them
through neural networks. As shown in Figure 4:

𝑓 𝑒𝑎𝑡𝑚𝑖𝑑 = 𝐶𝑜𝑛𝑣3×3 (𝑓 𝑒𝑎𝑡𝑖𝑛) , (16)

𝑓 𝑒𝑎𝑡𝑚𝑖𝑑1, 𝑓 𝑒𝑎𝑡𝑚𝑖𝑑2 = 𝑠𝑝𝑙𝑖𝑡 (𝑓 𝑒𝑎𝑡𝑚𝑖𝑑 ) , (17)

𝑓 𝑒𝑎𝑡𝑟𝑒𝑠 = 𝐶𝑜𝑛𝑣3×3 ((𝑁𝑜𝑟𝑚 (𝑓 𝑒𝑎𝑡𝑚𝑖𝑑1) , 𝑓 𝑒𝑎𝑡𝑚𝑖𝑑2)) , (18)

𝑓 𝑒𝑎𝑡𝑜𝑢𝑡 = 𝑓 𝑒𝑎𝑡𝑟𝑒𝑠 + 𝑓 𝑒𝑎𝑡𝑖𝑛 . (19)

we first use a 3 × 3 convolution to project input features 𝑓 𝑒𝑎𝑡𝑖𝑛 to
intermediate features 𝑓 𝑒𝑎𝑡𝑚𝑖𝑑 , then 𝑓 𝑒𝑎𝑡𝑚𝑖𝑑 are divided into two
parts. The first part 𝑓 𝑒𝑎𝑡𝑚𝑖𝑑1 is normalized by Normalization oper-
ation and then concatenates with 𝑓 𝑒𝑎𝑡𝑚𝑖𝑑2 in channel dimension.
Next, after a 3 × 3 convolution the features 𝑓 𝑒𝑎𝑡𝑟𝑒𝑠 are obtained.
Finally, the invertible block output the enhanced feature 𝑓 𝑒𝑎𝑡𝑜𝑢𝑡 by
adding 𝑓 𝑒𝑎𝑡𝑟𝑒𝑠 with shortcut features 𝑓 𝑒𝑎𝑡𝑖𝑛 . In this paper, we cas-
cade two dual-domain information extraction-fusion modules and
finally use a 1×1 convolution layer to generate the final all-in-focus
image.
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3.4 Loss Functions
In this paper, we consider the similarity between the fused image
and the source images in terms of pixel density, gradient infor-
mation, and structure together. Three loss terms are formulated
as:

L𝑝𝑖𝑥 = ∥𝑌 −𝐴∥2𝐹 + ∥𝑌 − 𝐵∥2𝐹 , (20)

L𝑔𝑟𝑎𝑑 = ∥∇𝑌 − ∇𝐴∥2𝐹 + ∥∇𝑌 − ∇𝐵∥2𝐹 , (21)

L𝑠𝑠𝑖𝑚 = 2 − 𝑆𝑆𝐼𝑀 (𝑌,𝐴) − 𝑆𝑆𝐼𝑀 (𝑌, 𝐵) , (22)

where ∥·∥𝐹 denotes the Frobenius norm, ∇ is the gradient operator.
The total loss is formulated as:

L𝑡𝑜𝑡𝑎𝑙 = 𝜆1L𝑝𝑖𝑥 + 𝜆2L𝑔𝑟𝑎𝑑 + 𝜆3L𝑠𝑠𝑖𝑚 . (23)

where 𝜆1, 𝜆2, and 𝜆3 are weight factors.

4 EXPERIMENTS
4.1 Baseline Methods
We compared the performance of our method with both traditional
MFIF methods and deep learning-based MFIF methods. We selected
two traditional MFIF methods, including SFMD [18] and DCT_Corr
[2]. The deep learning-based methods consist of three supervised
methods: MGDN [13], MFFT [46], FusionDiff [20], and three un-
supervised methods: SwinFusion [28], ZMFF [15] and MUFusion
[8].

4.2 Implementation Details
We implemented our network on the PC with a single NVIDIA
GeForce RTX 3090, and we built our network in Pytorch framework.
The parameters of our network are updated by the Adam optimizer.
The learning rate, batch size and the epoch are set to 1 × 10−4, 20
and 10 respectively.

4.3 Dataset and Evaluation Metrics
Dataset.Our experiments are conducted on three datasets, the MFI-
WHU dataset [48], the Lytro dataset [29] and the MFFW dataset
[42]. The MFI-WHU dataset is obtained by synthesis, which con-
tains 120 near-focused and far-focused image pairs and full-clear
images. While the Lytro dataset is created based on light field data,
containing 20 near-focused and far-focused image pairs together
with 4 sequences of different scenes. The MFFW dataset includes
13 real multi-focus image pairs with strong defocus spread effect
(DSE). To ensure the fairness of the experiments, both supervised
and unsupervised methods are trained on the MFI-WHU dataset,
which provides ground-truths and then test on the Lytro and the
MFFW respectively. We conduct ablation experiments on the Lytro
dataset. We crop the images into 128 × 128 patches for training,
while the entire image is used as input for testing.

Metrics.We use 10 widely-used image quality assessment (IQA)
metrics to evaluate the fusion performance of MFIF, namely entropy
(EN), mutual information entropy (MI), spatial frequency (SF), aver-
age gradient (AG), standard deviation (SD), correlation coefficient
(CC), visual information fidelity (VIF), edge based fidelity (𝑄𝑎𝑏𝑓 ),
peak signal-to-noise ratio (PSNR) and structural similarity index
measure (SSIM) [51].

4.4 Comparison with SOTA Methods
We compared our method with baseline methods in terms of quanti-
tative metrics and visual quality. As shown in Fig. 5, for the first pair
of images from the Lytro dataset, upon zooming in on local regions
of the fused image, varying degrees of artifacts can be observed in
the fusion results by competing methods. In contrast, our method
produces sharper boundaries (such as the hat brim of the monkey).
Similarly, for the second pair of images, our method makes it easier
to distinguish the boundary between the lighthouse and the sky.
This is because our approach leverages frequency-domain informa-
tion to enhance the interaction of global contextual information,
while RASEM weakens the influence between unrelated objects.
Similar to what is shown in Fig. 6, in the first pair of images from
the MFFW dataset, our method is capable of preserving the details
of the local grass (foreground) while retaining the texture on the
wooden planks (background). In comparison, the grass generated
by ZMFF and DCT_Corr both exhibit color distortion, while Fu-
sionDiff, SwinFusion, and MUFusion fail to preserve high-quality
fine-grained details of the grass. This further underscores the ad-
vantage of our method in preserving both global and local textures.

We also calculated the average values of ten IQAmetrics for these
methods, for quantitative comparison. As shown in Table 1 and
Table 2, our method outperforms other SOTA unsupervised MFIF
methods. VIF measures the information fidelity of the fused image,
which is consistent with the human visual system [14]. The perfor-
mance on the VIF metric demonstrate that our method preserves
the pixel density of different focused regions with the highest qual-
ity, surpassing the second place by 0.013 and 0.012 on two datasets,
respectively. The EN and MI metrics show the superiority of our
method in this fusion task from the point of information amount
and correlations with source images, respectively. The performance
on these two metrics indicates that our fusion results can preserve
the information of the source images to the maximum extent.

To ensure fairness in the experiments, all methods were trained
on the MFI-WHU dataset, which includes ground truths, and then
tested on the other two datasets. The metrics in Table 1 and Ta-
ble 2 demonstrate that the generalization ability of our method
significantly outperforms existing unsupervised methods.

4.5 Ablation Experiments
Adaptive FrequencyDomain Information InteractionModule (AFIM),
Ret-Attention-Based Spatial Information ExtractionModule (RASEM),
and Invertible Dual-domain Feature FusionModule (IDFM) are three
key modules of SFIMFN, we conducted a series of ablation experi-
ments on the Lytro dataset to demonstrate their effectiveness and
necessity. Additionally, we also conducted ablation experiments
to verify the effectiveness of the 2D Ret-Attention mechanism and
three loss terms proposed in this paper.

Adaptive FrequencyDomain Information InteractionMod-
ule. AFIM is utilized to explore the edge differences between differ-
ent focused regions. To demonstrate the effectiveness of AFIM, we
replaced AFIM with RASEM while keeping the network parameters
at the same level. Table 3 shows that replacing AFIM with RASEM
results in a decrease in all IQA metrics, especially SF and 𝑄𝑎𝑏𝑓 .
This is because AFIM influences the global structural information
of fusion results in the frequency domain. The lack of global context
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Figure 5: The visual comparisons between other MFIF methods and our method on the Lytro dataset.

Table 1: The average scores of all algorithms on the Lytro dataset, where the best and the second-best values are highlighted by
the red and blue respectively.

Method Lytro Dataset
EN↑ MI↑ SF↑ AG↑ SD↑ CC↑ VIF↑ Q𝑎𝑏𝑓 ↑ PSNR↑ SSIM↑

SFMD 7.5623 5.8522 19.3574 6.0618 59.0174 0.9598 1.0318 0.6500 72.7596 1.3131
DCT_Corr 7.5330 8.4953 19.3452 6.8160 57.4378 0.9712 1.3526 0.7501 74.5680 1.3554
MGDN 7.5281 6.8109 18.6843 6.6195 56.8484 0.9752 1.2237 0.7350 74.2980 1.4104
MFFT 7.5321 8.8159 19.4706 6.9806 57.5509 0.9713 1.3662 0.7527 74.5892 1.3667

FusionDiff 7.5859 6.5013 19.4097 6.7953 64.6829 0.9833 1.3076 0.7185 74.5644 1.3570
SwinFusion 7.5333 6.3588 19.0595 6.7930 62.3561 0.9766 1.1554 0.6908 72.6754 1.3306

ZMFF 7.5256 6.5928 18.8764 6.7497 56.9705 0.9699 1.1721 0.7020 74.3756 1.3525
MUFusion 7.4726 6.1874 11.7441 4.4285 54.2357 0.9722 1.0047 0.5130 74.2022 1.3412

Ours 7.5646 8.5046 19.4271 6.8467 64.1423 0.9798 1.3796 0.7602 74.7680 1.4277

interaction leads to inconsistencies in pixel density (SF) between
fusion results and source images, as well as loss of edge texture
(𝑄𝑎𝑏𝑓 ). Therefore, AFIM is necessary for our network.

Ret-Attention-Based Spatial Information Extraction Mod-
ule. RASEM is utilized to encourage the network to perceive fo-
cused regions. We replaced RASEM with AFIM while keeping the

network parameters at the same level, to demonstrate the effective-
ness of RASEM. Table 3 shows that replacing RASEM with AFIM
leads to a decrease in all IQA metrics, especially SD and PSNR. This
is because the network loses the ability to build long-range depen-
dencies between source images and struggles to capture the edge
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Table 2: The average scores of all algorithms on the MFFW dataset, where the best and the second-best values are highlighted
by the red and blue respectively.

Method MFFW Dataset
EN↑ MI↑ SF↑ AG↑ SD↑ CC↑ VIF↑ Q𝑎𝑏𝑓 ↑ PSNR↑ SSIM↑

SFMD 7.1184 4.9109 22.6258 7.5635 54.8823 0.9400 0.7732 0.5496 71.1784 1.0347
DCT_Corr 7.1818 5.2898 22.7697 7.6263 53.6927 0.9383 0.9302 0.6201 71.5740 1.0295
MGDN 7.1728 5.8827 21.6853 7.4742 54.5829 0.9514 1.0301 0.6273 72.4486 1.2574
MFFT 7.1799 6.3114 22.5132 7.6093 55.1139 0.9454 1.1112 0.6941 71.9840 1.1771

FusionDiff 7.1889 5.7032 23.2265 7.6935 60.8880 0.9638 1.0720 0.7016 71.9033 1.2314
SwinFusion 7.1050 5.6515 20.6891 7.3872 54.1665 0.9427 1.0076 0.6779 71.2389 1.2300

ZMFF 7.1711 5.5198 21.4803 7.5699 53.9978 0.9422 1.0011 0.6671 71.8072 1.1465
MUFusion 7.1675 5.4347 20.8136 7.1053 53.6772 0.9546 0.8934 0.5975 72.9840 1.0844

Ours 7.1829 6.2295 22.8462 7.6274 58.3208 0.9598 1.1232 0.7043 73.2130 1.2605

Figure 6: The visual comparisons between other MFIF methods and our method on the MFFW dataset.
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Table 3: Ablation studies about the AFIM and RASEM on the Lytro dataset. The best values are bolded.

AFIM RASEM EN↑ MI↑ SF↑ AG↑ SD↑ CC↑ VIF↑ Q𝑎𝑏𝑓 ↑ PSNR↑ SSIM↑
× ✓ 7.5302 7.3599 18.9873 6.7036 56.6362 0.9716 1.3150 0.7400 74.5153 1.3488
✓ × 7.5311 7.7320 19.3146 6.8028 57.1946 0.9710 1.3420 0.7465 74.4739 1.3548

Ours 7.5402 7.7813 19.3924 6.8485 57.7638 0.9720 1.3451 0.7489 74.8243 1.3621

Table 4: Ablation studies about the IDFM on the Lytro dataset. The best values are bolded. ‘w/o’ denotes without, ‘w/’ denotes
with.

Config EN↑ MI↑ SF↑ AG↑ SD↑ CC↑ VIF↑ Q𝑎𝑏𝑓 ↑ PSNR↑ SSIM↑
w/o IDFM 7.1149 4.6708 13.0093 5.0832 39.5298 0.9527 0.7954 0.5023 62.8179 0.9567
w/ IDFM 7.5402 7.7813 19.3924 6.8485 57.7638 0.9720 1.3451 0.7489 74.8243 1.3621

Table 5: Ablation studies about the 2D Ret-Attention on the Lytro dataset. The best values are bolded. ‘w/o’ denotes without, ‘w/’
denotes with.

Config EN↑ MI↑ SF↑ AG↑ SD↑ CC↑ VIF↑ Q𝑎𝑏𝑓 ↑ PSNR↑ SSIM↑
w/o 2D Ret-Attention 7.5316 7.6888 19.3551 6.8165 57.4708 0.9712 1.3348 0.7446 74.6069 1.3514
w/ 2D Ret-Attention 7.5402 7.7813 19.3924 6.8485 57.7638 0.9720 1.3451 0.7489 74.8243 1.3621

Table 6: Ablation studies of the loss function terms on the Lytro dataset. The best values are bolded. ‘w/o’ denotes without.

Config EN↑ MI↑ SF↑ AG↑ SD↑ CC↑ VIF↑ Q𝑎𝑏𝑓 ↑ PSNR↑ SSIM↑
w/o L𝑝𝑖𝑥 7.5320 7.1007 19.3192 6.8017 57.5521 0.9715 1.2851 0.7467 74.6106 1.3423
w/o L𝑔𝑟𝑎𝑑 7.5374 6.9961 19.2612 6.8011 57.2593 0.9711 1.2998 0.7339 74.5454 1.3489
w/o L𝑠𝑠𝑖𝑚 7.5250 6.8628 19.1148 6.7323 56.4338 0.9711 1.3017 0.7373 74.6134 1.3510

Ours 7.5402 7.7813 19.3924 6.8485 57.7638 0.9720 1.3451 0.7489 74.8243 1.3621

detail information within the focused regions, resulting in more
noise in the fusion results. Thus, RASEM is crucial in the SFIMFN.

Invertible Dual-domain Feature Fusion Module. IDFM is
utilized to avoid information loss during the dual-domain informa-
tion fusion process. To validate its effectiveness, we replaced it with
a densely-connected architecture. For fair comparison, we keep the
above two comparisons with the same number of parameters. The
results in Table 4 demonstrate that removing IDFM significantly
weaken our network’s performance, highlighting the importance
of IDFM in our network.

2D Ret-Attention. To further validate the effectiveness of the
2D Ret-Attention mechanism, we replaced it with the Shifted win-
dows attention mechanism from the SwinTransformer [26]. The
results in Table 5 demonstrate that the 2D Ret-Attentionmechanism
significantly improves the performance of the model. Specifically,
there is an increase of 0.21 dB in PSNR. Thus, the 2D Ret-Attention
plays a crucial role in MFIF.

Loss Function.We verified the effectiveness of each loss func-
tion by removing them individually, where the results are reported
in Table 6. The pixel intensity loss L𝑝𝑖𝑥 is employed to reduce the
chromatic aberration between the source and fused images, remov-
ingL𝑝𝑖𝑥 leads to a notable decrease in all metrics. The gradient loss
L𝑔𝑟𝑎𝑑 constrains the fused image to have the same texture detail as

the sharp source images. Therefore, removing L𝑔𝑟𝑎𝑑 leads to a sig-
nificant decrease in PSNR and SSIM, 0.27 dB and 0.01, respectively.
The structural similarity loss L𝑠𝑠𝑖𝑚 constrains the fusion network
to maintain the structural information in the source images. In
addition, L𝑠𝑠𝑖𝑚 could restrain the brightness of the fusion results
to some extent. Similarly, the incorporation of the SSIM loss leads
to improvements in all metrics, with PSNR and SSIM increasing by
0.21 dB and 0.01, respectively. Consequently, each loss term proves
to be effective.

5 CONCLUSION
In this paper, we propose a novel unsupervised MFIF network
named SFIMFN that efficiently perceives details of focused regions
by integrating spatial-frequency dual-domain information. To the
best of our knowledge, this is the first attempt to investigate the
MFIF task from the perspective of spatial-frequency information
integration. Moreover, we design a customized transformer by re-
designing the self-attention mechanism into a bidirectional, two-
dimensional form of explicit decay to encourage the network to
perceive the focused regions more efficiently. Extensive experi-
ments on different datasets demonstrate that our proposed method
outperforms existing unsupervised methods in both quantitative
and qualitative metrics as well as the generalization ability.
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