
A Appendix532

A.1 Mathematical background on cube complexes and Gromov’s Link Condition533

Cube complexes and simplicial complexes are higher dimensional analogues of graphs that appear534

prominently in topology, geometric group theory, and combinatorics. Background on cube complexes535

can be found in [Sch19, Sag14, Wis12]5, while simplicial complexes are detailed in standard algebraic536

topology texts [EH10]. Here, we will only provide brief explanations in order to discuss Gromov’s537

Link Condition.538

Cube complexes. Informally, a cube complex is a space that can be constructed by gluing cubes539

together in a fashion not too dissimilar to a child’s building blocks. An n–cube is modelled on540

{(x1, . . . , xn) ∈ Rn : 0 ≤ xi ≤ 1 for all i}.
By restricting some co-ordinates to either 0 or 1, we can obtain lower dimensional subcubes. In541

particular, an n–cube has 2n vertices and is bounded by 2n faces which are themselves (n−1)–cubes.542

A cube complex X is a union of cubes, where the intersection of every pair of distinct cubes is either543

empty, or a common subcube.544

Simplicial complexes. Simplicial complexes are constructed in a similar manner to cube complexes,545

except that we use higher dimensional analogues of triangles or tetrahedra instead of cubes. An546

n–dimensional simplex (or n–simplex) is modelled on547

{(x1, . . . , xn+1) ∈ Rn+1 : xi ≥ 0 for all i,
∑
i

xi = 1};

this has n + 1 vertices and is bounded by n + 1 faces which are themselves (n − 1)–simplices.548

For n = 0, 1, 2, 3, an n–simplex is respectively a point, line segment, triangle, and tetrahedron. A549

simplicial complex K is an object that can be constructed by taking a graph and then inductively550

filling in simplices of progressively higher dimension; this graph is called the 1–skeleton of K. We551

require that every finite set of vertices in K form the vertices of (or spans) at most one simplex; thus552

simplices in K are uniquely determined by their vertices. (This rules out loops or multi-edges in the553

1–skeleton.)554

Links. The local geometry about a vertex v in a cube complex X is captured by a simplicial555

complex known as its link lk(v). Intuitively, this is the intersection of a small sphere centred at v556

within X , and can be regarded as the space of possible directions emanating from v. Each edge in557

X emanating from v determines a vertex (0–simplex) in lk(v). If two such edges bound a ‘corner’558

of a square in X based at v, then there is an edge (1–simplex) connecting the associated vertices in559

lk(v). More generally, each ‘corner’ of an n–cube incident to v gives rise to an (n − 1)–simplex560

in lk(v); moreover, the boundary faces of the simplex naturally correspond to the faces of the cube561

bounding the corner. Since the cube complexes we consider have cubes completely determined by562

their vertices, each simplex in lk(v) is also completely determined by its vertices. Figure 8 illustrates563

four separate examples of links of vertices in cube complexes.564

Gromov’s Link Condition. Local curvature in a cube complex can be detected by examining the565

combinatorial structure of the links of its vertices. Specifically, Gromov’s Link Condition gives a566

method for proving that a cube complex is non-positively curved (NPC)6, where there is an absence567

of positive curvature. In the bottom-right example in Figure 8, where there is positive curvature, we568

observe a ‘hollow’ triangle in its link. In the other examples of Figure 8, where there is only negative569

or zero curvature, there are no such hollow triangles (or hollow simplices).570

This absence of ‘hollow’ or ‘empty’ simplices is formalised by the flag property: a simplicial complex571

is flag if whenever a set of n+1 vertices spans a complete subgraph in the 1–skeleton, they must span572

an n–simplex. In particular, a flag simplicial complex is determined completely by its 1–skeleton.573

If v is a vertex in a cube complex X , then the flag condition on lk(v) can be re-interpreted as a ‘no574

empty corner’ condition for the cube complex: whenever we see (what appears to be) the corner of575

an n–cube, then the whole n–cube actually exists.576

5Much of the literature in geometric group theory focusses primarily on non-positively curved cube complexes,
whereas in our study, the presense of positive curvature plays a crucial role.

6In the sense that geodesic triangles are no fatter than Euclidean triangles [BH99].
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Figure 8: Four separate examples of links of vertices in cube complexes. In the bottom-right example,
where there is positive curvature, lk(v) is a ‘hollow’ triangle and is thus not a flag simplicial complex.
For the other examples, lk(v) is a flag complex and therefore, by Gromov’s Link Condition, there is
only negative or zero curvature. In the bottom-left example, the cube complex is a solid cube joined
to a filled-in square at a common vertex v.

Theorem (Gromov’s Link Condition [Gro87]). A finite-dimensional cube complex X is non-positively577

curved if and only if the link of each vertex in X is a flag simplicial complex.578

Thus, the local geometry of a cube complex is determined by the combinatorics of its links.579

A.2 Proof of Theorem 5.2580

Before giving our proof, we first classify low-dimensional simplices in lk(v) for a vertex v in581

our modified state complex S ′. A 0–simplex in lk(v) corresponds to an admissible move at v.582

However, a 1–simplex either represents a pair of commuting moves, or two moves in a common583

dance. A 2–simplex either represents three agents moving pairwise independently, or a dancing584

agent commuting with a moving agent. Finally, a 3–simplex represents either four agents moving585

pairwise independently, one dancing agent and two moving agents that pairwise commute, or a pair586

of commuting dancers.587

Theorem (Gromov’s Link Condition in the modified state complex). Let v be a vertex in the modified588

state complex S ′ of an agent-only gridworld. Then589

• lk(v) satisfies Gromov’s Link Condition if and only if it has no empty 2–simplices nor590

3–simplices, and591

• if lk(v) fails Gromov’s Link Condition then there exist a pair of agents whose positions592

differ by either a knight move or a 2–step bishop move (as in Figure 7).593

Proof. If lk(v) satisfies Gromov’s Link Condition, then it has no empty simplices of any dimension,594

giving the forward implication. For the converse, assume that lk(v) has no empty 2–simplices nor595

3–simplices. Suppose there exist n+1 vertices spanning a complete subgraph of lk(v), where n ≥ 4.596

We want to show that these vertices span an n–simplex. By induction, we may assume that every597

subset of n vertices from this set spans an (n− 1)–simplex. Since n ≥ 4, every quartuple of vertices598

in this subgraph spans a 3–simplex. Therefore, appealing to our classification of low-dimensional599

simplices, every pair of moves or dances involved has disjoint supports. Thus, the desired n–simplex600

exists. Consequently, potential failures can only be caused by empty 2–simplices or 3–simplices.601

Next, we want to determine when three pairwise adjacent vertices in lk(v) span a 2–simplex. These602

vertices represent three admissible moves at v. Since they are pairwise adjacent, they either correspond603
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to three agents each doing a Move, or to one agent dancing with another one moving. In the former604

case, the supports are pairwise disjoint and so these moves form a commuting set of generators.605

Therefore, the desired 2–simplex exists (indeed, in the absence of dancers, the situation is the same606

as the original Abrams, Ghrist & Peterson setup). For the latter case, suppose that the first agent607

is dancing while the second moves. Since the 0–simplices are pairwise adjacent, each of the two608

admissible moves within the dance has disjoint support with the second agent’s move. Thus, the only609

way the support of the dance fails to be disjoint from that of the second agent’s move is if the second610

agent can move into the diagonally opposite corner of the dance. Therefore, the only way an empty611

2–simplex can arise is if the agents’ positions differ by a ‘knight move’ (see Figure 7 for illustration).612

It remains to determine when four pairwise adjacent vertices in lk(v) span a 3–simplex. We may613

assume that each triple of vertices in this set spans a 2–simplex, for otherwise we can reduce to the614

previous case. Let us analyse each case by the number of involved agents. If there are four involved615

agents, then each 0–simplex corresponds to exactly one agent moving. Since no dances are involved,616

it immediately follows that the desired 3–simplex exists. If there are three involved agents, then one617

is dancing while the other two move. Since each triple of 0–simplices spans a 2–simplex, we deduce618

that each move has disjoint support with the dance. Therefore, the dance and the two moves form a619

commuting set, and so the 3–simplex exists. Finally, if there are two agents then they must both be620

dancers. By the assumption on 2–simplices, each admissible move within the dance of one agent621

has disjoint support from the dance of the other agent. Thus, the only way for the two dances to622

have overlapping supports is if their respective diagonally opposite corners land on the same cell.623

Therefore, the only way an empty 3–simplex can arise (assuming no empty 2–simplices) is if two624

agents’ positions differ by a ‘2–step bishop move’ (see Figure 7 for illustration).625

A.3 Python tool for constructing gridworlds and their state complexes626

We developed a Python-based tool for constructing gridworlds with objects and agents. It includes a627

GUI application for the easy specification of gridworlds and a script which will produce plots and628

data of the resulting state complex. We ran all experiments on a Lenovo IdeaPad 510-15ISK laptop.629

[A link to the open-source code will be placed here in the final version, but details are redacted in630

this review version, in keeping with NeurIPS’s double-blind review policy. A copy of our code is631

included in this NeurIPS submission.]632

For the sake of generality and future-proofing of our software, we chose to construct the links in633

our implementation of checking Gromov’s Link Condition in gridworlds, which is not necessary634

in-practice. Instead, in practical situations, one can directly check for supports of knight or two-635

step bishop moves between agents, which per Theorem 5.2 provides a computational short-cut for636

detecting failures in agent-only gridworlds. Another area of computational efficiency available in637

many rooms are in the symmetries of the room itself. For example, an evenly-sized square room can638

be cut into eighths (like a square pizza), where each eighth is geometrically identical to every other.639

Users of the code will notice a small but important implementation detail in the code which we chose640

to omit the particulars of in this paper: in the code, we need to include labelled walls along the borders641

of our gridworlds. This is because we construct our gridworlds computationally as coordinate-free,642

abstract graphs. For Move, the lack of a coordinate system is not an issue – if an agent label sees643

a neighbouring vertex with an empty floor label, the support exists and the generator can be used.644

However, Push/Pull only allows objects to be pushed or pulled by the agent in a straight line within645

the gridworld. We ensure this straightness in the abstract graph by identifying a larger subgraph646

around the object and agent than is illustrated in Figure 2. Essentially, we incorporate three wildcard647

cells (cells of any labelling) adjacent to three labelled cells (‘agent’, ‘object’, and ‘floor’),648

such that together they form a 2× 3 grid.649

A.4 Experiments in small rooms650

Summary statistics for the 3× 3 room with varying numbers of agents is shown in Table 1, showing651

the distribution in failures of Gromov’s Link Condition across these conditions. The 2 × 3 room652

with two agents shows multiple instances of local positive curvature in the associated (modified)653

state complex. Figure 9 shows one such state where Gromov’s Link Condition fails due to the agents654

being separated by a knight’s move (see Theorem 5.2). At this state, there are actually two empty655

2–simplices in its link – this is because the pattern appearing in the 5–cell subgrid with two agents656
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Table 1: Data of Gromov’s Link Condition failure and commuting 4–cycles in the state complexes of
a 3× 3 room with varying numbers of agents and no objects. The percentage of NPC states (shown
in brackets in the second column) is rounded to the nearest integer. The mean number of Gromov’s
Link Condition failures (shown in the penultimate column) is the mean number of failures over the
total number of states, and is rounded to two decimal places.

Gromov’s Link
Condition Failures

Agents States (% NPC) Dances Commuting moves Total Mean Max
0 1 (100) 0 0 0 0 0
1 9 (100) 4 0 0 0 0
2 36 (78) 20 44 32 0.89 4
3 84 (62) 40 220 184 2.19 14
4 126 (65) 40 440 288 2.29 11
5 126 (68) 20 440 152 1.21 6
6 84 (86) 4 220 16 0.19 2
7 36 (100) 0 44 0 0 0
8 9 (100) 0 0 0 0 0
9 1 (100) 0 0 0 0 0

(as in Figure 7) arises in two different ways within the given state on the gridworld. The only other657

state where Gromov’s Link Condition fails is a mirror image of the one shown.658

Further small gridworlds and their respective state complexes are shown in Figures 10, 11, and 12.659

Figure 9: A 2× 3 room with two agents (top right) and its state complex (top left), where dances are
shaded blue and commuting moves are shaded red. The darker-shaded vertex represents the state of
the gridworld shown. Also shown is the state complex with only commuting moves (bottom left) and
only dances (bottom right).
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Figure 10: A 3× 3 room with two agents (right) and its state complex (left), where dances are shaded
blue and commuting moves are shaded red. The darker-shaded vertex represents the state of the
gridworld shown. Naturally-occurring copies of this state complex can be found as sub-complexes in
the state complex shown in Figure 12.

Figure 11: A 4× 1 corridor with two agents (right) and its state complex (left). There are no dances
and only one commuting move, shaded red. The darker-shaded vertex represents the state of the
gridworld shown. Naturally-occurring copies of this state complex can be found as sub-complexes in
the state complex shown in Figure 12.
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Figure 12: A 4× 4 room with two agents (right) and its state complex (left), where dances are shaded
blue and commuting moves are shaded red. The darker-shaded vertex represents the state of the
gridworld shown. Embedded within this state complex are naturally-occurring copies of the state
complex of the 4×1 corridor with two agents, shown in Figure 11. There are also naturally-occurring
copies of state complex of the 3× 3 room with two agents, shown in Figure 10.
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