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ABSTRACT

Model merging has emerged as an effective approach to combining multiple single-
task models into a multitask model. This process typically involves computing a
weighted average of the model parameters without additional training. Existing
model-merging methods focus on improving average task accuracy. However, inter-
ference and conflicts between the objectives of different tasks can lead to trade-offs
during the merging process. In real-world applications, a set of solutions with
various trade-offs can be more informative, helping practitioners make decisions
based on diverse preferences. In this paper, we introduce a novel and low-compute
algorithm, Model Merging with Amortized Pareto Front (MAP). MAP effi-
ciently identifies a Pareto set of scaling coefficients for merging multiple models,
reflecting the trade-offs involved. It amortizes the substantial computational cost of
evaluations needed to estimate the Pareto front by using quadratic approximation
surrogate models derived from a preselected set of scaling coefficients. Experi-
mental results on vision and natural language processing tasks demonstrate that
MAP can accurately identify the Pareto front, providing practitioners with flexible
solutions to balance competing task objectives. We also introduce Bayesian MAP
for scenarios with a relatively low number of tasks and Nested MAP for situations
with a high number of tasks, further reducing the computational cost of evaluation.

1 INTRODUCTION

Large pre-trained foundation models have become widely available for many real-world applications
(Wornow et al., 2023; Thirunavukarasu et al., 2023; Cui et al., 2024). This increasing availability has
led to a popular practice of fine-tuning these models to adapt them to a wide range of downstream
tasks. Practitioners can independently fine-tune the same pre-trained model, such as CLIP-style
models (Radford et al., 2021; Wu et al., 2023; Zhai et al., 2023), large language models (Brown
et al., 2020; Rozière et al., 2023; Touvron et al., 2023; Jiang et al., 2024), etc., and then release
the fine-tuned models without disclosing the training data. As the deployment of such fine-tuned
models increases, combining models with identical architectures and initializations has emerged as a
promising approach to combine their respective capabilities. This is useful, especially in scenarios
where the training data for each task is private and cannot be shared, such as individual-level patient
data in hospitals and behavioral data in social media recommendation systems.

Existing methods for merging models typically involve calculating a weighted average of the pa-
rameters from multiple models to enhance performance uniformly across various tasks. However,
this approach often overlooks the conflicts among the diverse objectives of these tasks, which can
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Figure 1: Illustration of the overall process of MAP for the case of two tasks. Step 1: Select 2 tasks
and compute their corresponding task vectors. Step 2: Sample a few scaling coefficients c and query
the evaluation metrics for each task, respectively. Step 3: Use the quadratic model as a surrogate
model to approximate the mapping c → metrics. Step 4: Use the NSGA-III algorithm with the
surrogate objective functions to find amortized Pareto fronts. (a): Contour plot of the actual accuracy
landscape for the ViT-B/32 model (Dosovitskiy et al., 2020) obtained from 100 scaling coefficients
(sampled uniformly) evaluated on the SUN397 (Xiao et al., 2016) and Cars (Krause et al., 2013)
datasets. (b): Contour plot of the fitted quadratic functions. Red lines represent the Pareto front in
the decision variable (c1, c2) space. (c): Example of the resulting Pareto fronts. The Pareto front
(Grid search) is regarded as the ground truth given the sufficient number of grid points evaluated. The
Pareto front (MAP, predicted) is the amortized Pareto front. The Pareto front (MAP, real) corresponds
to the same {(c1, c2)} but is re-evaluated to obtain the ground truth metrics for comparison. The
yellow lines indicate the evaluated performance of the fine-tuned single-task models.

lead to trade-offs in model performance across different tasks. In real-world applications, it is often
more beneficial to obtain a set of Pareto optimal solutions rather than a single model. Such solutions
allow practitioners to choose among different trade-offs based on their specific needs. For example,
hospitals specializing in certain areas might prefer a model that excels in tasks relevant to their
specialty while maintaining adequate performance across a broader spectrum of diseases.

In this paper, we introduce a novel method that identifies the Pareto front without retraining the
models to be merged. Our algorithm utilizes a quadratic approximation of the evaluation metric.
Furthermore, we enhance it with a Bayesian adaptive sampling method and a nested merging scheme,
which further reduces the computational cost. We validate our method across a diverse set of tasks,
spanning from vision to natural language processing, and demonstrate its applicability to a variety of
architectures, including ResNets (He et al., 2016), ViT (Dosovitskiy et al., 2020), and large language
models (Brown et al., 2020; Rozière et al., 2023; Touvron et al., 2023; Jiang et al., 2024). Our results
confirm that this novel approach supports the seamless integration of diverse model capabilities and
aligns more closely with various real-world preferences by providing a set of optimal fronts across
the tasks.

Contributions The main contributions of this paper are:

C1 We propose the MAP algorithm, which utilizes quadratic surrogate models to approximate
evaluation metric functions, thereby amortizing the computation of Pareto fronts.

C2 We demonstrate the effectiveness of MAP across a diverse set of architectures, including
vision models (e.g., ResNet, ViT) and large language models, highlighting its generalizability
and flexibility across different domains.
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C3 We introduce two variants of MAP: the nested-merging MAP, which reduces computational
complexity from O(N · 2N ) to O(N logN), and the Bayesian MAP, which efficiently
queries computationally expensive evaluations based on loss information.

C4 To the best of our knowledge, this paper is the first work to estimates the Pareto front
for task-vector-based model-merging methods with low compute, and without relying on
gradient descent for deep neural networks. Our code is available at https://github.
com/luli-git/MAP.

Figure 2: Left: Comparison of our method with direct search for merged ViT-B/32 models (Dosovit-
skiy et al., 2020), based on evaluation results of 250 combinations of scaling coefficients. Our method
identifies a more diverse set of solutions across eight tasks within the same computational budget.
Both methods aim to maximize the performance of one task while ensuring that all other tasks meet
a minimum threshold of 40%. The bar plot displays the maximized accuracy for each task. Right:
When the threshold is increased to 65% of the single-task model’s performance, the brute-force direct
search method fails to find any feasible solutions within the same computational budget.
In Figure 2, we compare our method to direct search. It is important to note that evaluating models in
our problem setting is computationally expensive; as a result, our proposed method can only query the
evaluation pipeline a limited number of times. We choose to compare with direct brute-force search
within the scaling coefficient spaces. When the number of tasks is low, the Pareto fronts obtained
through direct brute-force search can be considered ground truth because the scaling coefficient
spaces have been sufficiently explored. However, when the number of tasks is high, we may not be
able to derive reasonable ground truth Pareto fronts using direct brute-force search. Nonetheless, we
can still demonstrate the efficiency of our method by comparing the winning ratio of MAP to that of
direct brute-force search.

2 BACKGROUND

2.1 MODEL MERGING

Model merging aims to combine two or more trained models into a single model to leverage the
strengths of each and improve overall performance (Deep et al., 2024; Shoemake, 1985; Wang
et al., 2024b). A recent work by Ilharco et al. (2022) introduced task arithmetic as a simple and
effective method for model merging. The task vector for task n is defined as vn = θn

ft − θpre,
which is the element-wise difference between the pre-trained weights and the fine-tuned weights
for task n. To perform model merging with task vectors, we can compute the merged model as
θm = θpre +

∑N
n=1 cnvn, where cn are the scaling coefficients that have been shown to be essential

for the performance of the merged model (Yadav et al., 2024; Yang et al., 2023).

Denoting the metric of task n as Mn, most existing approaches to model merging aim to improve an
equal weight average metric 1

N

∑N
n=1 Mn. This target implies that the user of the algorithm has no

preferences between tasks. However, in real-world applications, users may have biased preferences
for the importance of tasks, necessitating trade-offs in model performance. In such cases, the goal of
model merging shifts from the simple average metric to addressing a broader question:

Given any preferences over the set of tasks, what is the best way to merge the models?
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2.2 PARETO FRONTS

Definition 1 (Pareto dominance). Let X be a set representing the solution space, where each element
x ∈ X is a possible solution to the multi-objective optimization problem. Let there be n objectives,
and define an evaluation loss function fi : X → R, where i ∈ {1, 2, . . . , n}.
Given two solutions x, y ∈ X , we define that x Pareto dominates y, denoted by x ≻P y, if and only
if:

∀i ∈ {1, 2, . . . , n}, fi(x) ≤ fi(y) and ∃j ∈ {1, 2, . . . , n}, fj(x) < fj(y)

Definition 2 (Pareto optimal solutions). The Pareto front is the set of solutions in the solution space
X that are not Pareto dominated by any other solutions in X . The Pareto front is given by:

PF = {x ∈ X |̸ ∃y ∈ X s.t. y ≻P x} (1)

Pareto optimal solutions have been studied in multi-task (multi-objective) learning (MTL) (Sener &
Koltun, 2018; Lin et al., 2019). However, in most of the studies, approximating the Pareto front is
computationally expensive and data inefficient. We introduce our method, MAP, a computationally
efficient method to find the Pareto front for model merging.

3 METHODS

In this section, we discuss the proposed MAP method in detail. To enhance readability, we present a
table of notations in Table 5.

3.1 QUADRATIC APPROXIMATION OF EVALUATION METRIC

Given the task vectors {vn}{n=1,...,N} and the initialization θpre ∈ Rd, we denote the merged model
parameters as θm(c) = θpre +Vc = θpre +

∑N
n=1 cnvn, where V = concat(v1, ...,vN ) ∈ Rd×N is

the task matrix and c = [c1, ..., cN ]⊤ ∈ RN is the vector of scaling coefficients for the task vectors.

Let Mn(c) = Mn(θm(c)) denote the evaluation metric for task n of the merged model. We aim to
optimize the evaluation metric for each task via the multi-objective optimization problem (MOOP)1:

min
c1,...,cN

M1(c), . . . ,MN (c) (2)

This problem has N variables and N objectives, and we seek the Pareto optimal solutions.

Motivated by the observation that the finetuned models tend to have parameters close to the pretrained
model (as shown in Table 1), we present the following assumption.
Assumption 1. The task vectors vn have small norms relative to the pretrained model parameters
θpre, i.e., |vn| ≪ |θpre| for n = 1, . . . , N . Additionally, the evaluation metrics Mn(θ) are sufficiently
smooth around θpre, such that higher-order terms in their Taylor expansions are negligible within the
region defined by the task vectors.

Denote p as the number of parameters in the pre-trained model and also as the number of parameters
in each task vector. Let N represent the number of tasks.

To derive our algorithm, MAP, we utilize the second-order Taylor expansion to approximate Mn:

Mn(c) ≡Mn(θm(c)) = Mn(θpre) +∇Mn(θpre)
⊤(θm(c)− θpre)

+
1

2
(θm(c)− θpre)

⊤Hn(θpre)(θm(c)− θpre) +Rn(θm(c)− θpre)

= Mn(θpre)︸ ︷︷ ︸
∈R

+∇Mn(θpre)
⊤︸ ︷︷ ︸

∈R1×p

V︸︷︷︸
∈Rp×N

c︸︷︷︸
∈RN×1

+
1

2
(Vc)⊤︸ ︷︷ ︸
∈R1×p

Hn(θpre)︸ ︷︷ ︸
∈Rp×p

Vc︸︷︷︸
∈Rp×1

+ Rn︸︷︷︸
∈R

where Hn(θpre) = ∇2Mn(θpre) ∈ Rd×d is the Hessian matrix and Rn(θm(c)− θpre) = Rn(Vc) is
the third-order remainder, which, as stated in Assumption 1, is negligible when ||Vc||3 = ||θm(c)−

1The evaluation metric M can be differentiable (e.g., mean square loss or cross-entropy/perplexity) or not
necessarily (e.g., classification accuracy, F1 score, BLEU, or Rouge)
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θpre||3 is small. Note that the second-order Taylor expansion is widely used (McCandlish et al., 2018;
Bu et al., 2024; Kaplan et al., 2020; Hoffmann et al., 2022) and provides a close approximation (see
Figure 2 (a) and (b) and more discussion in Appendix 5).

Table 1: We compute the L1 norm of the weight matrices of the pretrained models and the task
vectors for each of the 8 tasks using the ViT-B/32 model, and compute the ratio.

Metric SUN397 Cars DTD SVHN RESISC45 MNIST GTSRB EuroSAT
||θpre||1 1,270,487 1,270,487 1,270,487 1,270,487 1,270,487 1,270,487 1,270,487 1,270,487
||vn||1 21,055 20,127 13,621 19,349 18,409 17,578 16,712 15,941
||vn||1/||θpre||1(%) 1.66% 1.58% 1.07% 1.52% 1.45% 1.38% 1.32% 1.25%

To validate the approximation, we calculate the L1 norm of the parameters for the 8 task vectors and
their ratios relative to the L1 norm of the pretrained model. As shown in Table 1, the ratio between
the L1 norm of the task vectors and the L1 norm of the weight matrices of the pretrained model is
approximately 1% to 2% for each of the 8 tasks.

Figure 3: Density plot of the absolute values
of the weight matrices of the 8 task vectors.

We further examine the density plot of the absolute
values of the weight matrices of the 8 task vectors
(Figure 3). We find that the maximum magnitude of
the task vectors is 0.00859, while the mean is 1.57336
×10−4. These findings motivate and validate our key
assumption 1 of using a second-order Taylor expansion
to approximate the evaluation metrics.

Leveraging this quadratic approximation, we can define
surrogate models for each task N ,

M̃n(c;An,bn, en) ≡
1

2
c⊤Anc+ b⊤

n c+ en (3)

and optimize the proxy problem of Equation (2) via

min
c1,...,cN

M̃1(c), . . . , M̃N (c) (4)

where An ∈ RN×N is parameter matrix approximating V⊤Hn(θpre)V; bn ∈ RN is a parameterized
vector targeting to V⊤∇Mn(θpre); en is a parameter scalar which estimates Mn(θpre) +Rn.

Importantly, Equation (4) is parameterized in contrast to Equation (2), with a total of (N+1)(N+2)
2

surrogate model parameters in (en, bn, An), i.e., 1 coefficient for en, N coefficients in bn and
N(N + 1)/2 coefficients in An due to its symmetry (1 +N + N(N+1)

2 = (N+1)(N+2)
2 ). We do not

calculate the gradient or Hessian to obtain the parameters An, bn, en. Instead, we estimate them by
minimizing the MSE between Mn and M̃n, n = 1, . . . , N :

A∗
n,b

∗
n, e

∗
n = arg min

An,bn,en

∑
c∈Ω

|Mn(θmerge(c))− M̃n(c;An,bn, en)|2 (5)

where Ω = {c(1), . . . , c(K)} is the set of c and Mn(θmerge(c)) is the corresponding evaluation metric.
Below we discuss 3 extensive cases of this problem.

Case 1: If the evaluation metric spans the whole real-number axis R, we use the vanilla form of
the surrogate model in Equation (3). As shown in Corollary 1, we have a closed-form solution for
Equation (5)
Corollary 1 (Closed-form Solution for Surrogate Model Parameters). Under Assumption 1, for each
task n = 1, . . . , N , the optimization problem 5 is equivalent to solving a linear regression where
the predictors include all quadratic, interaction, linear, and constant terms of c. The closed-form
solution for the parameters is given by(vec(A∗

n)
b∗
n

e∗n

)
=
(
C⊤

nCn

)−1
C⊤

nyn

5



Published as a conference paper at ICLR 2025

where Cn(c) = (c21, c
2
2, . . . , c

2
N , c1c2, c1c3, . . . , cN−1cN , c1, c2, . . . , cN , 1), and yn is the vector of

observed metrics Mn(θm(c)) for all c ∈ Ω. Please refer to Corollary 3 for a more detailed corollary.

Case 2: When the evaluation metric is restricted to a specific range [l, u], e.g. accuracy is restricted
to [0, 1], we can apply a sigmoid transformation to the quadratic term, i.e.

M̃n(c;An,bn, en) ≡ (u− l)σ(en + b⊤
n c+

1

2
c⊤Anc) + l.

Case 3: Similarly, when the evaluation metric is restricted to [l,+∞), applying a softplus transfor-
mation ensures non-negativity while allowing smooth growth. In this case, we define:

M̃n(c;An,bn, en) ≡ softplus(en + b⊤
n c+

1

2
c⊤Anc) + l,

where softplus(x) = ln(1 + ex).

In Cases 2 and 3, the parameters u and l are not learnable parameters but predefined based on the
feasible range of the metric. The introduction of non-linear functions in M̃n eliminates closed-form
solutions, necessitating the use of gradient descent to solve the optimization problem 5. Despite
this, the approach remains computationally efficient since the number of parameters in the surrogate
model is (N+1)(N+2)

2 . We emphasize that gradient descent on the surrogate model is computationally
efficient. Compared to training full-scale deep learning models, this method requires significantly
fewer computations. For instance, when merging eight models, the parameter count is only 45, which
is much smaller than the millions of parameters typically found in deep learning architectures.

3.2 MODEL MERGING WITH AMORTIZED PARETO FRONTS

In this section, we introduce our generalized algorithm for estimating the amortized Pareto fronts.
As mentioned in Section 3.1, we approximate the evaluation metric Mn(·) by a surrogate quadratic
model M̃n(·). We then utilize M̃n(·) to compute the amortized Pareto fronts. Please see the detailed
experiments in Section 4 and the algorithm details in Algorithm 1. Different from other Pareto
multi-task learning algorithms, our algorithm does not require calculating the gradients or performing
gradient descent on the deep learning model parameters.

Algorithm 1 MAP
Input: Pretrained model θpre, fine-tuned models {θn

ft}Nn=1.
Compute task vectors {vn = θn

ft − θpre | n ∈ 1, . . . , N}.
Sample K vectors of c ∈ RN . Denote the set as Ω.
for n ∈ [N ] do

for c = [c1, ..., cN ] ∈ Ω do
Compute θ(c) = θpre + c1v1 + . . .+ cNvN .
Obtain the evaluation metric Mn(θ(c)).

end
Fit the quadratic approximation surrogate model M̃n by learning A∗

n,b
∗
n, e

∗
n in Equation (5).

end
Apply MOOP algorithm (e.g. NSGA-III) to {M̃n} and find the Pareto front

3.3 FURTHER METHODS TO BRING DOWN THE COMPUTATION COST WHEN THE NUMBER OF
TASKS IS HIGH

In addition to MAP, we also introduce nested merging MAP (NMMAP) and Bayesian MAP (BMAP),
which are variants of MAP designed to further reduce computation costs.

For a small number of tasks (N ≤ 3), we use Bayesian adaptive sampling, inspired by Bayesian
optimization. Unlike plain MAP (Algorithm 1), which samples a single set of scaling weights c
and evaluates metrics Mn(θ(c)), Bayesian adaptive sampling iteratively samples c across multiple
rounds, with each round informed by prior evaluations.
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The process starts with uniform sampling of scaling coefficients {(c1, . . . , cN )}, from [0, 1]N , evalu-
ating the merged models θm(ci) for tasks 1 to N , and calculating the L2 loss. We compute a posterior
distribution based on an acquisition function, like the upper confidence bound, for each bin.

We iteratively update surrogate models for each task, and after meeting the stopping criterion, generate
(c, {M̃n(θm(c))}Nn=1) samples. A MOOP algorithm (e.g., NSGA-III) is then applied to compute the
Pareto front from M̃n.

As illustrated in Figure 4 (a), BMAP uses Bayesian optimization to determine the distribution of
scaling coefficients for task vectors when approximating the surrogate model in MAP. For more
details and experiments, please refer to Appendix E.3.

When the number of tasks N is high and computational resources are also limited, NMMAP reduces
the number of evaluations from O(TN2N ) to O(N logN). For example, tasks 1 to 8 cover Cars,
GTSRB, DTD, SUN397, RESISC45, MNIST, EuroSAT, and SVHN. With nested merging, in the
first round, we merge (θ1

ft,θ
2
ft) into θ1,2

merge. Similarly, we merge (θ3
ft,θ

4
ft)into θ3,4

merge, (θ5
ft,θ

6
ft)

into θ5,6
merge and (θ7

ft,θ
8
ft) into θ7,8

merge in parallel. Next, we merge (θ1,2
merge,θ

3,4
merge) into θ1,2,3,4

merge , and
(θ5,6

merge,θ
7,8
merge) into θ5,6,7,8

merge simultaneously and finally into θ1,2,3,4,5,6,7,8
merge . Note that the model

merging order is illustrative and chosen to support the exposition.

This approach achieves a 250x speedup when the number of tasks is 8, while also outperforming
direct search methods. However, it can no longer output the complete Pareto front for all tasks, and
practitioners need to be able to quantify their preferences during the merging since it merges models
in pairs in a nested fashion, as shown in Figure 4 (b). For more details and experiments, please refer
to Appendix E.2.

(a) (b)

Figure 4: (a): Utilize Bayesian optimization to guide the sampling of scaling coefficients according
to the uncertainty distribution; (b): An example of nested model merging for N = 8 models.

4 EXPERIMENTS

Datasets and models We evaluate multi-task model merging on eight zero-shot image classification
datasets following (Ilharco et al., 2022): SUN397 (Xiao et al., 2016), Cars (Krause et al., 2013), GT-
SRB (Stallkamp et al., 2011), MNIST (LeCun, 1998), EuroSAT (Helber et al., 2019), SVHN (Netzer
et al., 2011), DTD (Cimpoi et al., 2014), and RESISC45 (Cheng et al., 2017). We use the ViT-B/32
architecture in CLIP (Radford et al., 2021) as the pre-trained model for the experiments on vision
tasks discussed in the main text. We show the results of these experiments in the main pages.

The rest of the experiments are presented in the Appendix due to page limits. The results from
the datasets and tasks we experimented on are as follows: a zero-shot medical chest X-ray image
classification task to show our model merging scheme works in a real-world application in the medical
domain (Wang et al., 2017) (Appendix D.3); four fine-tuned Llama3 models in different languages:
French, Arabic, Chinese, and Japanese (Appendix D.4)2; and three vision classification tasks using the
ResNet18 (He et al., 2016) architecture: CIFAR-10 (Krizhevsky et al., 2009), Flowers-102 (Nilsback
& Zisserman, 2008), and GTSRB (Stallkamp et al., 2011) to show that our model merging scheme
also works with other model architectures (Appendix D.5).

2All the fine-tuned language Llama3 models can be found on Hugging Face. The IDs of the models are:
French: jpacifico/French-Alpaca-Llama3-8B-Instruct-v1.0; Arabic: MohamedRashad/Arabic-Orpo-Llama-3-8B-
Instruct; Chinese: shenzhi-wang/Llama3-8B-Chinese-Chat; Japanese: haqishen/Llama-3-8B-Japanese-Instruct.
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4.1 BASELINE AND METRICS

Pareto front-finding baselines One of our baseline methods for obtaining Pareto fronts is the
brute-force direct search, which can be regarded as the gold standard when the number of tasks is
low (N < 4). This is because we can sample enough grid points of c and query the corresponding
evaluation metrics {Mn(θ(c))}Nn=1. We can then directly use the resulting evaluation metrics to find
the Pareto front by direct comparisons of each task’s performance of the merged model by ci ∈ c.

Another baseline method for finding Pareto fronts is the Multi-Objective Evolutionary Algorithm
based on Decomposition (MOEA/D) (Zhang & Li, 2007). Key hyperparameters in MOEA/D include
the population size and the number of generations, which significantly influence its performance by
affecting the quality and diversity of the resulting Pareto front as well as the computational cost.

It is important to note that when the number of tasks grows, the required number of
(c, {Mn(θ(c))}Nn=1) pairs grows exponentially for the brute force method, as well as for the MOEA/D
method, which is much larger than the points we can evaluate given the computational constraint.
Thus, when the number of tasks is high (N ≥ 4), the results from the brute-force direct search can no
longer be considered ground truth. In Appendix E.2.2, we show an illustration of why the curse of
dimensionality occurs when the number of tasks increases.

Single merged model baselines In addition to the brute-force method and MOEA/D, we compare
with other model merging methods including SLERP (Shoemake, 1985), TIES-merging (Yadav et al.,
2024), Task Arithmetic with a single scalar (Ilharco et al., 2022), Task Arithmetic with preferences as
scalars (Ilharco et al., 2022), DARE combined with Task Arithmetic (Yu et al., 2023; Ilharco et al.,
2022), and DARE combined with TIES-merging (Yu et al., 2023; Yadav et al., 2024).

Win rate We used the win rate to measure how often the Pareto front found by MAP outperforms
the Pareto front found by the baseline in terms of multiple objectives. Let PFMAP and PFbaseline

represent the set of solutions in the Pareto fronts obtained from the MAP and the baseline methods,
respectively. Each solution in these sets is a vector in RN , where N is the number of objectives or
tasks. We sampled K = 100 points from the decision space of each of the two Pareto fronts, denoted
as cMAP

k and cbaselinek , k = 1, . . . ,K. Then, we compared Mn(θ(c
MAP
k )) and Mn(θ(c

baseline
k ))

pairwise for k = 1, . . . ,K and n = 1, . . . , N, resulting in K2N comparisons. The ratio of instances
where Mn(θ(c

MAP
k )) > Mn(θ(c

baseline
k )) is computed as the win rate of PFMAP :

Win Rate =
1

K2N

K∑
i=1

K∑
j=1

N∑
n=1

I
[
Mn(θ(c

MAP
i )) > Mn(θ(c

baseline
j ))

]
where K = 100, cMAP

i ∈ Decision Space of PFMAP, i = 1, . . . ,K, cbaseline
j ∈ Decision Space of

PFbaseline, j = 1, . . . ,K, I[·] is the indicator function.

4.2 WIN RATE OF MAP OVER THE DIRECT SEARCH METHOD

Table 2 shows the results for the win rate of MAP over the brute force direct search method when the
number of tasks is small (N < 4). In such cases, the Pareto front can be regarded as the ground truth
Pareto front, and we can only query 30 and 50 scaling coefficients to achieve similar performance
with the ground truth Pareto front.

Table 3 shows the results for the win rate of MAP over the brute force direct search method when
the number of tasks is high (N ≥ 4). The Pareto front generated by the brute force method can no
longer be considered ground truth due to the limited number of points per dimension that is covered.
In this setting, MAP performs much better than the brute-force (not ground truth) Pareto solutions.
Table 2: Win rate of the amortized PF over the brute-force direct search PF, where the latter can
be regarded as the ground truth when N < 4. # c is the number of scaling coefficient vectors each
algorithm evaluated to find the Pareto front. # c per dim = (# c direct search)1/N measures the
sparsity of points the direct search method uses, as illustrated in Figure 11.

N # c (direct search) # c per dim # c (MAP) Win rate (MAP) R2 (MAP)

2 200 14.14 30 49.81% (±0.30) 0.953 (±0.018)
3 300 6.69 50 46.90% (±0.71) 0.980 (±0.003)
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Table 3: Win rate of the amortized PF over the brute-force direct search PF, where the latter can no
longer be regarded as the ground truth when N ≥ 4. # of c is the number of scaling coefficient
vectors each algorithm evaluated to find the Pareto front. # c per dim = (# c direct search)1/N
measures the sparsity of points the direct search method uses, as illustrated in Figure 11.

N # c (direct search) # c per dim # c (MAP) Win rate (MAP) R2 (MAP)

4 300 4.16 60 50.67% (±2.44) 0.984 (±0.004)
5 500 3.47 85 53.00% (±1.88) 0.941 (±0.019)
6 500 2.82 100 60.71% (±1.34) 0.941 (±0.030)
7 1000 2.68 140 63.42% (±1.91) 0.891 (±0.024)
8 1000 2.37 250 65.58% (±0.94) 0.868 (±0.028)

4.3 COMPARING WITH OTHER SINGLE MERGED MODEL BASELINE METHODS

We compared the performance of MAP with TIES-merging (Yadav et al., 2023), TIES-merging with
DARE (Yu et al., 2023), Task Arithmetic with DARE, Task Arithmetic with normalized preference as
scaling coefficients (Ilharco et al., 2023), Ada-merging++ (Yang et al., 2024), DELLA-merging (Deep
et al., 2024) and SLERP (Shoemake, 1985). For dimension 2, we can directly visualize the results,
as shown in Figure 5. The solutions found by MOEA/D exhibited clustering and a lack of adequate
spread across the Pareto front. In addition, the computational cost of MOEA/D was significantly
higher than that of MAP. For example, with a population size of 50 and 20 generations (which
produced the best results for MOEA/D in terms of diversity as shown in Figure 5), the total number
of evaluations amounted to 2500 for two tasks. In comparison, MAP achieved its results with only 60
total evaluations—a reduction of over 95%. This highlights the computational efficiency of MAP in
obtaining a diverse and high-quality Pareto front.

MAP offers a well-distributed set of Pareto optimal solutions None of the baseline methods
can directly dominate all Pareto solutions found by MAP, and most of them lie either within or on
the Pareto front found by MAP. In addition, we sampled 10 points from the predicted Pareto front
generated by MAP and evaluated them (MAP Pareto solutions, real) to confirm that they indeed lie
close to the predicted Pareto front. This evidence further confirms the usefulness of MAP as a general
strategy for finding a diverse and well-distributed set of Pareto solutions that none of the existing
model merging methods can substitute.

Figure 5: The Pareto fronts obtained using MAP with Task Arithmetic, MAP with Task Arithmetic
and DARE. We sampled 10 Pareto solutions from the predicted front by MAP and evaluated them to
obtain the real values. We plotted the results obtained using TIES-merging, Task Arithmetic (TA)
with a single scalar for all tasks, Task Arithmetic with preferences as scalars, TA combined with
DARE (DARE-TA), TIES-merging combined with DARE (DARE-TIES), and SLERP.

MAP is an out-of-the-box plugin for other task-vector based model merging methods As
shown in Figure 5, MAP is a plug-in that can be directly combined with other model merging
methods, allowing users to control their preferences over each task using scaling coefficients. For
example, MAP can be combined with DARE, Task Arithmetic, etc.
For dimensions higher than 2, we use preference-weighted evaluation sum to compare the Pareto
front found by MAP with other baseline methods. We sample 20 preference vectors and normalize
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them. Then, we pick the solution by MAP that maximizes the preference-weighted sum of accuracies
and compare it with those of the baseline methods. The results are shown in Table 4. We observe
that even in higher dimensions, when users have specific preferences, MAP remains effective and
can better accommodate those preferences. Note that when using MAP, users are not required to
pre-specify their preference vector. In fact, users can obtain the entire Pareto front to better understand
the trade-offs. This preference vector-based metric is solely for evaluation.

Table 4: We compared MAP with a set of baseline methods by sampling a set of 20 normalized
preference vectors and computing the preference-weighted sum of accuracies. ↑ indicates higher
is better. The number after ± is the standard deviation. Please refer to Table 2 and Table 3 for the
number of scaling coefficient vectors used for different numbers of tasks.

Preference weighted sum of accuracies (↑)
# tasks 2 3 4 5 6 7 8

Single task models 75.84±1.76 77.03±1.84 82.43±4.40 87.69±4.50 88.52±4.02 89.26±3.58 90.62±2.52
MTL 73.63±0.30 75.13±1.00 80.10±2.79 84.93±3.58 86.78±2.94 87.40±2.56 89.11±2.36

Model soups ((Wortsman et al., 2022)) 67.79±1.46 64.25±2.15 66.04±3.22 67.01±3.42 63.11±1.99 63.35±2.17 64.36±2.77
TIES-merging ((Yadav et al., 2024)) 69.30±0.33 67.60±0.58 71.79±2.93 76.49±3.10 73.74±2.96 72.54±2.87 72.24±1.91
DARE-TIES 67.62±1.65 66.49±2.34 71.39±4.45 74.55±4.55 73.34±4.10 71.43±3.84 71.89±2.86
Task Arithmetic ((Ilharco et al., 2022)) 70.73±1.84 61.15±2.33 52.69±4.23 61.58±4.62 51.37±3.84 39.79±3.97 60.77±2.84
TA with preference as weights 69.22±1.4 66.88±2.37 68.73±5.48 71.92±5.5 68.13±4.69 68.14±4.2 68.17±2.89
DARE-TA 70.61±0.22 64.18±1.24 58.04±8.19 65.39±7.03 56.76±7.01 46.75±5.73 64.51±3.81
Ada-Merging++ ((Yang et al., 2024)) 67.27±1.92 67.13±1.92 71.19±4.43 76.84±4.71 74.13±4.07 72.58±4.16 72.55±2.83
DELLA-Merging ((Deep et al., 2024)) 67.10±2.08 65.92±2.48 70.71±4.31 74.43±4.32 72.64±3.77 71.16±3.95 71.49±2.83
MOEA/D 70.22 ± 1.46 67.94 ± 1.79 70.85 ± 4.58 72.03 ± 4.03 67.88 ± 3.09 69.06 ± 2.97 68.59 ± 2.89
MAP 70.70±1.76 69.05±1.84 72.84±4.40 77.31±4.50 74.26±4.02 73.40±3.58 72.96±2.52

5 RELATED WORK

Due to space constraints, for a more comprehensive discussion, please refer to Appendix B.

Multi-objective optimization Multi-objective optimization identifies diverse Pareto solutions with
different trade-offs. The multi-task problem has been approached from a MOOP perspective (Sener
& Koltun, 2018; Lin et al., 2019), utilizing algorithms like MGDA, IMTL, GradNorm, RLW, and
scalarization. While these methods iteratively optimize Rd model parameters with significant com-
putational cost, our approach performs post-training MOOP over RN scaling coefficients, reducing
computational burden. For N ≥ 3 objectives, MOOP becomes many-objective optimization, chal-
lenging traditional algorithms (e.g. NSGA-II and SPEA2). Advanced methods such as ϵ-MOEA (Deb
et al., 2003), MSOPS (Hughes, 2005), SMS-EMOA (Beume et al., 2007), and NSGA-III (Deb &
Jain, 2013), or the KKT approach (Augusto et al., 2014) are required.

Task arithmetic Task arithmetic, a model merging method gaining attention, uses weighted
averages of models for multi-task performance. Various approaches exist for selecting scaling
coefficients: Ilharco et al. (2022) used equal scaling, which is suboptimal and limited; Yang et al.
(2023) optimized weights using Shannon entropy but required unlabeled test data, which conflict
with data privacy goals in model merging. Beyond task arithmetic, Ainsworth et al. (2023) merge
models via weight matrix permutations, even without shared pretraining. Jin et al. (2023) introduced
dataless knowledge fusion. Daheim et al. (2024) proposed uncertainty-based gradient matching for
improved merging performance and robustness.

6 CONCLUSION AND LIMITATIONS

We introduced MAP, a novel low-compute approach to efficiently merge models while accounting for
trade-offs between multiple tasks. By leveraging a quadratic approximation of the evaluation metrics,
MAP successfully identifies amortized Pareto fronts without the need for gradient descent for deep
neural networks. The algorithm’s efficiency is further enhanced through Bayesian adaptive sampling
and nested merging, enabling it to scale to problems with a higher number of tasks. Moreover, MAP
is an out-of-the-box plug-in for other task-vector-based model merging methods.

However, we would like to point out some limitations of our method. We do not have a detector
algorithm to detect if two tasks have proper trade-offs. Approximating a Pareto "front" with only a
single Pareto solution can lead to degenerate solutions. In this case, practitioners should be informed.

10



Published as a conference paper at ICLR 2025

REFERENCES

Samuel K. Ainsworth, Jonathan Hayase, and Siddhartha S. Srinivasa. Git re-basin: Merging mod-
els modulo permutation symmetries. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/pdf?id=CQsmMYmlP5T.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International conference on machine learning, pp. 242–252. PMLR, 2019.

Oscar Brito Augusto, Fouad Bennis, Stephane Caro, et al. Multiobjective optimization involving
quadratic functions. Journal of optimization, 2014, 2014.

Nicola Beume, Boris Naujoks, and Michael Emmerich. Sms-emoa: Multiobjective selection based
on dominated hypervolume. European Journal of Operational Research, 181(3):1653–1669, 2007.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Zhiqi Bu, Xinwei Zhang, Mingyi Hong, Sheng Zha, and George Karypis. Pre-training differentially
private models with limited public data. arXiv preprint arXiv:2402.18752, 2024.

Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and Trends®
in Machine Learning, 8(3-4):231–357, 2015.

Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Benchmark
and state of the art. Proceedings of the IEEE, 105(10):1865–1883, 2017.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
Advances in neural information processing systems, 32, 2019.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describ-
ing textures in the wild. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3606–3613, 2014.

Carlos A Coello Coello and Nareli Cruz Cortés. Solving multiobjective optimization problems using
an artificial immune system. Genetic programming and evolvable machines, 6:163–190, 2005.

Haotian Cui, Chloe Wang, Hassaan Maan, Kuan Pang, Fengning Luo, Nan Duan, and Bo Wang.
scgpt: toward building a foundation model for single-cell multi-omics using generative ai. Nature
Methods, pp. 1–11, 2024.

Nico Daheim, Thomas Möllenhoff, Edoardo Ponti, Iryna Gurevych, and Mohammad Emtiyaz
Khan. Model merging by uncertainty-based gradient matching. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=D7KJmfEDQP.

Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective optimization algorithm
using reference-point-based nondominated sorting approach, part i: solving problems with box
constraints. IEEE transactions on evolutionary computation, 18(4):577–601, 2013.

Kalyanmoy Deb, Manikanth Mohan, and Shikhar Mishra. Towards a quick computation of well-
spread pareto-optimal solutions. In Evolutionary Multi-Criterion Optimization: Second Interna-
tional Conference, EMO 2003, Faro, Portugal, April 8–11, 2003. Proceedings 2, pp. 222–236.
Springer, 2003.

Pala Tej Deep, Rishabh Bhardwaj, and Soujanya Poria. Della-merging: Reducing interference in
model merging through magnitude-based sampling. arXiv preprint arXiv: 2406.11617, 2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

11

https://openreview.net/pdf?id=CQsmMYmlP5T
https://openreview.net/forum?id=D7KJmfEDQP
https://openreview.net/forum?id=D7KJmfEDQP


Published as a conference paper at ICLR 2025

Guodong Du, Jing Li, Hanting Liu, Runhua Jiang, Shuyang Yu, Yifei Guo, S. Goh, and Ho-Kin Tang.
Knowledge fusion by evolving weights of language models. Annual Meeting of the Association for
Computational Linguistics, 2024. doi: 10.48550/arXiv.2406.12208.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International conference on machine learning, pp. 1675–1685.
PMLR, 2019.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM journal on optimization, 23(4):2341–2368, 2013.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 12(7):2217–2226, 2019.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Evan J Hughes. Evolutionary many-objective optimisation: many once or one many? In 2005 IEEE
congress on evolutionary computation, volume 1, pp. 222–227. IEEE, 2005.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

Gabriel Ilharco, Marco Túlio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.
URL https://openreview.net/pdf?id=6t0Kwf8-jrj.

Moksh Jain, Emmanuel Bengio, Alex Hernández-García, Jarrid Rector-Brooks, Bonaventure F. P.
Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, Lena
Simine, Payel Das, and Yoshua Bengio. Biological sequence design with gflownets. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.),
International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland,
USA, volume 162 of Proceedings of Machine Learning Research, pp. 9786–9801. PMLR, 2022.
URL https://proceedings.mlr.press/v162/jain22a.html.

Joel Jang, Seungone Kim, Bill Yuchen Lin, Yizhong Wang, Jack Hessel, Luke Zettlemoyer, Hannaneh
Hajishirzi, Yejin Choi, and Prithviraj Ammanabrolu. Personalized soups: Personalized large
language model alignment via post-hoc parameter merging. arXiv preprint arXiv: 2310.11564,
2023.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts. arXiv preprint arXiv: 2401.04088, 2024.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion
by merging weights of language models. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/forum?id=FCnohuR6AnM.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

12

https://openreview.net/pdf?id=6t0Kwf8-jrj
https://proceedings.mlr.press/v162/jain22a.html
https://openreview.net/forum?id=FCnohuR6AnM


Published as a conference paper at ICLR 2025

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision workshops,
pp. 554–561, 2013.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Bingdong Li, Zixiang Di, Yanting Yang, Hong Qian, Peng Yang, Hao Hao, Ke Tang, and Aimin Zhou.
It’s morphing time: Unleashing the potential of multiple llms via multi-objective optimization.
arXiv preprint arXiv: 2407.00487, 2024.

Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qing-Fu Zhang, and Sam Kwong. Pareto multi-task learning.
Advances in neural information processing systems, 32, 2019.

Xi Lin, Zhiyuan Yang, Qingfu Zhang, and Sam Kwong. Controllable pareto multi-task learning.
arXiv preprint arXiv: 2010.06313, 2020.

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of
large-batch training. arXiv preprint arXiv:1812.06162, 2018.

Henry B. Moss, David S. Leslie, Daniel Beck, Javier Gonzalez, and Paul Rayson. Boss:
Bayesian optimization over string spaces. In Advances in Neural Information Process-
ing Systems, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
b19aa25ff58940d974234b48391b9549-Abstract.html.

Aviv Navon, Aviv Shamsian, Gal Chechik, and Ethan Fetaya. Learning the pareto front with
hypernetworks. arXiv preprint arXiv: 2010.04104, 2020.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, pp. 7. Granada, Spain, 2011.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian conference on computer vision, graphics & image processing, pp.
722–729. IEEE, 2008.

National Institutes of Health et al. Nih clinical center provides one of the largest publicly available
chest x-ray datasets to scientific community, 2017.

E. O. Pyzer-Knapp. Bayesian optimization for accelerated drug discovery. IBM Journal of Research
and Development, 62(6):2:1–2:7, 2018. doi: 10.1147/JRD.2018.2881731.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Alexandre Ram’e, Nino Vieillard, L’eonard Hussenot, Robert Dadashi, Geoffrey Cideron, Olivier
Bachem, and Johan Ferret. Warm: On the benefits of weight averaged reward models. International
Conference on Machine Learning, 2024. doi: 10.48550/arXiv.2401.12187.

Alexandre Ramé, Guillaume Couairon, Mustafa Shukor, Corentin Dancette, Jean-Baptiste Gaya,
L. Soulier, and M. Cord. Rewarded soups: towards pareto-optimal alignment by interpolating
weights fine-tuned on diverse rewards. Neural Information Processing Systems, 2023. doi:
10.48550/arXiv.2306.04488.

Alexandre Ramé, Johan Ferret, Nino Vieillard, Robert Dadashi, Léonard Hussenot, Pierre-Louis
Cedoz, Pier Giuseppe Sessa, Sertan Girgin, Arthur Douillard, and Olivier Bachem. Warp: On the
benefits of weight averaged rewarded policies. arXiv preprint arXiv: 2406.16768, 2024.

13

https://proceedings.neurips.cc/paper/2020/hash/b19aa25ff58940d974234b48391b9549-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b19aa25ff58940d974234b48391b9549-Abstract.html


Published as a conference paper at ICLR 2025

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov,
Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre
Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas
Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code. arXiv preprint
arXiv: 2308.12950, 2023.

Michael Ruchte and Josif Grabocka. Scalable pareto front approximation for deep multi-objective
learning. 2021 IEEE International Conference on Data Mining (ICDM), pp. 1306–1311, 2021.
doi: 10.1109/ICDM51629.2021.00162.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/
file/432aca3a1e345e339f35a30c8f65edce-Paper.pdf.

Ken Shoemake. Animating rotation with quaternion curves. In Proceedings of the 12th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’85, pp. 245–254,
New York, NY, USA, 1985. Association for Computing Machinery. ISBN 0897911660. doi:
10.1145/325334.325242. URL https://doi.org/10.1145/325334.325242.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic sign
recognition benchmark: a multi-class classification competition. In The 2011 international joint
conference on neural networks, pp. 1453–1460. IEEE, 2011.

Hui Su, Zhi Tian, Xiaoyu Shen, and Xunliang Cai. Unraveling the mystery of scaling laws: Part i.
arXiv preprint arXiv:2403.06563, 2024.

Kei Terayama, Masato Sumita, Ryo Tamura, and Koji Tsuda. Black-box optimization for automated
discovery. Accounts of Chemical Research, 54(6):1334–1346, 2021.

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez, Ting Fang
Tan, and Daniel Shu Wei Ting. Large language models in medicine. Nature medicine, 29(8):
1930–1940, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv: 2307.09288, 2023.

David Allen Van Veldhuizen. Multiobjective evolutionary algorithms: classifications, analyses, and
new innovations. Air Force Institute of Technology, 1999.

Haoxiang Wang, Yong Lin, Wei Xiong, Rui Yang, Shizhe Diao, Shuang Qiu, Han Zhao, and Tong
Zhang. Arithmetic control of llms for diverse user preferences: Directional preference alignment
with multi-objective rewards. arXiv preprint arXiv: 2402.18571, 2024a.

Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and Ronald M Summers.
Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classi-
fication and localization of common thorax diseases. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017.

14

https://proceedings.neurips.cc/paper_files/paper/2018/file/432aca3a1e345e339f35a30c8f65edce-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/432aca3a1e345e339f35a30c8f65edce-Paper.pdf
https://doi.org/10.1145/325334.325242


Published as a conference paper at ICLR 2025

Yibo Wang, Sijia Chen, Wei Jiang, Wenhao Yang, Yuanyu Wan, and Lijun Zhang. Online com-
posite optimization between stochastic and adversarial environments. In In Advances in Neural
Information Processing Systems 37 (NeurIPS 2024), 2024b.

James T. Wilson, Riccardo Moriconi, Frank Hutter, and Marc Peter Deisenroth. The reparameteriza-
tion trick for acquisition functions, 2017.

Michael Wornow, Rahul Thapa, Ethan Steinberg, Jason Fries, and Nigam Shah. Ehrshot: An ehr
benchmark for few-shot evaluation of foundation models. 2023.

Mitchell Wortsman, Gabriel Ilharco, S. Gadre, R. Roelofs, Raphael Gontijo-Lopes, Ari S. Morcos,
Hongseok Namkoong, Ali Farhadi, Y. Carmon, Simon Kornblith, and Ludwig Schmidt. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. International Conference on Machine Learning, 2022. doi: 10.48550/arXiv.2203.
05482.

Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, and Shlomo Dubnov.
Large-scale contrastive language-audio pretraining with feature fusion and keyword-to-caption aug-
mentation. In IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP
2023, Rhodes Island, Greece, June 4-10, 2023, pp. 1–5. IEEE, 2023. doi: 10.1109/ICASSP49357.
2023.10095969. URL https://doi.org/10.1109/ICASSP49357.2023.10095969.

Jianxiong Xiao, Krista A Ehinger, James Hays, Antonio Torralba, and Aude Oliva. Sun database:
Exploring a large collection of scene categories. International Journal of Computer Vision, 119:
3–22, 2016.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Ties-merging:
Resolving interference when merging models. Neural Information Processing Systems, 2023.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging:
Resolving interference when merging models. Advances in Neural Information Processing Systems,
36, 2024.

Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng Tao.
Adamerging: Adaptive model merging for multi-task learning. arXiv preprint arXiv:2310.02575,
2023.

Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng
Tao. Adamerging: Adaptive model merging for multi-task learning. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=nZP6NgD3QY.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
Absorbing abilities from homologous models as a free lunch. arXiv preprint arXiv:2311.03099,
2023.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. IEEE International Conference on Computer Vision, 2023. doi: 10.1109/
ICCV51070.2023.01100.

Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary algorithm based on decomposition.
IEEE Transactions on evolutionary computation, 11(6):712–731, 2007.

Yifan Zhong, Chengdong Ma, Xiaoyuan Zhang, Ziran Yang, Haojun Chen, Qingfu Zhang, Siyuan Qi,
and Yaodong Yang. Panacea: Pareto alignment via preference adaptation for llms. arXiv preprint
arXiv: 2402.02030, 2024.

Zhanhui Zhou, Jie Liu, Chao Yang, Jing Shao, Yu Liu, Xiangyu Yue, Wanli Ouyang, and Yu Qiao.
Beyond one-preference-fits-all alignment: Multi-objective direct preference optimization. arXiv
preprint arXiv: 2310.03708, 2023.

15

https://doi.org/10.1109/ICASSP49357.2023.10095969
https://openreview.net/forum?id=nZP6NgD3QY
https://openreview.net/forum?id=nZP6NgD3QY


Contents
A Notations 17

B More Discussion on Related Work 17

C Additional Details on the Methods 18
C.1 Proof: Negligibility of the Remainder in Multivariate Taylor Series . . . . . . . . . 18
C.2 Closed-form Solution for Surrogate Model Parameters . . . . . . . . . . . . . . . 19

D Additional Details on Experiments 20
D.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
D.2 Additional metric: Generational distance and inverted generational distance . . . . 20
D.3 Zero-shot Medical Image Classification . . . . . . . . . . . . . . . . . . . . . . . . 21
D.4 Merging Language Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
D.5 Additional experiment results on ResNet . . . . . . . . . . . . . . . . . . . . . . . 23

E More Details on Algorithms 24
E.1 Plain MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
E.2 Nested-Merging MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

E.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
E.2.2 Time Complexity of Nested-Merging MAP . . . . . . . . . . . . . . . . . 24
E.2.3 Explanation of curse of dimensionality . . . . . . . . . . . . . . . . . . . 25
E.2.4 Intermediate Pareto Fronts in Each Round . . . . . . . . . . . . . . . . . . 25
E.2.5 Results on using nested merging to merge 8 models . . . . . . . . . . . . . 27

E.3 Bayesian MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
E.3.1 Performance of Bayesian MAP . . . . . . . . . . . . . . . . . . . . . . . 29

F Potential Q & A 31
F.1 The authors assume a setting where it is computationally expensive to query the

model evaluations. But is this the reality? . . . . . . . . . . . . . . . . . . . . . . . 31
F.2 How is MAP different from other MOOP methods, such as linear scalarization? . . . 31
F.3 Why does quadratic approximation have a lower cost? . . . . . . . . . . . . . . . . . 31
F.4 Why not compare to Git-Rebasin (Ainsworth et al., 2023)? . . . . . . . . . . . . . . 31
F.5 Why does nested-merging MAP not give a complete Pareto front? . . . . . . . . . 32
F.6 It seems nested-merging MAP performs worse than MAP. What is the meaning of it? 32
F.7 Why does nested-merging MAP not output the optimal solution? . . . . . . . . . . 32
F.8 How do you deal with gradient and Hessian in the second-order Taylor expansion? 32

16



Published as a conference paper at ICLR 2025

A NOTATIONS

For clarity, we summarize the notations used throughout the paper in Table 5.

Table 5: Table of notations.

Notations Explanation
N Number of tasks
c Vector of scaling coefficients for task vectors
cn Scaling coefficients for the nth task
θpre Pretrained model parameters
θm(c) Merged model parameters as a function of scaling vector c
vn Task vector for task n
V Task matrix formed by concatenating task vectors
Mn(c) Evaluation metric for task n as a function of c
An Quadratic coefficient matrix in the surrogate model
bn Linear coefficient vector in the surrogate model
en Constant term in the surrogate model
M̃n(c;An,bn, en) Surrogate quadratic model for task n
Ω Set of scaling coefficient vectors c used for estimating surrogate model parameters
K Number of sampled coefficient vectors in set Ω

B MORE DISCUSSION ON RELATED WORK

Second-order Taylor expansion In deep learning, the second-order Taylor expansion and thus
the quadratic approximation on the evaluation metric is an important technique, that characterizes
the metric landscape. For example, the Newton-Ralphson method is derived from it: wt −wt+1 =
H−1G = argminvM(wt − v) given that M(wt − v) = M(wt)− vG+ 1

2v
⊤Hv. The quadratic

approximation is also combined with Lipschitz smoothness (L) in the classic convergence analysis of
SGD (Bubeck et al., 2015; Ghadimi & Lan, 2013), through M(wt − ηG) ≤ M(wt) − η||G||2 +
Lη2

2 ||G||
2. Interestingly, although the approximation is only accurate in the local neighborhood,

it can be used to indicate the global convergence over the iterations. One reason is that state-of-
the-art neural networks are usually over-parameterized and undergo lazy training, meaning that the
converging parameters are close to the initialization (Chizat et al., 2019; Du et al., 2019; Allen-Zhu
et al., 2019). Thus, the local approximation informs the global convergence behavior. In particular,
this approximation has played important roles in the scaling laws of neural networks (e.g. Equation
3.3 in (Su et al., 2024)) that predict the performance and help select hyperparameters before training
actually takes place.

Pareto fronts for Multi-task Learning Recent advancements in multi-task learning (MTL) have
seen diverse approaches to Pareto Front learning in machine learning. Sener & Koltun (2018)
explicitly formulated multi-task learning as a multi-objective optimization problem and adapted
gradient-based multi-objective optimization algorithms to large-scale learning problems. Lin et al.
(2019) developed a constrained optimization approach to find multiple Pareto optimal solutions
representing different trade-offs among tasks in multi-task learning and solved decomposed sub-
problems in parallel using gradient-based optimization. It requires separate training runs for each
solution. Navon et al. (2020) and Lin et al. (2020) employed hypernetworks for continuous Pareto
Front approximation, generating target network weights based on preferred trade-offs. However,
the size of these hypernetworks can become prohibitively large and needs to be properly trained
as well. Ruchte and Grabocka Ruchte & Grabocka (2021) introduced a memory-efficient method
by augmenting network inputs with desired trade-offs, although this may obscure the network’s
conditioning due to nonlinear dynamics, and it is also based on the gradient updating method.

Model-merging Applications in LLM In the realm of model merging applications for language
model preferences, recent research has made significant progress. Ramé et al. (2023) and Jang et al.
(2023) introduced “rewarded soups" and “personalized soups", which utilize model soup to interpolate
weights of networks fine-tuned on diverse rewards to achieve Pareto-optimal generalization across
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preference spaces and address the challenge of aligning large language models with individual
perspectives. WARP (Weight Averaged Rewarded Policies) (Ramé et al., 2024) and WARM
(Weight Averaged Reward Models) (Ram’e et al., 2024) demonstrate how merging policies or
reward models in weight space can refine the trade-off between competing constraints, such as
reward optimization and alignment with pre-trained knowledge or human preferences. (Zhong
et al., 2024) developed “Panacea", which reframes alignment as a multi-dimensional preference
optimization problem, using singular value decomposition-based low-rank adaptation to guide model
behavior with a low-dimensional preference vector. To address the limitations of scalar rewards
in RLHF, Zhou et al. (2023) introduced Multi-Objective Direct Preference Optimization, an RL-
free algorithm that extends Direct Preference Optimization to handle multiple alignment objectives
efficiently. Du et al. (2024) relies on “mutation" and crossover operations typical of evolutionary
algorithms, exploring the parameter space by combining and perturbing existing solutions. Models
are evaluated on development datasets, and only those that improve upon their predecessors are
retained, guiding the population toward better-performing solutions. Li et al. (2024) employs Bayesian
optimization with a weak-to-strong approach and utilizes Fisher information to improve the selection
of configurations for evaluation, aiming to find optimal merging configurations within limited
computational budgets. Wang et al. (2024b) investigated online learning with limited resources, and
successfully deployed model aggregation to handle changing environments, establishing optimal
theoretical guarantees. Finally, Wang et al. (2024a) proposed the Directional Preference Alignment
framework, which incorporates multi-objective reward modeling to represent user preferences,
offering intuitive arithmetic control over LLM generation for diverse user preferences.

Bayesian Optimization Bayesian optimization has been widely used in scenarios that require
efficient exploration of parameter spaces, particularly when evaluating the performance of each
configuration is costly or time-consuming. This method is especially advantageous in machine learn-
ing and hyperparameter tuning, where traditional optimization techniques may be computationally
prohibitive (Wilson et al., 2017; Jain et al., 2022; Moss et al., 2020; Pyzer-Knapp, 2018; Terayama
et al., 2021).

C ADDITIONAL DETAILS ON THE METHODS

C.1 PROOF: NEGLIGIBILITY OF THE REMAINDER IN MULTIVARIATE TAYLOR SERIES

Corollary 2. If f : Rn → R is (k+ 1) times continuously differentiable in a neighborhood around a
point a ∈ Rn, then the Taylor polynomial Tk(x) of order k provides an accurate approximation of
f(x) when x is sufficiently close to a. Furthermore, the remainder term Rk(x) becomes negligibly
small as ||x− a|| approaches zero, assuming that the (k + 1)th derivatives of f are bounded by a
constant M in the neighborhood between a and x.

Proof Consider the Taylor series expansion of f around the point a, truncated at order k:

Tk(x) =
∑
|α|≤k

Dαf(a)

α!
(x− a)α

where α is a multi-index of non-negative integers, Dαf(a) denotes the partial derivatives of f at a
corresponding to α, and (x− a)α = (x1 − a1)

α1 . . . (xn − an)
αn .

Assumptions

1. Proximity: ∥x− a∥ → 0 where ∥ · ∥ denotes the Euclidean norm in Rn.

2. Bounded Derivatives: There exists a constant M such that for all multi-indices α with
|α| ≡ k + 1, the norm of the tensor Dαf evaluated at any point ξ between a and x is
bounded by M .

∥Dαf(ξ)∥ = sup
∥v1∥=1,...,∥vk+1∥=1

|Dαf(ξ)(v1, . . . , vk+1)| ≤M
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The remainder term of the Taylor series expansion is given by:

Rk(x) =
∑

|α|=k+1

Dαf(ξ)

α!
(x− a)α

Given the assumptions, we estimate:

|Rk(x)| ≤
∑

|α|=k+1

∥Dαf(ξ)∥
α!

∥x− a∥k+1 ≤
∑

|α|=k+1

M

α!
∥x− a∥k+1

As ∥x − a∥ → 0, the term ∥x − a∥k+1 goes to zero. Thus, the remainder term Rk(x) becomes
arbitrarily small, making it negligible.

In conclusion, under the stated assumptions, the Taylor series truncated at order k, Tk(x), provides
an accurate approximation of f(x) near a, and the remainder Rk(x) can be ignored as ∥x− a∥ → 0
and the higher-order derivatives remain bounded by M .

C.2 CLOSED-FORM SOLUTION FOR SURROGATE MODEL PARAMETERS

Corollary 3 (Closed-form Solution for Surrogate Model Parameters). Under Assumption 1, for each
task n = 1, . . . , N , the optimization problem

(A∗
n,b

∗
n, e

∗
n) = arg min

An,bn,en

∑
c∈Ω

∣∣∣Mn (θm(c))− M̃n(c;An,bn, en)
∣∣∣2

is equivalent to solving the following linear regression problem:

1. Predictors: For each coefficient vector c = (c1, c2, . . . , cN )⊤ ∈ RN , construct the predictor
vector Cn(c) ∈ R

N(N+3)
2 +1 as

Cn(c) = [c21, c
2
2, . . . , c

2
N , c1c2, c1c3, . . . , cN−1cN , c1, c2, . . . , cN , 1]

This vector includes:

• Quadratic terms: c2i for i = 1, . . . , N .
• Interaction terms: cicj for 1 ≤ i < j ≤ N .
• Linear terms: ci for i = 1, . . . , N .
• Constant term: 1.

2. Response Variable: Let yn ∈ RK be the vector of observed evaluation metrics for task n
across all sampled coefficients Ω = {c(1), . . . , c(K)}:

yn =


Mn

(
θm(c(1))

)
Mn

(
θm(c(2))

)
...

Mn

(
θm(c(K))

)


3. Design Matrix: Construct the design matrix Cn ∈ RK×(N(N+3)
2 +1) where each row

corresponds to Cn(c
(k))⊤ for k = 1, . . . ,K.

4. Coefficient Vector: Define the coefficient vector βn ∈ R
N(N+3)

2 +1 as

βn =

[vec(An)
bn

en

]
where vec(An) represents the vectorization of the upper triangular part of An, including
the diagonal elements.
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Optimal Solution: The parameters (A∗
n,b

∗
n, e

∗
n) that minimize the mean squared error are obtained

via the Ordinary Least Squares (OLS) solution:

β∗
n =

(
C⊤

nCn

)−1
C⊤

nyn

Interpretation: This closed-form solution provides the optimal surrogate model parameters by
fitting a quadratic model to the observed evaluation metrics through linear regression. The design
matrix Cn incorporates all necessary quadratic, interaction, linear, and constant terms, enabling
the surrogate model M̃n(c;An,bn, en) to accurately approximate Mn(θm(c)) within the specified
region.

D ADDITIONAL DETAILS ON EXPERIMENTS

D.1 EXPERIMENT SETUP

Table 6: Experiment setup in terms of task details and models.

Task type Metric # of total tasks Model type

Zero-shot Classification (normal) Accuracy 8 ViT-B/32 (CLIP) ((Dosovitskiy et al., 2020))
Zero-shot Classification (medical) Accuracy 2 ViT-B/32 (CLIP) ((Dosovitskiy et al., 2020))
Language Generation Loss/Perplexity 4 Llama3-8B ((Touvron et al., 2023))
Image Classification Accuracy 3 ResNet-18 ((He et al., 2016))

D.2 ADDITIONAL METRIC: GENERATIONAL DISTANCE AND INVERTED GENERATIONAL
DISTANCE

We evaluated the quality of the Pareto front in capturing the shape of the ground truth Pareto front by
measuring how much the predicted Pareto front converges to the ground truth Pareto front by calculat-
ing the generational distance (GD) (Van Veldhuizen, 1999) and how much the predicted Pareto front
covers the ground truth Pareto front by calculating the inverted generational distance (IGD) (Coello &
Cortés, 2005). GD and IGD are standard measures used in evolutionary multi-objective optimization
to evaluate the solutions found by the evolutionary algorithms. Given a predicted Pareto solution sets
PF1 = {(M̃ j

1 (θmerged(c)), . . . , M̃
j
N (θmerged(c))) | j = 1, 2, . . . ,K1}, and a ground truth Pareto

solution sets PF2 = {(M j
1 (θmerged(c)), . . . ,M

j
N (θmerged(c))) | j = 1, 2, . . . ,K2} the GD and

IGD metrics are defined as

GD(PF1) ≡
1

K1

(
K1∑
i=1

dpi

)1/p

and IGD(PF1) ≡
1

K2

(
K2∑
i=1

d̃pi

)1/p

where di is the minimal Euclidean distance from a specific Pareto Solution in PF1 to PF2 and d̃i is
the minimal Euclidean distance from a specific Pareto Solution in PF2 to PF1.

Since the Pareto front that resulted from the direct search method when the number of tasks is low
(i.e. strictly smaller than 4) can be deemed as ground truth Pareto fronts, we computed GD and IGD
to compare the Pareto fronts produced by MAP against those obtained via brute-force grid search.
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(a) (b)

Figure 6: (a) Generational distance between the Pareto fronts by MAP and by direct search for
dimensions 2 and 3. (b) Inverted generational distance between the Pareto fronts by MAP and by
direct search for dimensions 2 and 3. For both subfigures, the x-axis is the number of total scaling
coefficients used by MAP. For dimension 2, direct search used 200 scaling coefficients, and 300 for
dimension 3.

D.3 ZERO-SHOT MEDICAL IMAGE CLASSIFICATION

In addition to natural images, we used another dataset consisting of over 112,000 chest X-rays and
30,000 unique patients (of Health et al., 2017). It originally contained 15 classes (14 diseases and 1
class for no finding). We split the dataset into two groups, where medical task 1 specifically tries to
classify Atelectasis, Consolidation, Infiltration, Pneumothorax, and medical task 2 tries to classify
Nodule, Mass, and Hernia. An example image taken from the dataset is shown in Figure 7 (a).

(a) (b)

Figure 7: (a) Example figure from the NIH (of Health et al., 2017) dataset. (b) Pareto fronts found by
brute-force direct search using 400 points and by MAP using 30 points. We randomly sampled 25
points from the predicted Pareto front by MAP. The resulting IGD is 0.016, and GD is 0.014.

D.4 MERGING LANGUAGE MODEL

Merging Languages We merge Llama-3-8B language models in French3 and Arabic4, as well
as Chinese5 and Japanese6, as shown in Table 7. The ground truth Pareto front, however, exhibits
significant limitations. It contains only a sparse set of points, indicating that few merged models
dominate the rest. This also suggests that the trade-off between metrics across different languages

3https://huggingface.co/jpacifico/French-Alpaca-Llama3-8B-Instruct-v1.0
4https://huggingface.co/MohamedRashad/Arabic-Orpo-Llama-3-8B-Instruct
5https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat
6https://huggingface.co/haqishen/Llama-3-8B-Japanese-Instruct
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is not substantial. Despite these challenges, our algorithm successfully identifies the Pareto fronts.
Please refer to Table 7 and Appendix D.4 for GD and IGD metrics between the Pareto fronts find by
Grid Search and find by MAP and a visualization of the Pareto fronts found by MAP.

Furthermore, we experimented with merging Arabic+French and Chinese+Japanese using the nested
scheme described in Algorithm 2, while considering various preference settings. However, the
resulting Pareto front typically contains only a single model. This sparsity hinders our ability to
effectively characterize a meaningful Pareto front in such scenarios.

(a) (b)

Figure 8: (a) Amortized Pareto front by MAP on merging Llama-3 fine-tuned on French with Llama-3
fine-tuned on Arabic; (b) Amortized Pareto front on merging Llama-3 fine-tuned on Chinese with
Llama-3 fine-tuned on Japanese. The yellow line represents the evaluation metric of the corresponding
single task model.

Merging Language Models Specializing in Math and Code Following DARE ( (Yu et al., 2023)),
we also experimented with merging two language models each with 13B parameters specializing
in mathematics (referred to as the math model) and coding (referred to as the code model). The
base model used is Llama-2 13B7, the math model is WizardMath-13B8, and the code model is
llama-2-13b-code-alpaca9. Both the math and code models are fine-tuned versions of Llama-2 13B.

The primary reason for selecting Llama-2 as the base model, rather than newer models like Llama-3 or
Qwen-2.5, is the lack of suitable math and code models fine-tuned from the same base configuration.
For instance, although Qwen-2.5 provides both Qwen-2.5-Math and Qwen-2.5-Coder, the two models
differ significantly in their configurations, specifically, the rope theta parameter is set to 10,000.0
for the math model and 1,000,000.0 for the coder model. This discrepancy makes it challenging
to effectively merge these models. Please refer to Figure 9 for a visualization of the Pareto front
obtained from MAP and Table 7 for GD and IGD metrics between the Pareto fronts obtained from
Grid Search and from MAP.

Table 7: The GD and IGD metrics score for Arabic+French, Chinese+Japanese and Math+Code
between the Pareto fronts find by Grid Search and find by MAP.

GD IGD GD+IGD

Arabic+French 0.0230.010 0.0350.018 0.0580.028
Chinese+Japanese 0.0140.013 0.0280.017 0.0410.026

Math+Code 0.0390.009 0.0.0180.002 0.0570.008

7https://huggingface.co/meta-llama/Llama-2-13b-hf
8https://huggingface.co/vanillaOVO/WizardMath-13B-V1.0
9https://huggingface.co/layoric/llama-2-13b-code-alpaca
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Figure 9: Amortized Pareto front by MAP on merging WizardMath-13B and code-alpaca-13B. The
yellow line represents the evaluation metric of the corresponding single task model.

D.5 ADDITIONAL EXPERIMENT RESULTS ON RESNET

We performed additional experiments on ResNet18 (He et al., 2016) by merging two models finetuned
on CIFAR10 (Krizhevsky et al., 2009) and Flowers102 (Nilsback & Zisserman, 2008) and show
the obtained Pareto front in Figure 10. Unlike ViT models, which perform zero-shot classification,
ResNet requires additional fine-tuning of the classification head after model merging. We demonstrate
that our method still applies to those models.

Figure 10: Pareto front obtained for two ResNet18 models on CIFAR-10 and Flowers-102. We
perform additional finetuning of the classification head after merging the model weights.
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E MORE DETAILS ON ALGORITHMS

E.1 PLAIN MAP

It is important to note that Plain MAP (Algorithm 1) is an out-of-the-box plugin-like method. Many
parts of it are kept generic: there are multiple ways to sample Ω in terms of the number of c and the
style of sampling (Bayesian or not), thus creating a tradeoff between the quality of the Pareto front
and the computational time; the task vector can be computed on the more memory-capable CPU and
possibly in a parameter-efficient manner (e.g. LoRA, Adapter, and BiTFiT): for example, computing
vn via the subtraction of two full 7B models requires 2× 23 = 46GB of memory capacity, but the
memory cost for PEFT models may reduce to 16MB by only subtracting the non-frozen components;
the for-loops in lines 2 and 4 can be computed in parallel, possibly using a much smaller subset of
the data, and thus enjoying a computational speed-up.

E.2 NESTED-MERGING MAP

E.2.1 OVERVIEW

In this section, we explain the procedure of the algorithm in Figure 4 in detail.

Empirically, we only need 20 scaling coefficients to get a Pareto front of good quality to merge
2 tasks. However, due to the curse of dimensionality, we need exponentially more pairs of
(c, {M̃n(θm(c))}Nn=1) pairs to achieve a good quality of the Pareto front in the case of 8 tasks.
Theoretically, in the best case, the number of points required to obtain a good quality Pareto front
for N tasks is O(N3). In the worst case, when the curse of dimensionality dominates, it could
be O(N · 2N ). Using the nested merging scheme, we reduce the computation complexity from
O(N · 2N ) to O(N logN). Please refer to Table 8 for the detailed computational complexity
comparison. Algorithm details are presented in Algorithm 2.

Algorithm 2 Nested-merging MAP
Input: A predetermined preference pref ∈ RN over the N tasks, the tuple of task, loss, task vector:

Gn = (taskn, ln,θ
n
ft)

Normalize pref to make sure the sum is 1
Initialize the set τ = {G1, . . . , GN}
while |τ | > 1 do

Find the pair of (Gi, Gj) ∈ τ that are closest to each other in terms of (li, lj)
Implement Algorithm 1 to find the Pareto front PFi,j between (M̃i, M̃j)
Select c∗ = (c∗i , c

∗
j ) ∈ R2 based on the Pareto front PFi,j

Merge the models by θi,j
merge = θpre + ci(θpre − θi

ft) + cj(θpre − θj
ft)

Calculate the weighted average loss on the two tasks lij = prefili + prefj lj
Update τ by replacing {Gi, Gj} with {Gij}, where Gij ≡ (taski,j , lij ,θ

i,j
merge)

end
return θ1,2,...,N

merge

E.2.2 TIME COMPLEXITY OF NESTED-MERGING MAP

Table 8: Computational cost of MAP variants for N models.

# evals per task minimum # evals (total) # evals (total)

Plain MAP O(N2) O(N3) O(N · 2N )
Nested-merging MAP O(1) O(N logN) O(N logN)

To estimate the computational complexity of nested-merging MAP, we denote N as the number of
tasks. The number of total evaluations needed for nested-merging MAP is: N/2× 2+ . . .+N/2m×
2m = O(N logN) where 2m−1 < N ≤ 2m.
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Detailed calculations are as follows. When the number of tasks is 8, in the first rounds, four 2-task
merging procedures are running in parallel. Each of the procedures evaluates 2 tasks. In the procedure
of model-merging between 2 tasks, as discussed, we need to sample 20 scaling coefficients c and
evaluate 20 merged models on the 2 tasks. Thus, it takes 4× 20× 2 = 160 times of evaluation in the
first round. In the second round, 2 2-task merging procedures are running in parallel, each of them
evaluating 4 tasks. Thus, it takes 2× 20× 4 = 160 times of evaluation. In the last round, there is
only one 2-task merging and evaluation on 8 tasks. It takes 1× 20× 8 = 160 times of evaluation. In
total, NMMAP takes 480 times of evaluations. Generalizing the calculation, the number of rounds
can be calculated by logN . In each round, we need to evaluate T ·N/2i · 2i = TN where T is the
number of scaling coefficient vectors needed to be evaluated when the number of tasks is 2. In the
above example, T = 20. Thus, the time complexity is O(TN logN). We rewrite it as O(N logN)
if ignoring T which is a constant.

E.2.3 EXPLANATION OF CURSE OF DIMENSIONALITY

Figure 11 illustrates the curse of dimensionality through the discretizations of scaling coefficients for
task-specific optimization. The left plot shows a 2D grid of scaling coefficients for two tasks, while
the right plot extends this to three tasks (i.e., a 3D grid). In both cases, the space of possible scaling
coefficients is discretized uniformly, with a resolution determined by the parameter pts_per_dim,
which refers to the number of discretized points along each axis (dimension). The spacing between
adjacent points, denoted as ∆, is given by ∆ = 1

pts_per_dim−1 . As the number of dimensions (tasks)
increases, the total number of grid points grows exponentially. Specifically, the number of grid points
in d dimensions is given by (pts_per_dim)d, leading to a combinatorial explosion in the search
space. This exponential growth exemplifies the curse of dimensionality, rendering brute-force search
methods computationally infeasible as the number of tasks (dimensions) increases beyond a small
threshold. Therefore, while grid search may be adequate for low-dimensional problems, it quickly
becomes impractical in higher-dimensional settings.

Pts per 
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Discretization when # tasks = 2
Δ = 1/(pts_per_dim-1)
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Discretization when # tasks = 3

Figure 11: The discretization of scaling coefficients when the number of tasks is 2 and 3. As the
dimension grows, preserving the same number of pts per dimension results in exponentially more
grid points. This serves to illustrate why when the dimension is low (e.g., < 4), we can regard the
brute-force direct search method as ground truth, but it becomes insufficient when the dimension is
higher.

E.2.4 INTERMEDIATE PARETO FRONTS IN EACH ROUND

To determine if NMMAP affects performance negatively when compared to merging multiple models
in a single operation. We show the intermediate Pareto fronts obtained when merging 8 models using
nested-merging MAP in Figure 12, where we merge two models at a time. The figures illustrate the
intermediate Pareto fronts obtained, where A_B means the model obtained by merging model A and
model B.
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Figure 12: Illustration of the sequential steps involved in merging 8 models using nested-merging
MAP (left to right, top to bottom). The figures show the intermediate Pareto fronts obtained, where
A_B means the model obtained by merging model A and model B.
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E.2.5 RESULTS ON USING NESTED MERGING TO MERGE 8 MODELS

We further evaluate the effectiveness of nested-merging MAP. Supplemental Figure 12 shows the
intermediate Pareto fronts obtained using nested-merging MAP (NMMAP) sequentially. In addition,
we compared the performance of NMMAP with Plain MAP (Algorithm 1). The results are shown
in Table 9. The results confirm that nested-merging MAP can obtain comparable results to those
obtained by MAP while using much fewer evaluation runs. As discussed in Appendix E.2.2, in total,
we run 40 × 4 + 80 × 2 + 160 × 1 = 480 evaluations. In contrast, when running the Plain MAP
(Algorithm 1), we used 280 coefficients and evaluate 280 × 8 = 2240 times. In addition, while
being suboptimal to MAP (Algorithm 1), nested-merging MAP can still outperform other baseline
methods such as TA and DARE-TA in accommodating various user preferences with relatively low
computational cost, especially when the number of tasks is high.

Table 9: We compared nested-merging MAP with MAP and baseline methods in merging 8 models
using a set of 10 preference vectors in terms of preference-weighted sum of accuracies.

Metric Single-task models Nested-merging MAP Plain MAP TIES-merging DARE-TIES Task Arithmetic (TA) DARE-TA

Preference weighted sum (↑) 90.05±3.02 67.05±3.89 72.12±3.78 70.79±3.81 70.51±3.58 59.44±5.68 63.14±4.91

E.3 BAYESIAN MAP

We further improve the efficiency of MAP by proposing an adaptive Bayesian sampling algorithm.
This Bayesian approach samples the points from regions with the highest level of uncertainty, where
uncertainty is quantified with the Upper Confidence Bound (UCB). Please refer to Algorithm 3 for
more details about the algorithm.

The discretization method shown in the Figure 13 illustrates how continuous decision variables c
are divided (or “binned”) based on their angular components, in either 2D polar or 3D spherical
coordinate systems.

In general, a point c = (c1, c2, . . . , cn) in spherical coordinates is represented using:



c1 = r cosϕ1

c2 = r sinϕ1 cosϕ2

c3 = r sinϕ1 sinϕ2 cosϕ3

...
cn−1 = r sinϕ1 · · · sinϕn−2 cosϕn−1

cn = r sinϕ1 · · · sinϕn−2 sinϕn−1

where r = ∥c∥2 is the radial distance (magnitude), ϕ1, . . . , ϕn−2 ∈ [0, π], ϕn−1 ∈ [0, 2π].

To discretize the direction (angular component) of a decision vector c ∈ Rn, we follow the steps
below:

1. Normalization: Convert c to a unit vector:

ĉ =
c

∥c∥2
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2. Conversion to Spherical Coordinates: Represent the direction of c using (n− 1) spherical
angles (ϕ1, ϕ2, . . . , ϕn−1). These can be computed recursively as follows:

ϕ1 = arccos

(
c1√

c21 + c22 + · · ·+ c2n

)

ϕ2 = arccos

(
c2√

c22 + · · ·+ c2n

/
sinϕ1

)
...

ϕn−2 = arccos

 cn−2√
c2n−2 + c2n−1 + c2n

/
n−3∏
j=1

sinϕj


ϕn−1 = arctan

(
cn

cn−1

)

3. Discretization of Angular Space: Divide each angle ϕi into ki uniform bins. For example,
if ki = 4, then:

ϕi ∈
[
jπ

2ki
,
(j + 1)π

2ki

)
, for j = 0, 1, . . . , ki − 1

where the angular domain is restricted to [0, π/2] to ensure non-negativity in all coordinates.

4. Bin Assignment: The final bin index for c is a tuple of angular bin indices:

bin(c) = (b1, b2, . . . , bn−1), where bi =

⌊
ϕi

∆ϕi

⌋
and ∆ϕi =

π
2ki

denotes the bin width for ϕi.

Each bin corresponds to a distinct angular sector, grouping together direction vectors with similar
orientations, regardless of their magnitudes.
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Figure 13: (a) Discretizing of two task scaling coefficients along the angular dimension in 2D polar
coordinate system; (b) Discretizing of three task scaling coefficients along the angular dimensions in
3D spherical coordinate system.
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Algorithm 3 Bayesian Adaptive of Surrogate Model
Input: Number of iterations J , Buffer B, Pretrained model θpre, Task vectors vn, Evaluators for

task N , Mn(·), Discretization bin number K, sample size for every iteration nj , j = 0 to J ,
Bootstrap dropping rate α = 20%, Bootstrap sampling number Q = 30.

B ← ∅
for j = 0 to J do

if j = 0 then
Sample n0 scaling coefficients {ci}

nj

i=1 from U([0, 1]N )
else

Sample nj scaling coefficients {ci}
nj

i=1 based on the posterior distribution
end
for i = 0 to nj do

Merge the model θm(ci) = θpre+ci·vn Evaluate mn,i = Mn(θm(ci))B ← B∪{(ci,mn,i)}
end
Fit the quadratic approximation surrogate model M̃n by learning A∗

n,b
∗
n, e

∗
n in Equation (5).

Discretize the scaling coefficients along the angular dimensions in hyper-spherical coordinates
(see Figure 13 as examples)

for k = 0 to K do
Calculate the mean of L2 loss between M̃n(ci) and Mt(ci), where ci are in bin k, denoted

as meank
Bootstrap to estimate the standard deviation of the losses.
for q = 0 to Q do

Randomly (uniformly) drop α scaling coefficient in bin k Calculate the mean of L2 loss
between M̃n(ci) and Mt(ci) with the rest points and denoted with lq

end
Calculate the standard deviation of the {lq}Qq=0 and denoted as stdk scorek = meank +

1
2 stdk

end
Calculate probability distribution across the discretized bins by scorek as the posterior sampling

strategy in the next round
end

E.3.1 PERFORMANCE OF BAYESIAN MAP

Please refer to Figure 14 for the experimental results comparing Bayesian MAP Algorithm 3 with
MAP Algorithm 1. The very left column shows the names of the 2 tasks being merged. Below,
we define points (pts) as scaling coefficients and evaluation metrics of the corresponding merged
models. Please note that the results shown in this figure are the mean of 7 merging tasks that merge 2
models: DTD+Cars, DTD+RESISC45, EuroSAT+RESISC45, GTSRB+Cars, GTSRB+RESISC45,
RESISC45+SVHN, SUN397+SVHN. The Pareto front estimated by Bayesian MAP with only one
iteration (6+3 pts) is shown in Figure 15.

The experiments are initialized with 6 pairs of c, {Mn}Nn=1 (iter 0). In every following iteration, we
sample more points following the Bayesian adaptive sampling algorithm. We compare the Bayesian
adaptive sampling beginning with 6 points and adding 3 additional points (6 + 3 pts) with running
Algorithm 1 with 9 points in a row. We also compare the Bayesian adaptive sampling beginning with
6 points and adding 3 additional points for 2 times (6 + 2× 3 pts) with running Algorithm 1 with 12
points in a row. We show that, in most cases, utilizing the same number of points, Bayesian adaptive
sampling performs better than the run-in-a-row scheme in Algorithm 1.

In conclusion, when the number of data points (scaling coefficients and evaluation metrics of the
corresponding merged models) is small, Bayesian MAP Algorithm 3 performs better than MAP
Algorithm 1. As the number of data points increases, their performance becomes closer. Thus, we
recommend implementing Bayesian MAP when computational resources are very limited and the
number of models (tasks) to merge is not high.
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Figure 14: Bayesian MAP compared to MAP. The x-axis represents the number of points used by
either MAP or Bayesian MAP, while the y-axis represents the value for IGD or GD. We compared
MAP with 6, 9, and 12 points, and Bayesian MAP with 6 initial points, sampling 3 more points each
round for two rounds.

(a) (b)

Figure 15: (a) This plot shows a failure case of the amortized Pareto front when we only have 6
initial randomly sampled pairs of (c, {Mi(θm(c))}Ni=1) (b) After one iteration of Bayesian adaptive
sampling for 3 more pairs (9 in total), the amortized Pareto front is much better than the initial Pareto
front.
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F POTENTIAL Q & A

In this section, we anticipate and address some potential questions that readers might have.

F.1 THE AUTHORS ASSUME A SETTING WHERE IT IS COMPUTATIONALLY EXPENSIVE TO
QUERY THE MODEL EVALUATIONS. BUT IS THIS THE REALITY?

Yes, to get the Pareto front of tasks that have trade-offs. We need to have a lot of data points to show
the trade-off. Here, each data point is the evaluation metric of a model. To get the ground truth
evaluation metric of a task (e.g. let’s say classification), we need to run the evaluation script of the
model to determine the metric. If we have 4 tasks, and we set 5 possible values (let’s say 0.2, 0.4,
0.6, 0.8, 1) for the scaling coefficient vector of each model specialized for one task. We will have to
evaluate 54 = 625 models on all 4 tasks. Assuming each evaluation takes 1 minute, evaluating all the
models on all the 4 tasks will take 625 models× 4 tasks× 1 minute = 2500 minutes = 41.7 hours
which is expensive. In big O notation, assuming we have T tasks, the time of evaluation for each task
is T . The time (computational) complexity is O(TN2N ).

F.2 HOW IS MAP DIFFERENT FROM OTHER MOOP METHODS, SUCH AS LINEAR
SCALARIZATION?

Computational Efficiency MAP is computationally efficient because it leverages a surrogate model
(the quadratic approximation) to estimate the evaluation metrics for different model combinations.
Once the quadratic model is learned, solving the optimization problem (approximating the Pareto
front) is much faster because the complexity is reduced to optimizing over the quadratic approximation,
rather than needing to directly evaluate the task metrics over the entire solution space.

Additionally, MAP does not require gradient descent or re-training when merging models and the
surrogate model provides an efficient way to approximate the Pareto front without re-evaluating every
model configuration.

On the other hand, linear scalarization involves computing a weighted sum of the objectives and
solving it as a single-objective optimization problem. However, it often requires multiple optimization
runs with different weight configurations to explore different points on the Pareto front. Since linear
scalarization does not model non-linear relationships, it might require more iterations or grid searches
over different weights to achieve a decent approximation of the Pareto front. This can become
computationally expensive, especially for a large number of tasks or highly complex models.

Non-convex Pareto Fronts Many real-world multi-objective optimization problems have noncon-
vex Pareto fronts, which require more sophisticated methods. While linear scalarization can only
explore the convex regions of the Pareto front, NSGA-III allows MAP to discover nonconvex regions
of the Pareto front. It does this by evolving a population of solutions that are non-dominated (i.e., not
Pareto dominated by any other solution) and spreading these solutions across the entire Pareto front,
including both convex and non-convex regions.

F.3 WHY DOES QUADRATIC APPROXIMATION HAVE A LOWER COST?

For the MAP algorithm (Algorithm 1), the time complexity is the same as what we mentioned above;
what is different is that we fitted an approximation of the evaluation metrics. We only need the scaling
coefficient vectors to input to a quadratic function model to be able to get the estimated evaluation
score. Running the quadratic function once takes only 3.91×10−6s±894×10−9s. Thus, evaluating
2500 times takes < 2500× 4× 10−6s = 10−2s.

F.4 WHY NOT COMPARE TO GIT-REBASIN (AINSWORTH ET AL., 2023)?

We did not compare our method to Git Re-Basin because their study focuses on the scenarios
of merging the models from different initializations, whereas our background works on the same
initialization of different fine-tuned models.

31



Published as a conference paper at ICLR 2025

F.5 WHY DOES NESTED-MERGING MAP NOT GIVE A COMPLETE PARETO FRONT?

In nested-merging MAP, we merge the models in pairs. For example, there are modeli for task i as
individual fine-tuned models where i = 1, 2, 3, 4. We first merge model 1 and model 2 given the
preference of the user between task 1 and task 2. We then get model1,2. At the same time, we merge
model 3 and model 4 given the preference of the user between task 3 and task 4 and get model3,4.
Finally, we merge the model1,2 and model3,4 given the preference of user to get model1,2,3,4. We
output the model1,2,3,4 as the output merged model of the algorithm. Please note that the merging
order in the algorithm should be decided by the loss function clustering. It is a heuristic decision and
does not always dominate other merging orders. Thus, we choose not to emphasize the contribution
of this order. The practitioner may use any order they think can be helpful for merging.

F.6 IT SEEMS NESTED-MERGING MAP PERFORMS WORSE THAN MAP. WHAT IS THE
MEANING OF IT?

In theory, the surrogate model can be easily fitted when the number of tasks is low. When it is high
(e.g. 8), the fit of the surrogate model can no longer be a near-perfect approximation (please find the
R2 in Table 3). Thus, even if the NMMAP can only find the suboptimal solution, it is still comparable
to MAP Algorithm 1 according to Table 9. We understand in general that NMMAP does not find
the global optimum, but please kindly keep in mind that even if their performance is comparable,
NMMAP takes way less computation for evaluation.

F.7 WHY DOES NESTED-MERGING MAP NOT OUTPUT THE OPTIMAL SOLUTION?

The solution found by nested-merging MAP (NMMAP) is indeed suboptimal given the limited search
space compared with merging all models at once. However, it does not mean that it is not useful
in all situations. When the number of tasks is high, it has comparable performance to MAP while
consuming much fewer computations for evaluation.

F.8 HOW DO YOU DEAL WITH GRADIENT AND HESSIAN IN THE SECOND-ORDER TAYLOR
EXPANSION?

Notations:

• p as the number of parameters in the pre-trained model (also the number of parameters in
each task vector).

• V is the matrix of task vectors of different N tasks. Thus, V ∈ Rp×N .

• c is the scaling coefficient vector ∈ RN .

• Mn is the metric (e.g. accuracy) for the task n.

Mn(c) = Mn(θpre)︸ ︷︷ ︸
∈R

+∇Mn(θpre)
⊤︸ ︷︷ ︸

∈R1×p

V︸︷︷︸
∈Rp×N

c︸︷︷︸
∈RN×1

+
1

2
(Vc)⊤︸ ︷︷ ︸
∈R1×p

Hn(θpre)︸ ︷︷ ︸
∈Rp×p

Vc︸︷︷︸
∈Rp×1

+ Rn︸︷︷︸
∈R

(6)

= en︸︷︷︸
∈R

+ b⊤
n︸︷︷︸

∈R1×N

c︸︷︷︸
∈RN×1

+ c⊤︸︷︷︸
∈R1×N

An︸︷︷︸
∈RN×N

c︸︷︷︸
∈RN×1

(7)

(8)

M̃n(c;An,bn, en) ≡ en + b⊤
n c+

1

2
c⊤Anc

where

An = V⊤Hn(θpre)V ∈ RN×N ,bn = V⊤∇Mn(θpre) ∈ RN , en = Mn(θpre) +Rn (9)
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Please notice that A is a symmetric matrix. Specifically, when the number of tasks is 2, we have:

M̃1(c;A1,b1, e1) ≡ e1 + b⊤
1 c+

1

2
c⊤A1c (10)

=
1

2
A1,11c

2
1 +A1,12c1c2 +

1

2
A1,22c

2
2 + b1,1c1 + b1,2c2 + e1 (11)

M̃2(c;A2,b2, e2) ≡ e2 + b⊤
2 c+

1

2
c⊤A2c (12)

=
1

2
A2,11c

2
1 +A2,12c1c2 +

1

2
A2,22c

2
2 + b2,1c1 + b2,2c2 + e2 (13)

(14)

We don’t calculate the gradient or Hessian to get A1, A2, b1, b2, e1 and e2. We use linear regression
to estimate them. How? Given a (c1, c2) pair, we can define a merged model θmerge(c1, c2). We
evaluate the merged model on task 1 and task 2 to get the metrics (e.g. accuracy). Given 20 pairs
of (c1, c2), we would be able to evaluate and get 20 corresponding, (M1,M2) which are metrics for
task 1 and task 2. Thus, we can fit the surrogate model M̃1(c;A1,b1, e1) and M̃2(c;A2,b2, e2).
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