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1 PRELIMINARIES
Sampling Locations. The core of deformable attention is to reduce
computation cost by attending to a small set of key sampling points
of spatial locations around a reference point. Given a multi-scale
input feature map {𝑥𝑙 }𝐿

𝑙=1 where 𝑥
𝑙 ∈ R𝐶×𝐻𝑙×𝑊𝑙 , the 𝐾 sampling

locations for each attention head and each feature level are gener-
ated from the semantic embedding of each query element 𝑧𝑞 ∈ R𝐶 .
Because the direct prediction of coordinates of sampling location
is difficult to learn, it is formulated as a prediction of a reference
point 𝑟𝑞 ∈ [0, 1]2 along with 𝐾 sampling offsets Δ𝑟𝑞 ∈ R𝑀×𝐿×𝐾×2.
So, the 𝑘th sampling location at 𝑙 th feature level and𝑚th attention
head for query element 𝑧𝑞 is defined by 𝑝𝑚𝑙𝑞𝑘 = 𝜙𝑙 (𝑟𝑞) + Δ𝑟𝑚𝑙𝑞𝑘
where 𝜙𝑙 (·) is a function for rescaling the coordinate of reference
point to the input feature map of the 𝑙 th level.

Deformable Attention Module. Given a multi-scale input
feature map {𝑥𝑙 }𝐿

𝑙=1, the multi-scale deformable attention 𝑓𝑚𝑠𝑞 =

MSDeformAttn(𝑧𝑞, 𝑝𝑞, {𝑥𝑙 }𝐿𝑙=1) for query element 𝑧𝑞 is calculated
using a set of predicted sampling locations 𝑝𝑞 as follows:

𝑓𝑚𝑠𝑞 =

𝑀∑︁
𝑚=1

𝑊𝑚
[ 𝐿∑︁
𝑙=1

𝐾∑︁
𝑘=1

𝐴𝑚𝑙𝑞𝑘 ·𝑊 ′
𝑚Φ𝑚𝑙𝑞𝑘

]
, (1)

where 𝑙 , 𝑘 and𝑚 index the input feature level, the sampling loca-
tion and the attention head, respectively, while 𝐴𝑚𝑙𝑞𝑘 indicates an
attention weight for the 𝑘𝑡ℎ sampling location at the 𝑙𝑡ℎ feature
level and the 𝑚𝑡ℎ attention head. Φ𝑚𝑙𝑞𝑘 means the sampled 𝑘th

key element at 𝑙 th feature level and𝑚th attention head using the
sampling location, which is obtained by bilinear interpolation as
Φ𝑚𝑙𝑞𝑘 = 𝑥𝑙 (𝑝𝑚𝑙𝑞𝑘 ) = 𝑥𝑙 (𝜙𝑙 (𝑟𝑞) + Δ𝑟𝑚𝑙𝑞𝑘 ).𝑊𝑚 and𝑊 ′

𝑚 serve as
learnable embedding parameters for the𝑚th attention head, and
𝐴𝑚𝑙𝑞𝑘 is normalized such that

∑
𝑘,𝑙 𝐴𝑚𝑙𝑞𝑘 = 1.

2 DETAILED ARCHITECTURE
Encoder. We employ the multi-scale deformable attention module
in place of the standard encoder layer. In accordance with [11],
the encoder both takes in and produces multi-scale feature maps
with matching resolutions. Within the encoder, we derive multi-
scale feature maps {𝑥𝑙 }𝐿−1

𝑙=1 (𝐿 = 4) from the output feature maps of
stages𝐶3 to𝐶5 in ResNet [5] (modified by a 1×1 convolution). Each
𝐶𝑙 has a resolution 2𝑙 lower than the original image. The lowest
resolution feature map 𝑥𝐿 is acquired through a 3 × 3 convolution
with a stride of 2 on the final 𝐶5 stage, labeled as 𝐶6. All multi-
scale feature maps consist of 𝐶 = 256 channels. To determine the
feature level of each query pixel, we introduce a scale-level embed-
ding, referred to as 𝑒𝑙 , to the feature representation, in addition to
the positional embedding. Unlike the positional embedding with
predetermined encodings, the scale-level embeddings {𝑒𝑙 }𝐿𝑙=1 are
initialized randomly and trained alongside the network.

Decoder. In our approach, we employ the Decoupled Subject-
Context Transformer (DSCT) across all decoder layers. Our method-
ology encompasses three key components: Deformable Attention,
Self-Attention Modules, and Spatial-Semantic Relational Aggrega-
tion. Deformable attention facilitates the extraction of features from
feature maps, self-attention modules enable queries to interact with
each other, while spatial-semantic relational aggregation exploits
spatial-semantic relationships for the fusion of subject and context.

3 MORE IMPLEMENTATION DETAILS
ImageNet [3] pre-trained ResNet-50 [5] serves as the backbone
for our ablation experiments. By default, deformable attentions
utilize𝑀 = 8 and 𝐾 = 4. Parameters of the deformable Transformer
encoder are shared across different feature levels. Training models
last for 50 epochs by default, with a learning rate decay at the 40th
epoch by a factor of 0.1. Similar to DETR[1], our models are trained
using the Adam optimizer [6], with a base learning rate of 2× 10−4,
𝛽1 = 0.9, 𝛽2 = 0.999, and weight decay of 10−4. The learning rates
of the linear projections, responsible for predicting query reference
points and sampling offsets, undergo a 0.1 multiplication.

We incorporate scale augmentation, adjusting the size of input
images so that the shortest side ranges from 480 to 800 pixels, while
the longest side is at most 1333 pixels. To facilitate the learning
of global relationships through encoder self-attention, we also in-
troduce random crop augmentations during training. Specifically,
there’s a 0.5 probability of cropping a training image to a random
rectangular patch, which is then resized to 800-1333 pixels.

4 ADDITIONAL RESULTS
Classification vs. Localization. We conducted experiments to
fine-tune 𝜆box on the EMOTIC dataset [7] while maintaining 𝜃cls,
𝜃box, and 𝜆cls constant. The results are showcased in Table 1, and
the loss curves are depicted in Figure 1. The optimal outcome is
attained when 𝜆𝑏𝑜𝑥 = 5, surpassing the performance achieved with
𝜆𝑏𝑜𝑥 = 1 by 1.06% in average precision. This underscores the affir-
mative influence of integrating a localization loss on subject-centric
feature acquisition. As illustrated in Figure 1, the supplementary
localization task enhances performance by mitigating the risk of
classification over-fitting during model training.

𝜆box 1 5 10 15
mAP (%) 35.61 36.67 36.45 36.61

Table 1: Performance of different localization coefficients.

Comparison of Early Fusion and Late Fusion. We inves-
tigate the efficacy of early fusion and late fusion by conducting
an evaluation on images featuring varying numbers of subjects.
We employ DSCT for all layers and for the 6th layer, representing
early fusion and late fusion, respectively. It is worth noting that in
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Figure 1: The loss of classification and localization during training.
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Figure 2: The output comparison of early and late fusion (incorrectly inferred emotions are marked in red).

late fusion, the queries still incorporate multi-scale image features
from the encoder. However, the impact of fusing more low-level
features can be inferred by employing DSCTs for early layers of
the decoder. Table 2 showcases the performance on EMOTIC (mAP
%) for images with different subject counts. With an increase in
the number of subjects in an image, the subtlety and complexity of
subject-context interaction also escalate. Early fusion demonstrates
superior performance when the number of faces exceeds four, af-
firming that the proposed early fusion mechanism adeptly handles
subtle subject-context interactions. Furthermore, we visually depict
output examples of early and late fusion in Figure 2. Early fusion
excels in discerning nuanced emotional states such as sympathy,
confusion, disapproval, sensitivity, and embarrassment, which are
inferred through fine-grained interactions among agents.

Subject # 1 2 3 4 >=5
Image # 2444 938 234 37 29
Late fusion 36.94 35.02 31.21 40.52 35.36
Early fusion 36.91 35.20 31.20 40.96 35.97

Table 2: Performance on images with multiple subjects.

Multiple Modalities. In some studies, the incorporation of
multiple modalities has been proposed to enhance context-based
emotion recognition [8, 9]. To investigate the potential benefits of
including additional modalities in the proposal, we conducted ex-
periments on the EMOTIC dataset. Specifically, we introduced three
modalities: “Scene”, “Semantic”, and “Instance” corresponding to
scene classification, semantic segmentation, and instance segmen-
tation, respectively. The networks employed for these modalities
are Places365 [10], Deeplabv3 [2], and MaskRCNN [4], all adopting
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a ResNet50 backbone. We extracted multi-scale features from these
networks and integrated them with the proposal’s features while
keeping the parameters of the other modality networks frozen. The
results, as summarized in Table 3, indicate that the inclusion of ad-
ditional modalities leads to a decline in accuracy. This suggests that
introducing other modalities might introduce noise or redundancy
to the proposal, which is adept at capturing fine-grained cues.

Modality None Scene Semantic Instance
mAP % 37.26 32.08 34.01 34.11

Table 3: Ablation study on adding different modalities.
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