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Abstract1

Dynamic network flow models have been extensively studied and widely used in2

the past decades to formulate many problems with great real-world impact, such as3

transportation, supply chain management, power grid control, and more. Within4

this context, time-expansion techniques currently represent a generic approach for5

solving control problems over dynamic networks. However, the complexity of6

these methods does not allow traditional approaches to scale to large networks,7

especially when these need to be solved recursively over a receding horizon (e.g.,8

to yield a sequence of actions in model predictive control). Moreover, tractable9

optimization-based approaches are limited to simple linear deterministic settings,10

and are not able to handle environments with stochastic, non-linear, or unknown11

dynamics. In this work, we present dynamic network flow problems through the12

lens of reinforcement learning and propose a graph network-based framework13

that can handle a wide variety of problems and learn efficient algorithms without14

significantly compromising optimality. Instead of a naive and poorly-scalable15

formulation, in which agent actions (and thus network outputs) consist of actions16

on edges, we present a two-phase decomposition. The first phase consists of an RL17

agent specifying desired outcomes to the actions. The second phase exploits the18

problem structure to solve a convex optimization problem and achieve (as best as19

possible) these desired outcomes. This formulation leads to dramatically improved20

scalability and performance. We further highlight a collection of features that are21

potentially desirable to system designers, investigate design decisions, and present22

experiments showing the utility, scalability, and flexibility of our framework.23

1 Introduction24

Many economically critical real-world systems are well-modelled through the lens of control on25

graphs. Power generation [1–3]; road, rail, and air transportation systems [4, 5]; complex manufactur-26

ing systems, supply chain, and distribution networks [6, 7]; telecommunication networks [8–10]; and27

many other systems are fundamentally the problem of controlling flows of products, vehicles, or other28

quantities on graph-structured networks. Traditionally, these problems are approached through the29

definition of a dynamic network flow model (DNF) [11, 12]. Within this class of problems, Ford and30

Fulkerson [13, 14] proposed a generic approach, showing how one can use time-expansion techniques31

to (i) convert dynamic networks with discrete time horizon into static networks, and (ii) solve the32

problem using algorithms developed for static networks. However, this approach leads to networks33

that grow exponentially in the input size of the problem, thus not allowing traditional methods to34

scale to large networks. Moreover, the design of good heuristics or approximation algorithms for35

network flow problems often requires significant specialized knowledge and trial-and-error.36

In this paper, we argue that data-driven strategies have the potential to automate this challenging,37

tedious process, and learn efficient algorithms without compromising optimality. To do so, we38

propose a graph network-based reinforcement learning framework that can handle a wide variety of39

network control problems. Specifically, we introduce a bi-level formulation that leads to dramatically40

improved scalability and performance by combining the strengths of mathematical optimization and41

learning-based approaches.42
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2 Problem Setting: Dynamic Network Control43

To outline our problem formulation, we first define the linear problem, which is a classic convex44

problem formulation. We will then define a nonlinear, dynamic, non-convex problem setting that45

better corresponds to real-world instances. Much of the classical flow control literature and practice46

substitute the former linear problem for the latter nonlinear problem to yield tractable optimization47

problems [15–17]; we leverage the linear problem as an important algorithmic primitive. We consider48

the control of Nc commodities on graphs, for example, vehicles in a transportation problem. A graph49

G = {V, E} is defined as a set V of Nv nodes, and a set E of Ne ordered pairs of nodes (i, j) called50

edges, each described by a traversal time tij . We use N+(i),N−(i) ⊆ V for the set of nodes having51

edges pointing away from or toward node i, respectively. We use sti(k) ∈ R to denote the quantity of52

commodity k at node i and time t1.53

The Linear Network Control Problem. Within the linear model, our commodity quantities evolve54

in time as55

st+1
i = sti + f ti + eti, ∀i ∈ V (1)

where f ti denotes the change due to flow of commodities along edges and eti denotes the change56

due to exchange between commodities at the same graph node. We refer to this expression as the57

conservation of flow. We also accrue money as58

mt+1 = mt +mt
f +mt

e, (2)

where mt
f ,m

t
e ∈ R denote the money gained due to flows and exchanges respectively. Money can59

also be replaced with any other form of scalar reward, although it may be subject to e.g. non-negativity60

constraints and thus is different from the notion of reward in the RL problem. Our overall problem61

formulation will typically be to control flows and exchanges so as to maximize money over one or62

more steps subject to additional constraints such as, e.g., flow limitations through a particular edge.63

Please refer to Appendix A for a formal treatment of flow and exchange quantities, together with64

practical constraints within network control problems.65

The Nonlinear Dynamic Network Control Problem. The previous subsection presented a linear66

problem formulation that yields a convex optimization problem for the decision variables—the chosen67

flow and exchange values. However, the formulation is limited by the assumption of linearity, thus68

lacking in the characterization of a number of elements typical of real-world systems (please refer69

to Appendix A for a more complete treatment). Crucially, these nonlinear, time-varying, stochastic,70

or unknown elements lead to severe difficulties in applying the convex formulation derived in the71

previous subsection. A common approach is to solve a linearized version of the nonlinear problem at72

each timestep, which is a form of model predictive control (MPC), although this essentially discards73

some elements of the problem to achieve computational tractability. In this paper, we focus on solving74

the nonlinear problem (reflecting real, highly general problem statements) via a bilevel optimization75

approach, wherein the linear problem (which has been shown to be extremely useful in practice) is76

used as an inner control primitive.77

3 Methodology: The Bi-Level Formulation78

In this section we describe the bi-level formulation that is the primary contribution of this paper. We79

further introduce a more formal Markov decision process (MDP) for our problem setting, together80

with a discussion on practical elements for real-world problem formulations in Appendix B.81

The Bi-Level Formulation. We consider a discounted infinite-horizon MDP M = (S,A, P,R, γ).82

Here, st ∈ S is the state and at ∈ A is the action space, both at time t. The state in this setting is com-83

modity values at nodes, as well as other available information; actions corresponds to aforementioned84

decision variables. The dynamics, P : S × A× S → [0, 1] are probabilistic, with P (st+1 | st, at)85

denoting a conditional distribution over st+1. The reward function R : S × A → R is real-valued,86

and not limited to strictly positive or negative rewards. Finally, we write the discount factor as γ as is87

typical in the infinite-horizon RL formulation, although it is straightforward to instead consider a88

finite-horizon setting. Please refer to Appendix B.1 for further treatment of the MDP.89

The overall goal of the reinforcement learning problem setting is to find a policy π̃∗ ∈ Π̃ (where Π̃90

is the space of realizable Markovian policies) such that π̃∗ ∈ argmaxπ̃∈Π̃ Eτ [
∑∞

t=0 γ
tR(st, at)],91

1We consider several reduced views over these quantities, and maintain several notational rules. We write
sti ∈ RNc to denote the vector of all commodities; we write st(k) ∈ RNv to denote the vector of commodity
k at all nodes; we write si(k) ∈ RT to denote commodity k at node i for all times t. We can also apply any
combination of these notation rules, yielding for example s ∈ RT×Nc×Nv .

2



Graph Reinforcement Learning for Network Control via Bi-Level Optimization

where τ = (s0, a0, s1, a1, . . .) denotes the trajectory of states and actions. This policy formulation92

requires specifying a distribution over all flow/exchange actions, which may be an extremely large93

space. We instead consider a bi-level formulation94

π∗ ∈ argmax
π∈Π

Eτ

[ ∞∑
t=0

γtR(st, at)

]
s.t. at = LCP(ŝt+1, st) (3)

where we consider a stochastic policy π(ŝt+1 | st), which maps from the current state to a goal95

next state (or subset of the state, such as commodity values only). This goal next state is used in96

the linear control problem (LCP(·, ·)), which leverages a (slightly modified) one-step version of the97

linear problem formulation of Section 2 to map from desired next state to action. Thus, the resulting98

formulation is a bi-level optimization problem, whereby the policy π̃ is the composition of the policy99

π(ŝt+1 | st) and the solution to the linear control problem. Specifically, given a sample of ŝt+1 from100

the stochastic policy, we select concrete flow and exchange actions by solving the linear control101

problem, defined as102

argmin
at

d(ŝt+1, st+1)−R(st, at) (4a)

s.t. Conservation of flow (1);Net flow (5);Flow reward (6); (4b)
Exchange conditions (7);Other constraints, e.g. (8) or (9) (4c)

where d(·, ·) is a chosen convex metric which penalizes deviation from the desired next state. The103

resultant problem—consisting of a convex objective subject to linear constraints—is convex and thus104

may be easily and inexpensively solved to choose actions at, even for very large problems.105

As is standard in reinforcement learning, we will aim to solve this problem via learning the policy106

from data. This may be in the form of online learning [18] or via learning from offline data [19]. There107

are large bodies of work on both problems, and our presentation will generally aim to be as-agnostic-108

as-possible to the underlying reinforcement learning algorithm used. Of critical importance is the109

fact that the majority of reinforcement learning algorithms use likelihood ratio gradient estimation110

(typically referred to as the REINFORCE gradient estimator in RL [20]), which does not require111

path-wise backpropagation through the inner problem.112

We also note that our formulation assumes access to a model (the linear problem) that is a reasonable113

approximation of the true dynamics over short horizons. This short-term correspondence is central to114

our formulation: we exploit exact optimization when it is useful, and otherwise push the impacts of the115

nonlinearity over time in the learned policy. We assume this model is known in our experiments, but116

it could be identified independently. Please see Appendix C.1, C.2, and C.4 for a broader discussion.117

Network Architecture. To exploit the network structure of the problem we introduce a policy118

graph neural network architecture based on message passing neural networks [21] (Appendix B.2).119

As introduced in this section, the goal of RL is to learn a stochastic policy π(ŝt+1 | st) mapping to120

goal next states. Concretely, to obtain a valid probability density over next states, we define the output121

of our policy network to represent the concentration parameters α ∈ RNv
+ of a Dirichlet distribution,122

such that ŝt+1 ∼ Dir(ŝt+1|α), although alternate output formulations are possible.123

4 Experiments124

In this section, we compare against a number of benchmarks on an instance of network control with125

great real-world impact: the minimum cost flow problem. Within this context, the goal is to control126

commodities so to move them from one or more source nodes to one or more sink nodes, in the127

minimum time possible. Appendix E provides further details on both benchmarks and environments.128

Minimum cost flow through message passing. In this first experiment, we consider 3 different129

environments (Fig. 1), such that different topologies enforce a different number of required hops of130

message passing between source and sink nodes to select the best path. Results in Table 1 (2-hop,131

3-hop, 4-hop) show how MPNN-RL is able to achieve at least 87% of oracle performance. Table132

1 further shows how agents based on graph convolutions (i.e., GCN [22], GAT [23]) fail to learn133

an effective flow optimization strategy. As in Xu et al. [24], we argue in favor of the algorithmic134

alignment between the computational structure of MPNNs and the kind of computations needed to135

solve traditional network optimization problems (see Appendix C.3 for further discussion).136

Dynamic traversal times. In this experiment, we define time-dependent traversal times. In Fig. 2137

and Table 1 (Dyn tt) we measure results on a dynamic network characterized by two change-points,138

i.e., time steps where the optimal path changes because of a change in traversal times. Results show139

how the proposed MPNN-RL is able to achieve above 99% of oracle performance.140
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Table 1: Average performance across multiple environments over 100 test episodes

2-hops

Random MLP-RL GCN-RL GAT-RL MPNN-RL (ours) Oracle

Avg. Reward 63 387 201 146 576 642
% Oracle 9.9% 60.2% 31.3% 22.9% 89.7% -

3-hops Avg. Reward 1013 1084 1385 1257 1803 2014
% Oracle 50.3% 53.8% 68.7% 62.4% 89.5% -

4-hops Avg. Reward 2033 2185 2303 2198 2807 3223
% Oracle 63.1% 67.8% 71.4% 68.2% 87.1% -

Dyn tt Avg. Reward -546 -18 437 400 2306 2327
% Oracle -23.4% -0.7% 18.7% 17.1% 99.1% -

Dyn top Avg. Reward 810 N/A 1016 827 1599 1904
% Oracle 42.5% N/A 53.4% 43.4% 83.9% -

Capacity
Avg. Reward 1495 1498 1557 1503 2145 2389
% Oracle 62.6% 62.7% 65.2% 62.9% 89.8% -
Success Rate 82% 82% 87% 80% 87% 88%

Multi-com Avg. Reward 2191 4045 3278 3206 6986 9701
% Oracle 22.5% 41.7% 33.8% 33.0% 72.0% -

Dynamic topology. In this experiment we assume a time-dependent topology, i.e., nodes and edges141

can be dropped or added during an episode. This case is substantially different from what most142

traditional approaches are able to handle: the locality of MPNN agents together with the one-step143

implicit planning of RL, enable our framework to deal with multiple graph configurations during144

the same episode. Fig. 3 and Table 1 (Dyn top) show how MPNN-RL achieves 83.9% of oracle145

performance clearly outperforming the other benchmarks. Crucially, these results highlight how146

agents based on MLPs result in highly inflexible network controllers, thus limited to a fixed topology.147

Capacity constraints. In this experiment, we relax the assumption that capacities f̄ij are always148

able to accommodate any flow on the graph. Compared to previous sections, the lower capacities149

introduce the possibility of infeasible states. To measure this, the Success Rate computes the150

percentage of episodes which have been terminated successfully. Results in Table 1 (Capacity)151

highlight how MPNN-RL is able to achieve 89.8% of oracle performance while being able to152

successfully terminate 87% of episodes. Qualitatively, Fig. 4 shows a visualization of the policy for a153

specific test episode. The plots show how the MPNN-RL is able to learn the effects of capacity on the154

optimal strategy by allocating flow to a different node when the corresponding edge is approaching155

its capacity limit.156

Multi-commodity. In this scenario, we extend the current architecture to deal with multiple157

commodities and source-sink combinations. Results in Table 1 (Multi-com) and Fig. 5 show how158

MPNN-RL is able to effectively recover distinct policies for each policy head, thus being able to159

operate successfully multi-commodity flows within the same network.160

Computational analysis. We study the computational cost of MPNN-RL compared to MPC-based161

solutions. As shown in Fig. 6, we compare the time necessary to compute a single network flow162

decision. We do so across varying dimensions of the underlying graph, ranging from 10 up to 400163

nodes. As verified by this experiment, learning-based approaches exhibit computational complexity164

linear in the number of nodes and graph connectivity, without significant decay in performance.165

5 Outlook and Limitations166

Research in network flow models, in both theory and practice, is largely scattered across the control,167

management science, and optimization literature, potentially hindering scientific progress. In this168

work, we propose a general framework that could enable learning-based approaches to help address169

the open challenges in this space: handling nonlinear dynamics and scalability, among others. In170

the hope of fostering a unification of tools among the reinforcement learning and network control171

communities, we aimed to (i) maintain the narration as-agnostic-as-possible, and (ii) showcase the172

extreme versatility of our framework through numerous controlled experiments. However, what173

we present here should be considered as, in our opinion, exciting preliminary results aiming to174

gather more traction among the ML community towards the solution of hugely impactful real-world175

problems in the field of network control. Crucially, before being able to consider learning-based176

frameworks as a concrete alternative to current standards, we believe this research opens several177

promising future directions for the extension of these concepts to large-scale applications.178
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A Dynamic Network Control303

In this section we make concrete both our linear and nonlinear problem formulation.304

Flows. We will denote flows along edge (i, j) with f tij(k). From these flows, we have305

f ti =
∑

j∈N−(i)

f tji −
∑

j∈N+(i)

f tij , ∀i ∈ V (5)

which is the net flow (inflows minus outflows). As discussed, associated with each flow is a cost306

mt
ij(k). Note that given this formulation, the total cost for all commodities can be written as307

mt
ij · f tij = (mt

ij)
⊤f tij . Thus, we can write the total flow cost at time t as308

mt
f =

∑
i∈V

 ∑
j∈N−(i)

mt
ji · f tji −

∑
j∈N+(i)

mt
ij · f tij

 . (6)

Exchanges. To define our exchange relations and their effect on commodity quantities and costs,309

we will write the effect which exchanges have on money for each node; we write this as mt
i. Thus,310

we have mt
e =

∑
i∈V m

t
i. The exchange relation takes the form311 [

eti
mt

i

]
= Et

iw
t
i (7)

where Et
i ∈ RNc+1×Ne(i) is an exchange matrix and w ∈ RNe(i) are the weights for each exchange.312

Each column in this exchange matrix denotes an (exogenous) exchange rate between commodities;313

for example, for i’th column [−1, 1, 0.1]⊤, one unit of commodity one is exchanged for one unit of314

commodity two plus 0.1 units of money. Thus, choice of exchange weights wt
i uniquely determines315

exchanges eti and money change due to exchanges, mt
e.316

Linear Constraints. We may impose additional (linear) constraints on the problem beyond the317

conservation of flow we have discussed so far. There are a few common examples that we may use in318

several applications. A common constraint is non-negativity of commodity values, which we may319

express as320

sti ≥ 0, ∀i, t. (8)

Note that this inequality is defined element-wise. A similar constraint can be defined for money. We321

may also impose constraints on flows and exchanges; thus, we may for example limit the flow of all322

commodities through a particular edge via323

Nc∑
k=1

f tij(k) ≤ f
t

ij (9)

where this sum could also be weighted per-commodity. These linear constraints are only a limited324

selection of some common examples; the space of possible constraints is extremely general and the325

particular choice of constraints is problem-specific.326

Elements breaking the linearity assumptions. Real-world systems are characterized by many327

factors that cannot be reliably modelled through the linear problem described in Section 2. In what328

follows, we discuss a (non-exhaustive) list of factors potentially breaking such linearity assumptions:329

• Stochasticity. Various stochastic elements can impact the problem. Commodity transitions in330

the previous section were defined as being deterministic; in practice in many problems, there are331

elements of stochasticity to these transitions. For example, random demand may reduce supply332

by an unpredictable amount; vehicles may be randomly added in a transportation problem; and333

packages may be lost in a supply chain setting. In addition to these state transitions, constraints334

may be stochastic as well: flow times or edge capacities may be stochastic, as when a road is335

shared with other users, or costs for flows and exchange may be stochastic.336

• Nonlinearity. Various elements of the state evolution, constraints, or cost function may be337

nonlinear. The objective may be chosen to be a risk-sensitive or robust metric applied to the338

distribution of outcomes, as is common in financial problems. The state evolution may have339

natural saturating behavior (e.g. automatic load shedding). Indeed, many real constraints will340

have natural nonlinear behavior.341
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• Time-varying costs and constraints. Similar to the stochastic case, various quantities may342

be time-varying. However, it is possible that they are time-varying in a structured way, as343

opposed to randomly. For example, demand for transportation may vary over the time of day, or344

purchasing costs may vary over the year.345

• Unknown dynamics elements. While not a major focus of discussion in the paper up to346

this point, elements of the underlying dynamics may be partially or wholly unknown. Our347

reinforcement learning formulation is capapble of addressing this by learning policies directly348

from data, in contrast to standard control techniques.349

B Methodology350

In this section we discuss the full MDP formulation (including defining state and action spaces) and351

discuss algorithmic details.352

B.1 The Dynamic Network MDP353

The problem setting for the full, dynamic network problem is best formulated, in the general case,354

as a partially-observed MDP. We will present it as a Markovian decision process (fully-observed),355

where the choice of input features beyond commodity values are chosen by the user; discussion on356

strategies for better handling partial-observability are presented later in this section.357

We consider a discounted infinite-horizon MDP M = (S,A, P,R, γ). Here, st ∈ S is the state358

and at ∈ A is the action space, both at time t. The dynamics, P : S × S × A → [0, 1] are359

probabilistic, with P (st+1 | st, at) denoting a conditional distribution over st+1. The reward360

function R : S × A → R is real-valued, and not limited to strictly positive or negative rewards.361

Finally, we write the discount factor as γ as is typical in the infinite-horizon RL formulation, although362

it is straightforward to instead consider a finite-horizon setting.363

State and state space. We will, generally, define the state to contain enough information to yield364

“good” Markovian policies. More formally, real-world network control problems are typically highly365

partially-observed; many features of the world impact the state evolution. However, a small number of366

features are typically of primary importance, and the impact of the other partially-observed elements367

can be modeled as stochastic disturbances.368

For our bi-level formulation, there are some state elements that are required. Our formulation requires,369

at each timestep, the commodity values st. Furthermore, the constraint values are required, such as370

costs, exchange rates, flow capacities, etc. If the graph topology is time-varying, the connectivity371

at time t is also critical. The state values to fully define the one-step linear control problem are the372

only state elements which are required. We refer to these constraint values as edge state elements.373

More precisely, the state elements we have discussed so far are either properties of the graph nodes374

(commodity values) or of the edges (such as flow constraints). This difference is of critical importance375

in our graph neural network architecture.376

In addition to these state elements, additional information may be incorporated. Generally, the377

choice of state elements will depend on the information available to a system designer (what can378

be measured) and will depend on the particular problem setting. Possible examples of further state379

elements include forecasts of prices, exchange rates, or flow constraints at future times; exchanges380

rates, for example, include notions of demand or supply. We note that such forecasts are almost381

always available, as they are necessary for solving the multi-step planning problem.382

Action and action space. As discussed in Section 2, the action is defined as all flows and exchange383

weights at all nodes/edges, at = (f t, wt). In our bi-level formulation, we compute at by replacing a384

single policy mapping from states to actions with two nested policies, whereby the goal next state385

st+1 acts as an intermediate variable, thus avoiding the parametrization of an extremely large action386

space, e.g., flows over edges in a graph. Specifically, the goal next state is fed into a linear control387

problem (LCP) to obtain the edge-wise flows that would best match the desired next state. Thus, the388

policy for the original problem is defined as a composition of policies.389

Dynamics. The dynamics of the MDP, P , describe the evolution of state elements. We split our390

discussion in to two parts: the dynamics associated with the commodity time evolution and the391

dynamics of the non-commodity elements.392

The commodity dynamics are assumed to be reasonably well-modeled by the conservation of flow,393

(1), subject to the constraints; this forms the basis of the bi-level approach we describe in the next394

subsection. The primary element not included in the conservation of flow expression is possible395

stochasticity. For example, in transportation problems, vehicles may randomly drop out of service.396
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The non-commodity dynamics are assumed to be substantially more complex. For example, prices397

to buy or sell (reflected in exchange rates) may have a complex dependency on past sales, current398

demand, and current supply (commodity values), as well as random exogenous factors. Thus, we399

place few assumptions on the evolution of non-commodity dynamics, and assume that current values400

are measurable.401

Reward. Throughout the paper, we will assume our full reward is the total discounted money earned402

over the (infinite) problem duration. This results in a stage-wise reward function that corresponds403

simply to the money earned in that time period, or404

R(st, at) = mt
e +mt

f . (10)

Note that the sum of rewards to time t is exactly mt −m0, which corresponds to the money earned.405

It is typical in economics and finance to consider concave utility functions or risk metrics as opposed406

to the exact return [25, 26]. However, this reward structure does not result in a simple stage-wise407

reward decomposition as in the linear case. Thus, while addressing this concavity is important, we do408

not address it in this work.409

B.2 Network Architecture and RL Details410

In this section we introduce the basic building blocks of our graph neural network architecture. Let411

us define with xi ∈ RDx and eji ∈ RDe the Dx-dimensional vector of node features of node i and412

the De-dimensional vector of edge features from node j to node i, respectively.413

We define the update function of node features through the following message passing neural network414

(MPNN):415

x
(k)
i = max

j∈N−(i)
fθ

(
x
(k−1)
i ,x

(k−1)
j , eji

)
, (11)

where k indicates the k-th layer of message passing in the GNN with k = 0 indicating raw envi-416

ronment features, i.e., x(0)
i = xi, and where we use the element-wise max operator as aggregation417

function in our proposed graph-network.418

We note that this network architecture can be used to define both policy and value function estimator,419

depending on the reinforcement learning algorithm of interest (e.g., actor-critic [27], value-based420

[28], etc.). As an example, in our implementation, we define two separate decoder architectures421

for the actor and critic networks of an Advantage Actor Critic (A2C) [29] algorithm. For the actor,422

we define the output of our policy network to represent the concentration parameters α ∈ RNv
+ of a423

Dirichlet distribution, such that at ∼ Dir(at|α), and where the positivity of α is ensured by a Softplus424

nonlinearity. On the other hand, the critic is characterized by a global sum-pooling performed after425

K layers of MPNN. In this way, the critic computes a single value function estimate for the entire426

network by aggregating information across all nodes in the graph.427

Handling dynamic topologies. A defining property of our framework is its ability to deal with428

time-dependent graph connectivity (e.g., edges or nodes are added/dropped during the course of an429

episode). Specifically, our framework achieves this by (i) considering the problem as a one-step430

decision-making problem, i.e., avoiding the dependency on potentially unknown future topologies,431

and (ii) exploiting the capacity of GNNs to handle diverse graph topologies. Crucially, no matter432

the current state of the graph, GNN-based agents are capable of computing a goal next state for the433

network, which will then be converted into actionable flow decisions by the LCP.434

Exploration. In practice, we choose large penalty terms d(·, ·) to minimize greediness. However435

early in training, randomly initialized penalty terms can harm exploration. In practice, we found it436

was sufficient to down-weight the penalty term early in training. As such, the inner action selection437

is biased toward short-term rewards, resulting in greedy action selection. However, there are many438

further possibilities for exploiting random penalty functions to induce exploration, which we discuss439

in the next section.440

Integer-valued flows. For several problem settings, it is desirable that the chosen flows be integer-441

valued. For example, in a transportation problem, we may wish to allocate some number of vehicles,442

which can not be infinitely sub-divided [5, 30]. There are several ways to introduce integer-valued443

constraints to our framework. First, we note that because the RL agent is trained through policy444

gradient—and thus we do not require a differentiable inner problem—we can simply introduce integer445

constraints into the lower-level problem2. However, solving integer-constrained problems is typically446

2Note that several problems exhibit a total unimodularity property [31], for which the relaxed integer-valued
problem is tight.
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expensive in practice. An alternate solution is to simply use a heuristic rounding operation on the447

output of the inner problem. Again, because of the choice of gradient estimator, this does not need448

to be differentiable. Moreover, the RL policy learns to adapt to this heuristic clipping. Thus, we in449

general recommend this strategy as opposed to directly imposing constraints in the inner problem.450

C Discussion and Algorithmic Components451

In this section we discuss various elements of the proposed framework, highlight correspondences452

and design decisions, and discuss component-level extensions.453

C.1 Distance metric as value function454

The role of the distance metric (and the generated goal next state) is to capture the value of future455

reward in the greedy one-step inner optimization problem. This is closely related to the value function456

in dynamic programming and reinforcement learning, which in expectation captures the sum of future457

rewards for a particular policy. Indeed, under moderate technical assumptions, our linear problem458

formulation with stochasticity yields convex expected cost-to-go (the negative of the value) [32, 33].459

There are several critical differences between our penalty term and a learned value function. First, a460

value function in a Markovian setting for a given policy is a function solely of state. For example, in461

the LCP, a value function would depend only on st+1. In contrast, our value function depends on462

ŝt+1, which is the output of a policy which takes st as an input. Thus, the penalty term is a function463

of both the current and predicted next state. Given this, the penalty term is better understood as a464

local approximation of the value function, for which convex optimization is tractable, or as a form of465

state-action value function with a reduced action space (also referred to as a Q function).466

The second major distinction between the penalty term and a value function is particular to rein-467

forcement learning. Value functions in modern RL are typically learned via minimizing the Bellman468

residual [18], although there is disagreement on whether this is a desirable objective [34]. In contrast,469

our policy is trained directly via gradient descent on the total reward (potentially incorporating470

value function control variates). Thus, the objective for this penalty method is better aligned with471

maximizing total reward.472

C.2 Beyond a single-step inner problem473

Our formulation so far has considered a bi-level formulation in which the RL policy outputs a desired474

state at the next timestep, ŝt+1; this is then used in the lower-level problem to select actions. There475

are two relaxations to this procedure that can be incorporated here.476

First, the RL policy can output any future state, and direct optimization can happen for any horizon.477

We may parameterize the RL policy to return ŝt+k for k ≥ 1. Given this, a multi-step optimization478

problem may be solved using the linear model. The potential risk to this approach is the linear (in479

horizon) growth in variables for the inner problem, and poor agreement between the linear model480

and the nonlinear model. This presents a strict generalization of our proposed method. The primary481

reason we have not considered the multi-step formulation as the primary algorithm of this paper is482

that it requires modeling the dynamics of the non-commodity state variables. For example, this model483

requires forecasting all constraint values, whereas our one-step formulation requires only knowledge484

at the current timestep. Forecasting of constraint values is closely linked to questions of (persistent)485

feasibility, which we do not consider in detail in this paper.486

Second, stochasticity may be directly integrated into the lower-level problem. The standard formula-487

tion for stochastic model predictive control (or stochastic multi-stage optimization) is the scenario488

formulation [35], in which a tree of outcomes is constructed via sampling noise realizations3. Within489

the one-step bi-level formulation, sampling Nn noise realizations results in Nn values of the next490

state, st+1
i , i = 1, . . . , Nn within the inner problem. The empirical mean loss491

Est+1 [d(ŝt+1, st+1)]−R(st, at) ≈ 1

Nn

Nn∑
i=1

d(ŝt+1, st+1
i )−R(st, at) (12)

can then be minimized. We emphasize that the actions are the same for each noise realization—this492

is the so-called non-anticipativity constraint. This formulation, for one step, does not meaningfully493

increase the number of decision variables, although will result in increased computational complexity.494

3We note that non-sampling strategies such as moment-matching formulations are also possible, although we
will not discuss these methods herein.

11



Graph Reinforcement Learning for Network Control via Bi-Level Optimization

More importantly, multi-step optimization within the scenario tree approach yields exponential495

growth in the number of decision variables, which will rapid result in intractability. We refer the496

reader to [35] for more details on scenario-based stochastic optimization.497

C.3 Graph neural networks for network optimization498

In this work, we argue that GNNs represent a natural choice for graph optimization problems because499

of three main properties:500

First, permutation invariance, or, more specifically, GNNs represent a class of functions for which501

the output is independent of the node ordering. Crucially, non-permutation invariant computations502

would consider each ordering as fundamentally different and thus require an exponential number of503

input/output training examples before being able to generalize.504

Second, locality of the operator. GNNs typically express a local parametric filter (e.g., convolution505

operator) which enables the same neural network to be applied to graphs of varying size and connec-506

tivity: a property of fundamental importance for network flow optimization problems specifically, and507

real-world problems of economic importance more generally, which will be dynamic or frequently508

re-configured, and it is desirable to be able to use the same policy without re-training.509

Lastly, alignment with the computations used for network optimization problems. The concept of510

algorithmic alignment refers to the fact that despite many neural network architectures have the511

capacity to represent a wide range of algorithms, not all networks are able to actually learn these512

algorithms. Intuitively, a network may learn and generalize better if it is able to represent a function513

(algorithm) “more easily.” A notable example of this in the context of supervised learning is the514

relation between MLPs and CNNs in computer vision—where MLPs are theoretically universal515

approximators yet struggle to achieve satisfying performance on most vision tasks. The difference in516

results of MLP-RL in Table 1 (2-hops) compared to Table 1 (3-hops, 4-hops) further confirms these517

concepts, whereby the smaller dimensionality of the 2-hops environment leads to a smaller solution518

space for the MLPs, which are able to converge to relatively good policies. On the other hand, the519

3-hops and 4-hops environments are characterized by a significant increase in the number of edges520

and nodes, leading to a more challenging search for solutions in policy-space.521

C.4 Computational efficiency522

Consider solving the full nonlinear control problem via direct optimization over a finite horizon (T523

timesteps), which corresponds to a model predictive control [36] formulation. How many total actions524

must be selected? The number of possible flows for a fully dense graph (worst case) is Nv(Nv − 1).525

In addition to this, there are
∑

i∈V Ne(i) possible exchange actions; if we assume Ne is the same for526

all nodes, this yields NvNe possible actions. Finally, we have Nc commodities. Thus, the worst-case527

number of actions to select is TNcNv(Nv +Ne − 1); it is evident that for even moderate choices of528

each variable, the complexity of action selection in our problem formulation quickly grows beyond529

tractability.530

While moderately-sized problems may be tractable within the direct optimization setting, we aim531

to incorporate the impacts of stochasticity, nonlinearity, and uncertainty, which typically results in532

non-convexity. The reinforcement learning approach, in addition to being able to improve directly533

from data, reduces the number of actions required to those for a single step. If we were to directly534

parameterize the naive policy that outputs flows and exchanges, this would correspond to NcNv(Nv+535

Ne − 1) actions. For even moderate values of Nc, Nv, Ne, this can result in millions of actions. It536

is well-known that reinforcement learning algorithms struggle with high dimensional action spaces537

[37], and thus this approach is unlikely to be successful. In contrast, our bi-level formulation requires538

only Nc actions for the learned policy, while additionally leveraging the beneficial inductive biases539

over short time horizons.540

D Related Work541

Bi-level optimization—in which one optimization problem depends on the solution to another542

optimization problem, and are thus nested—has recently become an important topic in machine543

learning, reinforcement learning, and control [38–44]. Of particular relevance to our framework544

are methods that combine principled control strategies with learned components in a hierarchical545

way. Examples include using LQR control in the inner problem with learnable cost and dynamics546

[41, 45, 46]; learning sampling distributions in planning and control [47–49]; or learning optimization547

strategies or goals for optimization-based control [50, 51].548

Numerous strategies for learning control with bi-level formulations have been proposed. A simple549

approach is to insert intermediate goals to train lower-level components, such as imitation [47]. This550
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approach is inherently limited by the choice of the intermediate objective; if this objective does551

not strongly correlate with the downstream task, learning could emphasize unnecessary elements552

or miss critical ones. An alternate strategy, which we take in this work, is directly optimizing553

through an inner controller. A large body of work has focused on exploiting exact solutions to554

the gradient of (convex) optimization problems at fixed points [41, 46, 52]. This allows direct555

backpropatation through optimization problems, allowing them to be used as a generic component556

in a differentiable computation graph (or neural network). Our approach leverages likelihood ratio557

gradients (equivalently, policy gradient), an alternate zeroth-order gradient estimator [53]. This558

enables easy differentiation through lower-lever optimization problems without the technical details559

necessitated with fixed-point differentiation.560

E Experiments561

E.1 Benchmarks562

All RL modules were implemented using PyTorch [54] and the IBM CPLEX solver [55] for the563

optimization problem. In our experiments, we compare the proposed framework with the following564

methods:565

Heuristics. In this class of methods, we focus on measuring performance of simple, domain-566

knowledge-driven rebalancing heuristics.567

1. Random policy: at each timestep, we sample the desired distribution from a Dirichlet prior568

with concentration parameter α = [1, 1, . . . , 1]. This benchmark provides a lower bound of569

performance by choosing desired goal states randomly.570

Learning-based. Within this class of methods, we focus on measuring how different architectures571

affect the quality of the solutions for the dynamic network control problem. For all methods, the A2C572

algorithm is kept fixed, thus the difference solely lies in the neural network architecture.573

3. MLP-RL: both policy and value function estimator are parametrized by feed-forward neural574

networks. In all our experiments, we use two layers of 32 hidden unites and an output layer575

mapping to the output’s support (e.g., a scalar value for the critic network). Through this576

comparison, we highlight the performance and flexibility of graph representations for network-577

structured data.578

4. GCN-RL: In all our experiments, we use K layers of graph convolution with 32 hidden units,579

with K equal to the number of sink-to-source hops in the graph, and a linear output layer580

mapping to the output’s support. See below for a broader discussion of graph convolution581

operators.582

5. GAT-RL: In all our experiments, we use K layers of graph attention with 32 hidden units, with583

K equal to the number of sink-to-source hops in the graph, and single attention head. The output584

is further computed by a linear output layer mapping to the output’s support. Together with585

GCN-RL, this model represents an approach based on graph convolutions rather than explicit586

message passing along the edges (as in MPNNs). Through this comparison, we argue in favor587

of explicit, pair-wise messages along the edges, opposed to sole aggregation of node features588

among a neighborhood. Specifically, we argue in favor of the alignment between MPNN and589

the kind of computations required to solve flow optimization tasks, e.g., propagation of travel590

times and selection of best path among a set of candidates (max aggregation).591

6. MPNN-RL: ours. We use K layers of MPNN of 32 hidden units as defined in Section B.2, with592

K equal to the number of sink-to-source hops in the graph, and a linear output layer mapping to593

the output’s support.594

MPC-based. Within this class of methods, we focus on measuring performance of MPC approaches595

that serve as state-of-art benchmarks for the dynamic network flow problem.596

5. MPC-Oracle: we directly optimize the flow using a standard formulation of MPC [56]. Notice597

that although the embedded optimization is a linear programming model, it may not meet the598

computation requirement of real-time applications (e.g., obtaining a solution within several599

seconds) for large scale networks. In this work, MPC is assumed to have access to future600

state elements (e.g., future traversal times, connectivity, etc.). Crucially, assuming knowledge601

of future state elements is equivalent to assuming oracle knowledge of the realization of all602

stochastic elements in the system. In other words, there is no uncertainty for the MPC (this603

is in contrast with RL-based benchmarks, that assume access only to current state elements).604

In our experiments, the benchmark with the "Oracle" MPC enables us to quantify the optimal605
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solution for all environments, thus giving a sense of the optimality gap between the ground truth606

optimum and the solution achieved via RL.607

E.2 Environments608

In what follows, we describe the properties of the environments used to train and evaluate our609

framework in order to make them reproducible and understandable. We select environment variables610

in a way to cover a wide enough range of possible scenarios, e.g., different traversal times and thus,611

different optimal actions.612

• Generalities. As discussed in Section 4, the environments describe a dynamic minimum cost
flow problem, whereby the goal is to let commodities flow from source to sink nodes in the
minimum time possible (i.e., cost is equal to time). Formally, given a graph G = {V, E}, the
reward function across all environments is defined as:

R(st, at) = −
∑
ij∈E

f tijtij + λf tsink,

where f tij and tij represent flow and traversal time along edge (i, j) at time t, respectively, f tsink613

is the flow arriving at all sink nodes at time t, and λ is a weighting factor between the two reward614

terms. In our experiments, the resulting policy proved to be broadly insensitive to values of λ,615

with λ ∈ [15, 30] typically being an effective range.616

• Minimum cost flow through message passing. Given a single-source, single-sink network,617

we assume travel times to be constant over the episode and requirements (i.e., demand) to be618

sampled at each time step as ρ = 10 + ψi, ψi ∼ Uniform[−2, 2]. Capacities uij are fixed to a619

very high positive number, thus not representing a constraint in practice. Cost mij is considered620

equal to the traversal time tij . An episode is assumed to have a duration of 30 time steps621

and terminates when there is no more flow traversing the network. To present a variety of622

scenarios to the agent at training time, we sample random travel times for each new episode as623

tij ∼ Uniform[0, 10] and use the topologies shown in Fig. 1. In our experiments, we apply as624

many layers of message passing as hops from source to sink node in the graph, e.g., K = 2 and625

K = 3 in the 2-hops and 3-hops environment, respectively.626

• Dynamic traversal times. To train our MPNN-RL, we select the 3-hops environment and627

generate travel times as follows for every episode: (i) sample random traversal times as tij ∼628

Uniform[0, 10], (ii) for every time step, gradually change the traversal time as tij = tij+ψ,ψ ∼629

Uniform[−1, 1].630

• Capacity constraints. In this experiment, we focus on the 3-hops environment and assume a631

constant value f̄ij = 20,∀i, j ∈ V : j ̸= 7 while we keep a high value for all the edges going632

into node 7 (i.e., the sink node) which would more easily generate infeasible scenarios. From an633

RL perspective, we add the following edge-level features:634

– Edge-capacity {f̄ tij}i,j∈V at the current time step t.635

– Accumulated flow {f tij}i,j∈V on edge ij636

• Multi-commodity. Let Nc define the number of commodities to consider, indexed by k. From637

an RL perspective, we extend the our proposed policy graph neural network to represent a Nc-638

dimensionsional Dirichlet distribution. Concretely, we define the output of the policy network to639

represent the Nc ×Nv concentration parameters α ∈ RNc×Nv
+ of a Dirichlet distribution over640

nodes for each commodity, such that at ∼ Dir{at|α}. In other words, to extend our approach to641

the multi-commodity setting, we define a multi-head policy network characterized by one head642

per commodity. In our experiments, we train our multi-head agent on the topology shown in Fig.643

5 whereby we assume two parallel commodities: commodity A going from node 0 to node 10,644

and commodity B going from node 0 to node 11. We choose this topology so that the only way645

to solve the scenario is to discover distinct behaviours between the two network heads (i.e., the646

policy head controlling flow for commodity A needs to go up or it won’t get any reward, and647

vice-versa for commodity B).648

• Computational analysis. In this experiment, we generate different versions of the 3-hops649

environment, whereby different environments are characterized by intermediate layers with650

increasing number of nodes and edges. The results are computed by applying the pre-trained651

MPNN-RL agent on the original 3-hops environment (i.e., characterized by 8 nodes in the graph).652

In light of this, Figure 6 showcases a promising degree of transfer and generalization among653

graphs of different dimensions.654
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Figure 1: Graph topologies used for the message passing experiments: 2-hops (left), 3-hops (center),
4-hops (right). The source and sink nodes are represented by the left-most and right-most nodes,
respectively. Values in proximity of the edges represent traversal times.

Figure 2: Visualization of a trained instance of MPNN-RL on an environment with dynamic traversal
times. We simulate a scenario where the optimal path changes three times (left, middle, and right)
over the course of an episode. Shaded edges represent actions induced by the MPNN-RL.

Figure 3: Visualization of a trained instance of MPNN-RL on an environment with dynamic topology.
We simulate a scenario where the optimal path changes over the course of an episode because of the
addition of a new path. Shaded edges represent actions induced by the MPNN-RL.
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Figure 4: Visualization of the MPNN-RL policy on the capacity constrained environment. (Top) The
resulting flow fij on the edges 0 → 1, 0 → 2, 0 → 3. (Center) The accumulated flow on the same
edges compared to the fixed capacity f̄ij = 20, represented as a dashed horizontal line. (Bottom)
The desired distribution described by the MPNN-RL policy.

Figure 5: Visualization of the multi-commodity environment. (Left) The topology considered
during our experiments. (Center) A visualization of the policy for the first commodity A. (Right) A
visualization of the policy for the second commodity B.
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Figure 6: Comparison of computation times between learning-based (blue) and control-based
(orange) approaches. Green triangles represent the percentage performance of our RL framework
compared to the oracle model.
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