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1 REVIEW OF CLIP
CLIP consists of a dual-streammodel comprising a text encoder and
an image encoder. The feature extraction process is demonstrated
by the following equations:

𝑅𝑡 = 𝐸𝑡 (𝑡) (1)

𝑅𝑣 = 𝐸𝑣 (𝑣) (2)
𝐸𝑡 and 𝐸𝑣 represent the text encoder and image encoder, re-

spectively. CLIP utilizes the output of the < 𝑒𝑜𝑠 > token from the
text encoder to represent the text feature 𝑅𝑡 , and the output of the
< 𝑖𝑚𝑎𝑔𝑒 > token from the image encoder to represent the image
feature 𝑅𝑖 . 𝑡 and 𝑣 represent the input text and image, respectively.

Both the text encoder (𝐸𝑡 ) and image encoder (𝐸𝑣 ) are con-
structed using stacked Transformer blocks. The Transformer block
is defined as follows:

𝐴𝑙 = 𝐿𝑁 (𝐴𝑇𝑇 (𝐻𝑙 ) + 𝐻𝑙 ) (3)

𝐻𝑙+1 = 𝐿𝑁 (𝐹𝐹𝐷 (𝐴𝑙 ) +𝐴𝑙 ) (4)
In the above equations, 𝐻𝑙 represents the input sequence of the

𝑙-th Transformer block, 𝐴𝑇𝑇 denotes the multi-head attention op-
eration, 𝐿𝑁 stands for the layer normalization operation, and 𝐹𝐹𝐷
represents the feedforward propagation using a fully connected
layer.

For 𝑙 = 1, 𝐻1 is the input sequence consisting of the embedding
of word (or image patch) concatenated with the < 𝑒𝑜𝑠 > token (or
< 𝑖𝑚𝑎𝑔𝑒 > token), along with positional encoding. CLIP uses a
simple cross-modal contrastive loss 𝐿𝑣𝑡𝑐 to optimize the learning
of the model.

𝐿𝑣𝑡𝑐 = −1
2
[ 1
𝑚

𝑚∑︁
𝑗 = 1

log
𝑒𝑥𝑝

(
𝐷
(
Rv 𝑗 ,Rt 𝑗

)
/𝜏
)∑𝑚

𝑢=1 𝑒𝑥𝑝
(
𝐷
(
Rv 𝑗 ,Rt𝑢

)
/𝜏
) +

1
𝑚

𝑚∑︁
𝑗 = 1

log
𝑒𝑥𝑝

(
𝐷
(
Rt 𝑗 ,Rv 𝑗

)
/𝜏
)∑𝑚

𝑢=1 𝑒𝑥𝑝
(
𝐷
(
Rt 𝑗 ,Rv𝑢

)
/𝜏
) ] (5)

Where 𝐿𝑣𝑡𝑐 denotes the cross-modal contrastive loss,𝑚 denotes
the batch size, 𝐷 denotes the dot product similarity of vectors,
Rv = {𝑅𝑖𝑣, 𝑖 = 1, 2, . . .} is a matrix of image feature vectors within a
batch, Rt = {𝑅𝑖𝑡 , 𝑖 = 1, 2, . . .} denotes a matrix of text feature vectors
within a batch, and 𝜏 denotes the temperature coefficient.

2 PARAMETERS SEARCH OF MLCE LOSS
To further analyze the impact of the MLCE loss, we performed an
additional parameter search for 𝜇 and 𝛼 in Equations 3 and 4 on
the RSITMD dataset, aiming to find the optimal parameter settings.
We use the mR as the metric (Mean_R in the Figure). During the
search for 𝜇, we empirically set 𝛼 to 1. The search was performed
over the values {0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2}, and the
results are shown in Figure 1. The optimal mR value of 50.22 was

Figure 1: Parameter search results on the RSITMD dataset
for 𝜇.

Figure 2: Parameter search results on the RSITMD dataset
for 𝛼 .

achieved when 𝜇 was set to 1 in ALR(w/o SPDS). Based on the 𝜇
search, we set 𝜇 to 1 and proceeded with the search for 𝛼 . The
search encompassed the values {0.0001, 0.001, 0.01, 0.1, 1, 10, 100,
1000}, and the results are depicted in Figure 2. When 𝛼 was set to 1,
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Table 1: Experimental results on UCM Caption

Method
Sentence Retrieval Image Retrieval

mR Test FLOPs(G) Test Pramaterrs(M)
R@1 R@5 R@10 R@1 R@5 R@10

Traditional methods
VSE++ [4] BMVC’18 12.38 44.76 65.71 10.10 31.80 56.85 36.93 2.44 15.78
SCAN [8] ECCV’18 14.29 45.71 67.62 12.76 50.38 77.24 44.67 2.42 13.68
CAMP [14] ICCV’19 14.76 46.19 67.62 11.71 47.24 76.00 43.92 2.28 36.64
MTFN [13] MM’19 10.47 47.62 64.29 14.19 52.38 78.95 44.65 2.80 77.90

RSITR methods
AMFMN [20] TGRS’22 16.67 45.71 68.57 12.86 53.24 79.43 46.08 2.75 35.94
LW-MCR [21] TGRS’21 18.10 47.14 63.81 13.14 50.38 79.52 45.35 0.46 1.65

CABIR [23] 15.17 45.71 72.85 12.67 54.19 89.23 48.30 – –
SSJDN [22] ACM TOMM’23 17.86 53.57 72.02 20.54 62.56 82.98 51.59 – –

SMLGN [3] TGRS’24 12.86 49.52 75.71 14.29 52.76 84.67 48.30 – –
MSITA [2] TGRS’24 16.86 49.33 73.33 14.29 57.16 91.58 50.43 – –

Additional variants
VIT + BERT 11.90 52.38 72.38 14.29 56.00 85.81 48.79 19.50 171.29

ResNet18 + BERT 12.86 43.81 68.57 10.29 50.86 81.62 44.67 4.46 97.28
ResNet50 + BERT 11.90 50.00 71.43 11.62 52.76 89.14 47.81 6.77 110.14
ResNet101+ BERT 16.67 53.33 76.19 15.52 51.14 76.38 48.21 10.50 129.13

CLIP based methods
CLIP (zero-shot) [10] 8.57 34.76 62.86 9.43 39.43 66.95 37.00 13.21 82.46

CLIP (full-finetune) [10] 20.95 59.05 83.81 19.14 65.33 94.95 57.20 13.21 82.46
Maple [7] 18.57 55.24 80.00 16.67 63.04 94.00 54.60 13.21 86.79

OURS
ALR (w/o SPDS) 22.38 60.48 81.90 19.71 67.14 94.76 57.73 13.21 82.46

ALR(k=9) 17.14 54.29 78.10 17.81 63.52 97.52 54.73 9.94 61.99
ALR(k=5) 14.29 47.62 69.05 13.81 52.67 82.67 46.68 5.57 34.70

Figure 3: Parameter search results on the RSTPReID dataset
for 𝛼 .

ALR(w/o SPDS) achieved the optimal mR value of 50.22. Therefore,
in subsequent RSITMD experiments, we set both 𝜇 and 𝛼 to 1.

In the TIReID task, we performed a parameter search for 𝜇 and 𝛼
on the RSTPReID dataset, using R@1 as the evaluation metric. We
set 𝜇 to 1 and proceeded with the search for 𝛼 . This search included
the values 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, and the
results are depicted in Figure 3. When 𝛼 was set to 1000, ALR(w/o

Figure 4: Parameter search results on the RSTPReID dataset
for 𝜇.

SPDS) achieved the optimal R@1 value of 58.20. During the search
for 𝜇, we set 𝛼 to 1000. The search encompassed the values {0.2, 0.4,
0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2}, and the results are shown in Figure 4.
The optimal R@1 value of 60.10 was achieved when 𝜇 was set to 0.8
in ALR(w/o SPDS). Therefore, in subsequent TIReID experiments,
we set 𝜇 to 0.8 and 𝛼 to 1000.
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Table 2: Experimental results on RSTPReID

Method R@1 R@5 R@10 mAP
Test

FLOPs(G)
Test

Parameters (M) Ref

Traditional methods
C2A2 [9] 51.55 76.75 85.15 – 12.87 107.71 MM 22
LCR [19] 54.95 76.65 84.70 – 4.64 87.82 MM 23
Unipt [11] 49.45 72.75 80.35 – 13.59 142.91 ICCV 23
IVT [12] 46.70 70.00 78.80 – 19.07 142.32 ECCVW 22
TGDA [5] 48.35 73.15 80.30 37.96 5.08 113.84 TCSVT 23

IMG-NET [18] 37.60 61.15 73.55 – – – JEI 20
AMEN [15] 38.45 62.40 73.80 – – – PRCV 21
DSSL[24] 39.05 62.60 73.95 – 4.70 53.89 MM 21
SUM [16] 41.38 67.48 76.48 – 5.29 39.11 KBS 22
LBUL [17] 45.55 68.20 77.85 – 8.88 57.99 MM 22

CLIP based methonds
CLIP-full-finetune 55.05 79.25 86.55 43.68 13.21 84.46 ICML 21
CLIP-zero-shot 13.40 25.00 33.65 9.55 13.21 84.46 ICML 21

Ours
ALR (w/o) SPDS 60.10 80.95 87.60 47.07 13.21 84.46 –

ALR (k=9) 45.35 68.05 78.60 37.03 9.94 61.99 –

3 EXPERIMENT RESULTS ON UCM CAPTION
DATASET

Table 1 illustrates the results on the UCM Caption dataset. Our
method continues to achieve the SOTA performance on this dataset.
ALR (w/o SPDS) achieved an mR value of 57.73, while the light-
weight versions, ALR (k=9) and ALR (k=5), achieved mR values of
54.73 and 46.68, respectively. Compared to traditional and RSITR
methods, our ALR (w/o SPDS) outperformed the highest SSJDN
method by 6.14. The lightweight ALR (k=9) also outperformed
SSJDN by 3.14. Compared to additional variants, our method also
demonstrated superiority. ALR (w/o SPDS) and ALR (k=9) achieved
significant improvements in mR compared to these methods, while
ALR (k=9) had much lower parameter count and computational cost
than ResNet101 + BERT and VIT + BERT. Compared to CLIP-based
methods, ALR (w/o SPDS) outperformed CLIP (full-finetune) by
0.53 in mR, highlighting the effectiveness of MLCE loss on UCM
Caption. The lightweight ALR (k=9) achieved an acceptable trade-
off between accuracy and computational cost (parameter count)
compared to CLIP (full-finetune), maintaining high retrieval accu-
racy while significantly reducing computational cost and parameter
count.

4 EXPERIMENT RESULTS ON RSTPREID
DATASET

The comparative experimental results on the RSTPReID dataset
are shown in Table 2. It is evident that ALR (w/o SPDS) achieved
the highest R@K (K=1,5,10) scores and mAP values, surpassing
all comparison algorithms. Compared to traditional methods, our
ALR (w/o SPDS) outperformed the state-of-the-art LCR and C2A2
algorithms, while requiring fewer parameters. In comparison with
CLIP-based methods, ALR (w/o SPDS) exceeded CLIP-full-finetune
by 5.05 in R@1 and 3.39 in mAP, demonstrating the effectiveness
of the MLCE loss. Our lightweight version, ALR(k=9), maintained
competitive performance metrics while reducing computational
and parameter requirements.

5 LAYER ABLATION OF SPDS ON REMAINING
DATASETS

The results on three RSITR datasets are shown in Figure 5 - 7. From
Figure 5, we can see that when 𝐾 is set to 3, our self-distillation
method achieved 33.65 on the RSITMD dataset, which surpassed
the most of traditional comparison methods. We also found that
as the number of layers increases, the mR achieved by the self-
distillation method generally increases, which is intuitive. From
Figure 6, we can see that mR reached 46.68 when 𝐾 is set to 5,
which also surpassed the traditional comparison methods on the
UCM dataset. On the SYDNEY dataset, the advantage of the self-
distillation method is not as significant as on other RSITR datasets,
and it requires 9 layers to achieve a value of 52.76. On the UCM
dataset, the SPDS achieved promising performance, while on the
SYDNEY dataset, the improvement was not as significant. This
is because the SYDNEY dataset is relatively small, with only 613
images, which can easily lead to overfitting. Therefore, the effect
of network complexity on its performance is not very sensitive,
meaning that the difference between large-scale and small-scale
networks is not significant.

In the context of the TIReID task, 𝐾 was set to {3, 4, 5, 6, 7, 8,
9, 10} and 𝛾 to {25, 30, 35, 40, 45}. Considering the task’s emphasis
on the precision of the first returned result, R@1 was selected as
the evaluation metric. The results on the RSTPReid and CUHK
PEDES datasets are depicted in Figure 8-9. The findings indicate
that an𝐾 value of 8 maintains an R@1 at a high level, surpassing the
comparative algorithms while significantly reducing computational
and parameter requirements.

Building upon the aforementioned insights, it is evident that
the SPDS significantly enhances efficiency, reducing parameter
count and computational demands of large-scale models without
compromising retrieval performance.

Figure 5: Joint search results for 𝐾 and 𝛾 on RSITMD
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Figure 6: Joint search results for 𝐾 and 𝛾 on UCM

Figure 7: Joint search results for 𝐾 and 𝛾 on Sydney

6 PARAMETERS CAPACITY AND
COMPUTATIONAL COMPLEXITY ANALYSIS
OF SPDS

We analyzed SPDS for the parameters capacity and computational
complexity. We provide curves showing the variation of model pa-
rameters capacity and computational complexity with the number
of layers, K. From Figure 10 and 11 , it can be observed that both
the parameters capacity and computational complexity exhibit a
linear growth trend as K increases. By employing the SPDS, param-
eters capacity and computational complexity can be significantly
reduced. This reduction in computational complexity and parame-
ters capacity is substantial compared to the CLIP-based methods,
while still maintaining competitive retrieval performance.

Figure 8: Joint search results for 𝐾 and 𝛾 on RSTPReID

Figure 9: Joint search results for 𝐾 and 𝛾 on CUHK-PEDES

7 STUDENT-TEACHER DISTILLATION
To conduct a comprehensive comparative analysis between the
SPDS and traditional teacher-student distillation (STU-TEA), we
designed a student model. By utilizing our ALR(w/o SPDS) as the
teacher model, we implemented the conventional student-teacher
knowledge distillation.

The student model consists of two branches: the image branch
and the text branch. The image branch utilizes the Mobilenet-V3
model [6] as the feature extractor. The Mobilenet-V3 model com-
prises multiple bottlenecks, each incorporating channel separable
convolution, channel attention structure, and residual connectivity.
The model structure of Mobilenet-V3 is illustrated in Figure 12.
Drawing inspiration from [1], the text branch employs multicore
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Figure 10: Curve of parameters capacity variation with K

Figure 11: Curve of computation cost variation with K

convolution for feature extraction. Multicore convolution is a text
processing model that offers parameter capacity and computation
cost advantages over RNN-based and Transformer-based models.
The lightweight image and text features with a batch produced by
Mobilenet-V3 and multicore convolution are denoted as Zv and Zt,
respectively.

During student-teacher knowledge distillation, we first optimize
the CLIP with 𝐿𝑀𝐿𝐶𝐸 (ALR w/o SPDS) to get the teacher model,
and then fix the teacher model to optimize the lightweight student
model. We design two losses when optimizing the student model,
the contrastive loss 𝐿𝑣𝑡𝑐𝑠𝑡𝑢 of the student model and the cross-modal

similarity knowledge distillation loss 𝐿𝑘𝑑𝑠𝑡𝑢 .

𝐿𝑣𝑡𝑐𝑠𝑡𝑢 = −1
2
[ 1
𝑚

𝑚∑︁
𝑗 = 1

log
𝑒𝑥𝑝

(
𝐷
(
Zv 𝑗 ,Zt 𝑗

)
/𝜏
)∑𝑚

𝑢=1 𝑒𝑥𝑝
(
𝐷
(
Zv 𝑗 ,Zt𝑢

)
/𝜏
) +

1
𝑚

𝑚∑︁
𝑗 = 1

log
𝑒𝑥𝑝

(
𝐷
(
Zt 𝑗 ,Zv 𝑗

)
/𝜏
)∑𝑚

𝑢=1 𝑒𝑥𝑝
(
𝐷
(
Zt 𝑗 ,Zv𝑢

)
/𝜏
) ] (6)

𝑚 denotes the batch size, 𝐷 denotes the dot product similarity
of vectors, and 𝜆 denotes the temperature coefficient.

Then we calculate student-teacher knowledge distillation loss
𝐿𝑘𝑑𝑠𝑡𝑢 . The cross-modal similarity matrix S3 needs to be calculated
when calculating 𝐿𝑘𝑑𝑠𝑡𝑢 : The formula is as follows:

S3 = ZvZt𝑇 (7)
𝑇 denotes the transpose operation.

𝐿𝑘𝑑𝑠𝑡𝑢 = ( −
𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑒𝑥𝑝
(
S2𝑖 𝑗/𝜃

)∑𝑚
𝑘=1 𝑒𝑥𝑝

(
S2𝑖𝑘/𝜃

)
𝑙𝑜𝑔(

𝑒𝑥𝑝
(
S3𝑖 𝑗/𝜃

)∑𝑚
𝑘=1 𝑒𝑥𝑝

(
S3𝑖𝑘/𝜃

) )) +
( −

𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑒𝑥𝑝

(
ST2

𝑖 𝑗/𝜃
)

∑𝑚
𝑘=1 𝑒𝑥𝑝

(
ST2

𝑖𝑘/𝜃
)

𝑙𝑜𝑔(
𝑒𝑥𝑝

(
ST3

𝑖 𝑗/𝜃
)

∑𝑚
𝑘=1 𝑒𝑥𝑝

(
ST3

𝑖𝑘/𝜃
) ))

(8)

S2 is the similarity matrix output by ALR w/o SPDS. 𝜃 is the
distillation temperature coefficient.

The final loss of the student model is as follows.

𝐿𝑠𝑡𝑢𝑑𝑒𝑛𝑡 = 𝐿𝑣𝑡𝑐𝑠𝑡𝑢 + 𝛽𝐿𝑛𝑘𝑠𝑡𝑢 (9)

where 𝐿𝑠𝑡𝑢𝑑𝑒𝑛𝑡 denotes the total loss of the student model and
𝛽 denotes the combination coefficient.

8 PARAMETER SEARCH AND COMPARATIVE
ANALYSIS OF STU-TEA

We also conducted a parameter search. We searched for the temper-
ature coefficient 𝜃 of the distillation loss 𝐿𝑛𝑘𝑠𝑡𝑢 and the combination
coefficient 𝛽 of the loss. We conducted parameter search experi-
ments on RSITMD. We first conducted a search for the temperature
coefficient 𝜃 , with the combination coefficient 𝛽 fixed empirically at
1. We set 𝜃={0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}. The results are
shown in Table 3. From Table 3, we can see that the optimal value
of mR is achieved when 𝜃 is set to 0.4, and mR decreases when 𝜃 is
too large or too small.

Next, we conducted a search for the combination coefficient 𝛽 ,
with 𝜃 set to 0.4. We set 𝛽={0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000}.
From Table 4, we can see that the optimal value of mR is achieved
when 𝛽 is set to 1000.

We examine the variation of mR values concerning K for SPDS
on the RSITMD and compare them with ALR and STU-TEA. The
experimental results are shown in Figure 13. We observed that as



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 12: Student-teacher distillation

Table 3: Search results for distillation temperature coefficient
𝜃 in Student-teacher appproach on RSITMD

𝜃 0.2 0.4 0.6 0.8 1.00 1.2 1.4 1.6 1.8 2.00
mR 34.31 37.51 35.12 33.21 32.43 32.09 30.98 29.17 28.31 27.91

Table 4: Search results for combination coefficient 𝛽 in
Student-teacher appproach on RSITMD

𝛽 0.0001 0.001 0.01 0.1 1 10 100 1000
mR 18.19 19.51 23.27 31.32 37.51 37.51 37.85 37.88

Figure 13: Curve of mR variation with K on RSITMD

K increases, the mR values for ALR also increase. On the RSITMD
dataset, when K is greater than 5, ALR achieves higher mR values

than STU-TEA. Additionally, ALR(W/O SPDS) with 12 Transformer
blocks has the highest mR values on both datasets, reaching 50.22.
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