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Appendix

A NEURAL PATH FRAMEWORK FOR CNN

Indexing: The weights of layers l 2 [dcv] are denoted by ⇥(icv, iin, iout, l) and for layers l 2 [dfc]+dcv
are denoted by ⇥(iin, iout, l). The pre-activations, gating and hidden unit outputs are denoted by
qx,⇥(ifout, iout, l), Gx,⇥(ifout, iout, l), and zx,⇥(ifout, iout, l) for layers l = 1, . . . , dcv. iin and iout are
used to index the input and the output filters. ifout is used to denote the index of hidden unit (in the
feature dimension) within the input and output filters.

Shapes: Appendix A shows the shapes of the tensors in the convolutional layers of a 1-dimensional
circular CNN considered in this paper. Here, the input is a 1-dimensional tensor given by x 2 Rdin .
The hidden nodes in a given convolutional layer have a 2-dimensional shape of din ⇥ w, where w

is the number of filters in the layer. The weights of a given convolutional layer have 3-dimensional
shape of wcv ⇥ w ⇥ w, where w ⇥ w is because of the number of input filters times the number of
output filters.

Figure 6: Shows the shape of the tensor.

A.0.1 INFORMATION FLOW

IL : zx,⇥(·, 1, 0) = x

Convolutional Layers, l 2 [dcv]

PA : qx,⇥(ifout, iout, l) =
P

icv,iin
⇥(icv, iin, iout, l) · zx,⇥(ifout � (icv � 1), iin, l � 1)

GV : Gx,⇥(ifout, iout, l) = 1{qx,⇥(ifout,iout,l)>0}
HUO : zx,⇥(ifout, iout, l) = qx,⇥(ifout, iout, l) ·Gx,⇥(ifout, iout, l)

GAP Layers, l = dcv + 1

HUO : zx,⇥(iout, dcv + 1) =
P

ifout
zx,⇥(ifout, iout, dcv) ·Gpool

x,⇥(ifout, iout, dcv + 1)

Fully Connected Layers, l 2 [dfc] + (dcv + 1)

PA : qx,⇥(iout, l) =
P

iin
⇥(iin, iout, l) · zx,⇥(iin, l � 1)

GV : Gx,⇥(iout, l) = 1{(qx,⇥(iout,l))>0}
HUO : zx,⇥(iout, l) = qx,⇥(iout, l) ·Gx,⇥(iout, l)
FO : ŷ⇥(x) =

P
iin
⇥(iin, iout, d) · zx,⇥(iin, d� 1)

Table 2: Here IL, PA, GV, HUO, GL and FO are abbreviations for input layer, pre-activation, gating
values, hidden unit output, GAP-layer and final output respectively.

B PROOFS OF TECHNICAL RESULTS

Proof of Proposition 3.2

Proof. Note that the total number of paths is P = din · (wcv ·w)dcv ·w(dfc�1)
fc , and in the definition of

NPV for CNNs in Definition 3.3 the indices are over only the weights without specifying the input
node given by I f

0(p).
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Proof of Proposition 3.3

Proof. For l = 0, we have zrot(x,r),⇥(ifout, 1, 0) = rot(x, r)(ifout) = x(ifout � r) = zx,⇥(ifout �
r, 1, 0). Now for l = 1, we have

qrot(x,r),⇥(ifout, ·, 1) =
X

iin2[1],icv2[wcv]

⇥(icv, iin, iout, l) · zrot(x,r),⇥(ifout � (icv � 1), iin, 0)

=
X

iin2[1],icv2[wcv]

⇥(icv, iin, iout, l) · zx,⇥((ifout � r)� (icv � 1), iin, 0)

= qx,⇥(ifout � r, ·, 1)

The proof follows by noting that G = 1{q>0}, and z = q ·G, and repeating the above argument for
the layer l = 2, . . . , dcv.

Proof of Lemma 4.2

Proof.

h�xs,⇥,�xs0 ,⇥i =
X

p2[P ]

xs(I0(p))xs0(I0(p))A⇥(xs, p)A⇥(xs0 , p)

=
dinX

i=1

xs(i)xs0(i)⇤⇥(i, xs, xs0)

= hxs, xs0i⇤⇥(·,xs,xs0 ) (1)

Owing to the symmetry in a fully connected network, we have ⇤(i, xs, xs0) to be the same for all
values of i 2 [din]. And since H

lyr
l,⇥(s, s

0) measure the number of gates in layer ‘l’ that are active for
both inputs xs and xs0 , the total number of paths active for both inputs is ⇧(d�1)

l=1 H
lyr
l,⇥(s, s

0).

Proof of Lemma 4.2

Proof. Proof is complete by noting that the NPF of the ResNet is a concatenation of the NPFs of the
2b distinct sub-FC-DNNs within the ResNet architecture.

Proof of Lemma 4.3
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Proof. For the CNN architecture considered in this paper, each bundle has exactly din number of
paths, each one corresponding to a distinct input node. For a bundle bp̂, let bp̂(i), i 2 [din] denote the
path starting from input node i.

X

p̂2[P̂ ]

 
X

i,i02[din]

x(i)x0(i0)A⇥ (x, bp̂(i))A⇥ (x0
, bp̂(i

0))

!

=
X

p̂2[P̂ ]

 
X

i2[din],i0=i�r,r2{0,...,din�1}

x(i)x0(i� r)A⇥ (x, bp̂(i))A⇥ (x0
, bp̂(i� r))

!

=
X

p̂2[P̂ ]

 
X

i2[din],r2{0,...,din�1}

x(i)rot(x0
, r)(i)A⇥ (x, bp̂(i))A⇥ (rot(x0

, r), bp̂(i))

!

=
din�1X

r=0

 
X

i2[din]

x(i)rot(x0
, r)(i)

X

p̂2[P̂ ]

A⇥ (x, bp̂(i))A⇥ (rot(x0
, r), bp̂(i))

!

=
din�1X

r=0

 
X

i2[din]

x(i)rot(x0
, r)(i)⇤⇥(i, x, rot(x

0
, r))

!

=
din�1X

r=0

hx, rot(x0
, r)i⇤⇥(·,x,rot(x0,r))

Proof of Theorem 5.1 follows in the same manner as the proof Theorem 5.1 of Lakshminarayanan
and Singh (2020).
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