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Figure 1: UniHSI facilitates unified and long-horizon control in response to natural language com-
mands, offering notable features such as diverse interactions with a singular object, multi-object
interactions, and fine-granularity control.

ABSTRACT

Human-Scene Interaction (HSI) is a vital component of fields like embodied AI
and virtual reality. Despite advancements in motion quality and physical plausi-
bility, two pivotal factors, versatile interaction control and user-friendly interfaces,
require further exploration for the practical application of HSI. This paper presents
a unified HSI framework, named UniHSI, that supports unified control of diverse
interactions through language commands. The framework defines interaction as
“Chain of Contacts (CoC)”, representing steps involving human joint-object part
pairs. This concept is inspired by the strong correlation between interaction types
and corresponding contact regions. Based on the definition, UniHSI constitutes
a Large Language Model (LLM) Planner to translate language prompts into task
plans in the form of CoC, and a Unified Controller that turns CoC into uniform
task execution. To support training and evaluation, we collect a new dataset named
ScenePlan that encompasses thousands of task plans generated by LLMs based
on diverse scenarios. Comprehensive experiments demonstrate the effectiveness
of our framework in versatile task execution and generalizability to real scanned
scenes.

1 INTRODUCTION

Human-Scene Interaction (HSI) constitutes a crucial element in various applications, including em-
bodied AI and virtual reality. Despite the great efforts in this domain to promote motion quality
(Holden et al., 2017; Starke et al., 2019; 2020; Hassan et al., 2021b; Zhao et al., 2022; Hassan et al.,
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2021a; Wang et al., 2022a) and physical plausibility (Holden et al., 2017; Starke et al., 2019; 2020;
Hassan et al., 2021b; Zhao et al., 2022; Hassan et al., 2021a; Wang et al., 2022a), two key factors,
versatile interaction control and the development of a user-friendly interface, are yet to be explored
before HSI can be put into practical usage.

This paper aims to provide an HSI system that supports versatile interaction control through lan-
guage commands, one of the most uniform and accessible interfaces for users. Such a system re-
quires: 1) Aligning language commands with precise interaction execution, 2) Unifying diverse
interactions within a single model to ensure scalability. To achieve this, the initial effort involves the
uniform definition of different interactions. We propose that interaction itself contains a strong prior
in the form of human-object contact regions. For example, in the case of “lie down on the bed”, it
can be interpreted as “first the pelvis contacting the mattress of the bed, then the head contacting the
pillow”. To this end, we formulate interaction as ordered sequences of human joint-object part con-
tact pairs, which we refer to as Chain of Contacts (CoC). Unlike previous contact-driven methods,
which are limited to supporting specific interactions through manual design, our interaction defini-
tion is generalizable to versatile interactions and capable of modeling multi-round transitions. The
recent advancements in Large Language Models have made it possible to translate language com-
mands into CoC. The structured formulation then can be uniformly processed for the downstream
controller to execute.

Following the above formulation, we propose UniHSI, the first Unified physical HSI framework
with language commands as inputs. UniHSI consists of a high-level LLM Planner to translate
language inputs into the task plans in the form of CoC and a low-level Unified Controller for
executing these plans. Combining language commands and background information such as body
joint names and object part layout, we harness prompt engineering techniques to instruct LLMs
to plan interaction step by step. We design the TaskParser to support the unified execution. It
serves as the core of the Unified Controller. Following CoC, the TaskParser collects information
including joint poses and object point clouds from the physical environment, then formulates them
into uniform task observations and task objectives.

As illustrated in Fig. 1, the Unified Controller models whole-body joints and arbitrary parts of
objects in the scenarios to enable fine-granularity control and multi-object interaction. With differ-
ent language commands, we can generate diverse interactions with the same object. Unlike previ-
ous methods that only model a limited horizon of interactions, like “sitting down”, we design the
TaskParser to evaluate the completion of the current steps and sequentially fetch the next step, result-
ing in multi-round and long-horizon transition control. The Unified control leverages the adversarial
motion prior framework (Peng et al., 2021) that uses a motion discriminator for realistic motion
synthesis and a physical simulation (Makoviychuk et al., 2021) to ensure physical plausibility.

Another impressive feature of our framework is the training is interaction annotation-free. Previous
methods typically require datasets that capture both target objects and the corresponding motion
sequences, which demand numerous laboring. In contrast, we leverage the interaction knowledge of
LLMs to generate interaction plans. It significantly reduces the annotation requirements and makes
versatile interaction training feasible. To this end, we create a novel dataset named ScenePlan.
It encompasses thousands of interaction plans based on scenarios constructed from PartNet (Mo
et al., 2019) and ScanNet (Dai et al., 2017) datasets. We conduct comprehensive experiments on
ScenePlan. The results illustrate the effectiveness of the model in versatile interaction control and
good generalizability on real scanned scenarios.

2 RELATED WORKS

Kinematics-based Human-Scene Interaction. How to synthesize realistic human behavior is a
long-standing topic. Most existing methods focus on promoting the quality and diversity of hu-
manoid movements (Barsoum et al., 2018; Harvey et al., 2020; Pavllo et al., 2018; Yan et al., 2019;
Zhang et al., 2022a; Tevet et al., 2022b; Zhang et al., 2023b) but do not consider scene influence.
Recently, there has been a growing interest in synthesizing motion with human-scene interactions,
driven by its applications in various applications like embodied AI and virtual reality. Many previ-
ous methods (Holden et al., 2017; Starke et al., 2019; 2020; Hassan et al., 2021b; Zhao et al., 2022;
Hassan et al., 2021a; Wang et al., 2022a; Zhang et al., 2022b; Wang et al., 2022b) use data-driven
kinematic models to generate static or dynamic interactions. These methods are typically inferior in
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Table 1: Comparative Analysis of Key Features between UniHSI and Preceding Methods.

Methods Unified
Interaction

Language
Input

Long-horizon
Transition

Interaction
Annotation-free

Control
Joints

Multi-object
Interactions

NSM Starke et al. (2019) ✓ 3 (pelvis, hands) ✓
SAMP Hassan et al. (2021a) 1 (pelvis)
COUCH Zhang et al. (2022b) 3 (pelvis, hands) ✓

HUMANISE Wang et al. (2022b) ✓ ✓ -
ScenDiffuser Huang et al. (2023) ✓ ✓ -

PADL Juravsky et al. (2022) ✓ ✓ ✓ -
InterPhys Hassan et al. (2023) 4 (pelvis, head, hands)

Ours ✓ ✓ ✓ ✓ 15 (whole-body) ✓

physical plausibility and prone to synthesizing motions with artifacts, such as penetration, floating,
and sliding. The need for additional post-processing to mitigate these artifacts hinders the real-time
applicability of these frameworks.

Physics-based Human-Scene Interaction. Recent advances in physics-based methods (e.g., (Peng
et al., 2021; 2022; Hassan et al., 2023; Juravsky et al., 2022; Pan et al., 2023) hold promise for
ensuring physical realism through physics-aware simulators. However, they have limitations: 1)
They typically require separate policy networks for each task, limiting their ability to learn versatile
interactions within a unified controller. 2) These methods often focus on basic action-based control,
neglecting finer-grained interaction details. 3) They heavily rely on annotated motion sequences
for human-scene interactions, which can be challenging to obtain. In contrast, our UniHSI re-
designs human-scene interactions into a uniform representation, driven by world knowledge from
our high-level LLM Planner. This allows us to train a unified controller with versatile interaction
skills without the need for annotated motion sequences. Key feature comparisons are in Tab. 1.

Languages in Human Motion Control. Incorporating language understanding into human motion
control has become a recent research focus. Existing methods primarily focus on scene-agnostic
motion synthesis (Zhang et al., 2022a; Chen et al., 2023; Tevet et al., 2022a;b; Zhang et al., 2023a;b;
Jiang et al., 2023) (Athanasiou et al., 2023). Generating human-scene interactions using language
commands poses additional challenges because the output movements must align with the com-
mands and be coherent with the environment. Zhao et al. (2022) generates static interaction gestures
through rule-based mapping of language commands to specific tasks. Juravsky et al. (2022) utilized
BERT (Devlin et al., 2018) to infer language commands, but their method requires pre-defined tasks
and different low-level policies for task execution. Wang et al. (2022b) unified various tasks in a
CVAE (Yao et al., 2022) network with a language interface, but their performance was limited due
to challenges in grounding target objects and contact areas for the characters. Recently, there have
been some explorations on LLM-based agent control. Brohan et al. (2023) uses fine-tuned VLM
(Vision Language Model) to directly output actions for low-level robots. Rocamonde et al. (2023)
employs CLIP-generated cos-similarity as RL training rewards. In contrast, UniHSI utilizes large
language models to transfer language commands into the formation of Chain of Contacts and design
a robust unified controller to execute versatile interaction based on the structured formation.

3 METHODOLOGY

As shown in Fig. 2, UniHSI supports versatile human-scene interaction control following language
commands. In the following subsections, we first illustrate how we design the unified interaction
formulation as CoC(Sec. 3.1). Then we show how we translate language commands into the unified
formulation by the LLM Planner (Sec. 3.2). Finally, we elaborate on the construction of the Unified
Controller (Sec. 3.3).

3.1 CHAIN OF CONTACTS

The initial effort of UniHSI lies in the unified formulation of interaction. Inspired by Hassan et al.
(2021b), which infers contact regions of humans and objects based on the interaction gestures of
humans, we propose a high correlation between contact regions and interaction types. Further,
interactions are not limited to a single gesture but involve sequential transitions. To this end, we can
universally define interaction as CoC C, with the formulation as

C = {S1,S2, ...}, (1)

where Si is the ith contact step. Each step S includes several contact pairs. For each contact pair,
we control whether a joint contacts the corresponding object part and the direction of the contact.
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Instruction: I would like to play video games for a while. After that, I will go to sleep.
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Figure 2: Comprehensive Overview of UniHSI. The entire pipeline comprises two principal com-
ponents: the LLM Planner and the Unified Controller. The LLM Planner processes language inputs
and background scenario information to generate multi-step plans in the form of CoC. Subsequently,
the Unified Controller executes CoC step by step, producing interaction movements.

We construct each contact pair with five elements: an object o, an object part p, a humanoid joint
j, the contact type c of j and p, and the relative direction d from j to p. The contact type includes
“contact”, “not contact”, and “not care”. The relative direction includes “up”, “down”, “front”,
“back”, “left”, and “right”. For example, one contact unit {o, p, j, c, d} could be {chair, seat surface,
pelvis, contact, up}. In this way, we can formulate each S as

S = {{o1, p1, j1, c1, d1}, {o2, p2, j2, c2, d2}, ...}. (2)

CoC is the output of the LLM Planner and the input of the Unified Controller.

3.2 LARGE LANGUAGE MODEL PLANNER

We leverage LLMs as our planners to infer language commands L into manageable plans C. As
shown in Fig. 3, the inputs of the LLM Planner include language commands L, background scenario
information B, humanoid joint information J together with pre-set instructions, rules and examples.
Specifically, B includes several objects O and their optional spatial layouts. Each object consists of
several parts P , i.e., a chair could consist of arms, the back, and the seat. The humanoid joint
information is pre-defined for all scenarios. We use prompt engineering to combine these elements
together and instruct LLMs to output task plans. By modifying instructions in the prompts, we
can generate specified numbers of plans for diverse ways of interactions. We can also let LLMs
automatically generate plausible plans given the scenes. In this way, we build our interaction datasets
to train and evaluate the Unified Controller.

3.3 UNIFIED CONTROLLER

The Unified Controller takes multi-step plans C and background scenarios in the form of meshes
and point clouds as input and outputs realistic movements coherent to the environments.
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Instruction: I want to play video games for a while, then go to sleep.

[start of background Information] The room has OBJECTS: [bed, chair, table, laptop]. The [OBJECT: 

laptop] is upon the [OBJECT: table] …The [OBJECT: bed] has PARTS: [pillow, mattress]… The 

human has JOINTS: [pelvis, left hip, left knee, left foot… [end of background Information]

Given the instruction and background information, generate 1 task plan according to the following rules 

and examples. [start of  rules]1. Each task plan should be composite into detailed steps.

2. Each step should contain meaningful joint-part pairs…[end of rules] [start of examples][end of examples]

Step 1: Get close to the chair.

Step 2: Sit on the chair.

Pair 1: {chair, seat surface, 

pelvis, contact, up}.

Step 3: Play video games.

…

Figure 3: The Procedure for Translating Language Commands into Chains of Contacts.

Preliminary. We build the controller upon AMP (Peng et al., 2021). AMP is a goal-conditioned re-
inforcement learning framework incorporated with an adversarial discriminator to model the motion
prior. Its objective is defined by a reward function R(·) as

R(st,at, st+1,G) = wGRG(st,at, st+1,G) + wSRS(st, st+1). (3)

The task reward RG defines the high-level goal G an agent should achieve. The style reward RS

encourages the agent to imitate low-level behaviors from motion datasets. wG and wS are empirical
weights of RG and RS , respectively. st, at, st+1 are the state at time t, the action at time t, the state
at time t+ 1, respectively. The style reward RS is modeled using an adversarial discriminator D,
which is trained according to the objective:

arg min
D

−EdM(st,st+1)

[
log

(
D(sAt , s

A
t+1)

)]
− Edπ(s,st+1)

[
log

(
1−D(sA, sAt+1)

)]
+wgp EdM(s,st+1)

[∣∣∣∣∣∣∇ϕD(ϕ)
∣∣∣ϕ=(sA,sA

t+1)

∣∣∣∣∣∣2] , (4)

where dM(s, st+1) and dπ(s, st+1) denote the likelihood of a state transition from st to st+1 in
the dataset M and the policy π respectively. wgp is an empirical coefficient to regularize gradient
penalty. sA = Φ(s) is the observation for discriminator. The style reward rS = RS(·) for the policy
is then formulated as:

RS(st, st+1) = −log(1−D(sAt , s
A
t+1)). (5)

We adopt the key design of motion discriminator for realistic motion modeling. In our implemen-
tation, we feed 10 adjacent frames together into the discriminator to assess the style. Our main
contribution to the controller parts lies in unifying different tasks. As shown in the left part of Fig.
4 (a), AMP (Peng et al., 2021), as well as most of the previous methods (Juravsky et al., 2022; Zhao
et al., 2023), design specified task observations, task objectives, and hyperparameters to train task-
specified control policy. In contrast, we unify different tasks into Chains of Contacts and devise a
TaskParser to process the uniform representation.

TaskParser. As the core of the Unified Controller, the TaskParser is responsible for formulating
CoC into uniform task observations and task objectives. It also sequentially fetches steps for multi-
round interaction execution.

Given one specific contacting pair {o, p, j, c, d}, for task observation, the TaskParser collects the
corresponding position vj ∈ R3 of the joint j, and point clouds vp ∈ Rm×3 of the object part p from
the simulation environment, where m is the point number of point clouds. It selects the nearest point
vnp ∈ vp from vp to vj as the target point for contact. We formulate task observation of the single
pair as {vnp−vj , c, d}. For the task observation in the network, we map c and d into digital numbers,
but we still use the same notation for simplicity. Combining these contact pairs together, we get the
uniform task observations sU = {{vnp

1 − vj
1, c1, d1}, {v

np
2 − vj

2, c2, d2}, ..., {vnp
n − vj

n, cn, dn}}.

The task reward rG = RG(·) is the summarization of all contact pair rewards:

RG =
∑
k

wkRk, k = 1, 2, ..., n. (6)

We model each contact reward Rk according to the contact type ck. When ck = contact, the contact
reward encourages the joint j to be close to the part p, satisfying the specified direction d. When
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Figure 4: Design Visualization. (a) Our framework ensures a unified design across tasks using the
unified interface and the TaskParser. (b) The ego-centric height map in a ScanNet scene is depicted
by green dots, with darker shades indicating greater height.

Table 2: Performance Evaluation on the ScenePlan Dataset.

Source Success Rate (%) ↑ Contact Error ↓ Success Steps
Simple Mid Hard Simple Mid Hard Simple Mid Hard

PartNet (Mo et al., 2019) 91.1 63.2 39.7 0.038 0.073 0.101 2.3 4.5 6.1
wo Adaptive Weights 21.2 5.3 0.1 0.181 0.312 0.487 0.7 1.2 0.0

wo Heightmap 61.6 45.7 0.0 0.068 0.076 - 1.8 3.4 0.0

ScanNet (Dai et al., 2017) 76.1 43.5 32.2 0.067 0.101 0.311 1.8 2.9 4.9

ck = notcontact, we hope the joint j is not close to the part p. If ck = not care, we directly set the
reward to max. Following the idea, the kth contact reward Rk is defined as

Rk =


wdisexp(−wdk||dk||) + wdirmax(dkd̂k, 0), ck = contact

1− exp(−wdk||dk||), ck = not contact

1, ck = not care

(7)

where dk = vnp − vj indicates the kth distance vector, dk is the normalized unit vector of dk, d̂k

is the unit direction vector specified by direction dk, and ck is the kth contact type. wdis, wdir, wdk

are corresponding weights. We set the scale interval of Rk as [0, 1] and use exp to ensure it.

Similar to the formulation of contact reward, the TaskParser considers a step to be completed if All
k = 1, 2, ..., n satisfy: if ck = contact : ||dk|| < 0.1 and dkd̂k > 0.8, if ck = not contact :
||dk|| > 0.1, if ck = not care, T rue.

Adaptive Contact Weights. The formulation of 6 includes lots of weights to balance different con-
tact parts of the rewards. Empirically setting them requires much laboring and is not generalizable
to versatile tasks. To this end, we adaptively set these weights based on the current optimization
process. The basic idea is to give parts of rewards that are hard to optimize high rewards while
lowering the weights of easier parts. Given R1, R2, ..., Rn, we heuristically set their weights to

wk =
1−Rk

n−
∑

k=1,2,...,n Rk + e
, (8)

Ego-centric Heightmap. The humanoid must be scene-aware to avoid collision when navigating or
interacting in a scene. We adopt similar approaches in Wang et al. (2022a); Won et al. (2022); Starke
et al. (2019) that sample surrounding information as the humanoid’s observation. We build a square
ego-centric heightmap that samples the height of surrounding objects (Fig. 4 (b)). It is important to
extend our methods into real scanned scenarios such as ScanNet (Dai et al., 2017) in which various
objects are densely distributed and easily collide.

4 EXPERIMENTS

Existing methods and datasets related to human-scene interactions mainly focus on short and limited
tasks (Hassan et al., 2021a; Peng et al., 2021; Hassan et al., 2023; Wang et al., 2022b). To the best
of our knowledge, we are the first method that supports arbitrary horizon interactions with language
commands as input. To this end, we construct a novel dataset for training and evaluation. We also
conduct various ablations with vanilla baselines and key components of our framework.
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Figure 5: Visual Examples Illustrating Tasks of Varying Difficulty Levels.

4.1 DATASETS AND METRICS

To facilitate the training and evaluation of UniHSI, we construct a novel ScenePlan dataset com-
prising various indoor scenarios and interaction plans. The indoor scenarios are collected and con-
structed from object datasets and scanned scene datasets. We leverage our LLM Planner to generate
interaction plans based on these scenarios. The training of our model also requires motion datasets
to train the motion discriminator, which constrains our agents to interact in natural ways. We follow
the practice of Hassan et al. (2023) to evaluate the performance of our method.

ScenePlan. We gather scenarios for ScenePlan from PartNet (Mo et al., 2019) and ScanNet (Dai
et al., 2017) datasets. PartNet offers indoor objects with fine-grained part annotations, ideal for
LLM Planners. We select diverse objects from PartNet and compose them into scenarios. For Scan-
Net, which contains real indoor room scenes, we collect scenes and annotate key object parts based
on fragmented area annotations. We then employ the LLM Planner to generate various interaction
plans from these scenarios. Our training set includes 40 objects from PartNet, with 5-20 plausible
interaction steps generated for each object. During training, we randomly choose 1-4 objects from
this set for each scenario and select their steps as interaction plans. The evaluation set consists of 40
PartNet objects and 10 ScanNet scenarios. We construct objects from PartNet into scenarios either
manually or randomly. We generated 1,040 interaction plans for PartNet scenarios and 100 interac-
tion plans for ScanNet scenarios. These plans encompass diverse interactions, including different
types, horizons, and multiple objects.

Motion Datasets. We use the SAMP dataset (Hassan et al., 2021a) and CIRCLE (Araújo et al.,
2023) as our motion dataset. SAMP includes 100 minutes of MoCap clips, covering common walk-
ing, sitting, and lying down behaviors. CIRCLE contains diverse right and left-hand reaching data.
We use all clips in SAMP and pick 20 representative clips in CIRCLE for training.

Metrics. We follow Hassan et al. (2023) that uses Success Rate and Contact Error (Precision
in Hassan et al. (2023)) as the main metrics to measure the quality of interactions quantitatively.
Success Rate records the percentage of trials that humanoids successfully complete every step of
the whole plan. In our experiments, we consider a trial of n steps to be successfully completed if
humanoids finish it in n× 10 seconds. We also record the average error of all contact pairs:

ContactError =
∑

i,ci ̸=0

eri/
∑

i,ci ̸=0

1, eri =

{
||dk||, ci = contact

min(0.3− ||dk||, 0). ci = not contact
(9)

We further record Success Steps, which denotes the average success step in task execution.

4.2 PERFORMANCE ON SCENEPLAN

We initially conducted experiments on our ScenePlan dataset. To measure performance in detail, we
categorize task plans into three levels: simple, medium, and hard. We classify plans within 3 steps as
simple tasks, those with more than 3 steps but with a single object as medium-level tasks, and those
with multiple objects as hard tasks. Simple task plans typically involve straightforward interactions.
Medium-level plans encompass more diverse interactions with multiple rounds of transitions. Hard
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Table 3: Ablation Study on Baseline Models and Vanilla Implementations.

Methods Success Rate (%) ↑ Contact Error ↓
Sit Lie Down Reach Sit Lie Down Reach

NSM - Sit (Starke et al., 2019) 75.0 - - 0.19 - -
SAMP - Sit (Hassan et al., 2021a) 75.0 - - 0.06 - -
SAMP - Lie Down(Hassan et al., 2021a) - 50.0 - - 0.05 -
InterPhys - Sit (Hassan et al., 2023) 93.7 - - 0.09 - -
InterPhys - Lie Down(Hassan et al., 2023) - 80.0 - - 0.30 -

AMP (Peng et al., 2021)-Sit 77.3 - - 0.090 - -
AMP-Lie Down - 21.3 - - 0.112 -
AMP-Reach - - 98.1 - - 0.016
AMP-Vanilla Combination (VC) 62.5 20.1 90.3 0.093 0.108 0.032

UniHSI 94.3 81.5 97.5 0.032 0.061 0.016
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Figure 6: Visual Ablations. (a) Our model exhibits superior natural and accurate performance
compared to baselines in tasks such as “Sit” and “Lie Down”. (b) Our model demonstrates more
efficient and effective training procedures.
task plans introduce multiple objects, requiring agents to navigate between these objects and interact
with one or more objects simultaneously. Examples of tasks are illustrated in Fig. 5.

As shown in Table 2, UniHSI performs well in simple task plans, exhibiting a high Success Rate and
low Error. However, as task plans become more diverse and complex, the performance of our model
experiences a noticeable decline. Nevertheless, the Success Steps metric continues to increase,
indicating that our model still performs well in parts of the plans. It’s important to note that the
scenarios in the ScenePlan test set are unseen during training, and scenes from ScanNet exhibit a
modality gap with the training set. The overall performance on the test set demonstrates the versatile
capability, robustness, and generalization ability of UniHSI.
4.3 ABLATION STUDIES

4.3.1 KEY COMPONENTS ABLATION

Choice of LLMs for UniHSI. We evaluated different Language Model (LM) choices

Table 4: UniHSI with different LLMs.

LLM Type ESR (%) ↑ PC (%) ↑

Human 73.2 -
w. GPT-3.5 35.6 49.1
w. GPT-4 57.3 71.9

for the LLM Planner using 100 sets of language com-
mands. We compared task plan Execution Success
Rate (ESR) and Planning Correctness (PC) among hu-
mans, GPT-3.5OpenAI (2020), and GPT-4OpenAI (2023)
across 10 tests per plan. PC is evaluated by humans, with
choices of ”correct” and ”not correct”. GPT-4 outper-
formed GPT-3.5, but both LLMs still lag behind human
performance. Failures typically involved incomplete planning and out-of-distribution interactions,
like GPT-3.5 occasionally skipping transitions or generating out-of-distribution actions like opening
a laptop. While using more rules in prompts and GPT-4 can mitigate these issues, errors can still
occur.

Adaptive Weights. Table 2 demonstrates that removing Adaptive Weights from our controller leads
to a substantial performance decline across all task levels. Adaptive Weights are crucial for optimiz-
ing various contact pairs effectively. They automatically adjust weights, reducing them for unused
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or easily learned pairs and increasing them for more challenging pairs. This becomes especially
vital as tasks become more complex.

Ego-centric Heightmap. Removing the Ego-centric Heightmap results in performance degradation,
especially for difficult tasks. This heightmap is essential for agent navigation within scenes, enabling
perception of surroundings and preventing collisions with objects. This is particularly critical for
challenging tasks involving complex scenarios and numerous objects. Additionally, the Ego-centric
Heightmap is key to our model’s ability to generalize to real scanned scenes.

4.3.2 DESIGN COMPARISON WITH PREVIOUS METHODS

Baseline Settings. We compared our approach to previous methods using simple interaction tasks
like “Sit,” “Lie Down,” and “Reach.” Direct comparisons are challenging due to differences in train-
ing data and code unavailability for a closely related method (Hassan et al., 2023). We integrated
key design elements from Hassan et al. (2023) into our baseline model (Peng et al., 2021) to ensure
fairness. Task observations and objectives were manually formulated for various tasks, following
Hassan et al. (2023), with task objectives expressed as:

RG =

{
0.7Rnear + 0.3Rfar, if distance > 0.5m
0.7Rnear + 0.3, otherwise

(10)

In this equation, Rfar encourages character movement toward the object, and Rnear encourages
specific task performance when the character is close, necessitating task-specific designs.

We also created a vanilla baseline by consolidating multiple tasks within a single model. We com-
bined task observations from various tasks and included task choices within these observations. We
randomly selected tasks and trained them with their respective rewards during training. This experi-
ment involved a total of 70 objects (30 for sitting, 30 for lying down, and 10 for reaching) with 4096
trials per task and random variations in orientation and object placement during evaluation.

Quantitative Comparison. In Table 3, UniHSI consistently outperforms or matches baseline im-
plementations across various metrics. The performance advantage is most pronounced in complex
tasks, especially the challenging “Lie Down” task. This improvement stems from our approach of
breaking tasks into multi-step plans, reducing task complexity. Additionally, our model benefits
from shared motion transitions among tasks, enhancing its adaptability. Figure 6 (b) shows that
our methods achieve higher success rates and converge faster than baseline implementations. Im-
portantly, the vanilla combination of AMP (Peng et al., 2021) results in a noticeable performance
drop in all tasks while our methods remain effective. This difference is because the vanilla combi-
nation introduces interference and inefficiencies in training, whereas our approach unifies tasks into
consistent representations and objectives, enhancing multi-task learning.

Qualitative Comparison. In Figure 6 (a), we qualitatively visualize the performance of baseline
methods and our model. Our model performs more naturally and accurately than the baselines in
tasks like “Sit” and “Lie Down”. This is primarily attributed to the differences in task objectives.
Baseline objectives (Eq. 10) model the combination of sub-tasks, such as walking close and sitting
down, as simultaneous processes. Consequently, agents tend to perform these different goals simul-
taneously. For example, they may attempt to sit down even if they are not in the correct position
or throw themselves like a projectile onto the bed, disregarding the natural task progression. On
the other hand, our methods decompose tasks into natural movements through language planners,
resulting in more realistic interactions.

5 CONCLUSION

UniHSI is a unified Human-Scene Interaction (HSI) system adept at diverse interactions and lan-
guage commands. Defined as Chains of Contacts (CoC), interactions involve sequences of human
joint-object part contact pairs. UniHSI integrates a Large Language Planner for command transla-
tion into CoC and a Unified Controller for uniform execution. Comprehensive experiments show-
case UniHSI’s effectiveness and generalizability, representing a significant advancement in versatile
and user-friendly HSI systems. Acknowledgement. We acknowledge Shanghai AI Lab and NTU
S-Lab for their funding support.
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