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ABSTRACT

Sketching is both a fundamental artistic expression and a crucial aspect of art.
The significance of sketching has increased alongside the development of sketch-
based generative and editing models. To enable individuals to use these sketch-
based generative models effectively, personalizing sketch extraction is crucial. In
response, we introduce DiffSketch, a novel method capable of generating vari-
ous geometrically aligned sketches from text or images, using a single manual
drawing for training the style. Our method exploits rich information available
in features from a pretrained Stable Diffusion model to achieve effective domain
adaptation. To further streamline the process of sketch extraction, we further re-
fine our approach by distilling the knowledge from the trained generator into the
image-to-sketch network, which is termed as DiffSketch;s¢i11.4- Through a series
of comparisons, we verify that our method not only outperforms existing state-
of-the-art sketch extraction methods but also surpasses diffusion-based stylization
methods in the task of extracting sketches.

1 INTRODUCTION

Sketching, as an initial stage in artistic creation, serves as a foundational process for conceptual-
izing and conveying artistic intentions while visualizing the core structure and content of the final
artwork. As sketches can exhibit distinct styles despite their basic form composed of simple lines,
many studies in computer vision and graphics have attempted to train models for automatically ex-
tracting geometric sketches Winnemoller| (201 1); |lllyasviel|(2017); |Ashtari et al.| (2022); (Chan et al.
(2022); |Seo et al.| (2023). The majority of previous sketch extraction approaches utilize image-to-
image translation techniques to produce high-quality results. These approaches typically require a
large dataset when training an image translation model from scratch, making it difficult to person-
alize applications such as sketch auto-colorization, sketch-based editing, or conditional generation.
Recently, advancements in abstract curve optimization have been made as an alternative that does
not require training Mo et al.| (2021)); Vinker et al.|(2022); Willett et al.|(2023)); | Vinker et al.| (2023)).
While these methods can effectively optimize curves based on a given text or image, they cannot
follow the target style image, making it challenging to generate personalized sketches.

Meanwhile, recent research has explored the utilization of diffusion model [Rombach et al|(2022);
Saharia et al.|(2022) features for downstream tasksXu et al.|(2023)); [Khani et al.|(2023)); Zhang et al.
(2023a); [Tumanyan et al.| (2023). Features derived from pretrained diffusion models are known to
contain rich semantics and spatial information [Tumanyan et al.| (2023)); | Xu et al.| (2023)), which can
help train networks for various tasks using a small number of data. Previous studies have utilized
these features extracted from a subset of layers |Baranchuk et al.| (2021), certain timesteps [Zhang
et al.| (2023a); [ Xu et al. (2023), or every specific interval [Luo et al.| (2023). Unfortunately, these
selected features often do not contain most of the information generated during the entire diffusion
process.

To this end, we propose Diffsketch, a new method that can extract representative features from a
pretrained Stable Diffusion (SD) Rombach et al.| (2022) and train the sketch generator with one
manual drawing. For feature extraction from the denoising process, we statistically analyze the
features and select those that can represent the whole feature information from the denoising process.
Our new generator aggregates the features from multiple timesteps, fuses them with Variational

The source code for both DiffSketch and DiffSketch;s¢i11.4 Will be released.
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Autoencoder (VAE) Kingma & Welling| (2013)) features, and decodes these fused features into a
sketch. In addition, we distill DiffSketch into a streamlined image-to-image translation network for
improved inference speed and efficient memory usage, dubbed DiffSketchy;stiiied-
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Figure 1: The uniqueness of our method: DiffSketchy;ssiiieq 1S capable of extracting sketches of a
given style after trained with only one example, without overfitting. DiffSketchy;sziieq 1S different
from previous methods that require large datasets Seo et al.|(2023), that are prone to overfitting Ruiz
et al.|(2023), and that cannot extract using a style example [Vinker et al.[(2023).

Our method is tailored specifically for sketch generation, utilizing a dedicated sketch generator
trained on features from VAE and SD. This approach sets itself apart from traditional diffusion-
based personalization or stylization techniques. While existing personalization methods rely on
finetuning, re-prompting, or adding adaptation modules |Ruiz et al.| (2023); |Gal et al.| (2022)); Zhang
et al.[ (2023b); Hu et al.[ (2021)), DiffSketch employs a Decoder which is trained with a domain
adaptation technique, to address common issues such as mode collapse or color leakage. It pro-
cesses diffusion features without modifying the original SD model and outputs fused features in a
single channel sketch. In addition, unlike curve optimization methods [Vinker et al.| (2022} 2023);
Xing et al.| (2023), DiffSketchg;si11.4 can control the style of sketches using a given style example.
This is achieved in a few milliseconds. The differences of our method from previous methods are
highlighted in Fig.[T]

In addition to the newly proposed generator, we introduce a method for effective sampling performed
during training. We found that training a network with data that share similar semantic information
with that of the ground truth data is effective. However, relying solely on such data for training
will hinder the full utilization of the capacity provided by the diffusion model. Therefore, we adopt
a new sampling method to ensure training with diverse examples while enabling effective training.
The resulting DiffSketchg; s¢iiieq 1s the final network that is capable of performing a sketch extraction
task.

2 RELATED WORK

2.1 SKETCH EXTRACTION

At its core, sketch extraction utilizes edge detection. Edge detection serves as the foundation not
only for sketch extraction but also for tasks like object detection and segmentation Zhang et al.
(2015); |Arbelaez et al.| (2010). Initial edge detection studies primarily focused on identifying edges
based on abrupt variations in color or brightness |(Canny| (1986); |[Winnemoller| (2011). Although
these techniques are direct and efficient without requiring extensive datasets to train on, they often
produce outputs with artifacts, like scattered dots or lines.

To make extracted sketches authentic, learning-based strategies have been introduced. These strate-
gies excel in identifying object borders or rendering lines in distinct styles |Xiang et al.| (2021)); Xie
& Tu| (2015a); [lllyasviel| (2017); [Li et al.| (2019; 2017). Informative drawing |Chan et al.| (2022)
took a step forward from prior techniques by incorporating the depth and semantic information of
images to procure superior-quality sketches. In a more recent development, Ref2sketch Ashtari et al.
(2022) permits to extract stylized sketches using reference sketches through paired training. Semi-
Ref2sketch |Seo et al.| (2023) adopted contrastive learning for semi-supervised training. All of these
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methods share the same limitation; they require a large amount of sketch data for training, which
is hard to gather. Due to data scarcity, training a sketch extraction model is generally challenging.
To address this challenge, our method is designed to train a sketch generator using just one manual
drawing.

2.2 DIFFUSION FEATURES FOR DOWNSTREAM TASK

Diffusion models |[Ho et al.| (2020); Nichol & Dhariwal| (2021)) have shown cutting-edge results in
tasks related to generating images conditioned on text prompt Rombach et al.| (2022); [Saharia et al.
(2022); Ramesh et al.| (2021). There have been attempts to analyze the features for utilization in
downstream tasks such as segmentation [Baranchuk et al.| (2021); Xu et al.| (2023); [Khani et al.
(2023)), image editing [Tumanyan et al.| (2023), and finding dense semantic correspondence |Luo
et al.| (2023); Zhang et al|(2023a); Tang et al.| (2023). Most earlier studies chose a specific subset
of features for their own downstream tasks. Recently, Diffusion Hyperfeature Luo et al.| (2023)
proposed an aggregator that learns features from all layers and that uses equally sampled time steps.
We advance a step further by analyzing and selecting the features from multiple timesteps, which
represent the overall features. We also propose a two-stage aggregation network and feature-fusing
decoder utilizing additional information from VAE to generate finer details.

2.3 DEEP FEATURES FOR SKETCH EXTRACTION

Most of recent sketch extraction methods utilize the deep features of a pretrained model for sketch
extraction training |Ashtari et al.[(2022)); Seo et al.| (2023); Y1 et al.| (2019; 2020). These approaches
utilize deep features from a pretrained classifier Johnson et al.| (2016);|Zhang et al.| (2018) or vision-
language models such as CLIP Radford et al|(2021)) to measure semantic similarity (Chan et al.
(2022); [Vinker et al|(2022). They indirectly use the features by comparing them for the loss cal-
culation during the training process instead of using them to generate a sketch. DiffSketcher Xing
et al. (2023)) utilizes a diffusion model to perform curve optimization from text. StyleSketch |Yun
et al.| (2024) utilizes GAN features to extract a facial sketch with a few data. These recent models
have successfully demonstrated that generative features can be used to create sketches. However,
neither method can extract a sketch from a single example because DiffSketcher cannot take a style
or content image as input, while StyleSketch requires 16 data for training in a single domain. To fa-
cilitate translating an image to a sketch in a provided style, we directly use the diffusion features that
contain rich information and generate geometric sketches using a network trained with one example
pair.

3 DIFFUSION FEATURES

During the backward diffusion process, UNet [Ronneberger et al.| (2015) produces several inter-
mediate features with different shapes while reducing noise. This collection of features contains
rich information about texture and semantics, which can be used to generate an image in various
domains. For instance, features from the lower to intermediate layers of the UNet reveal global
structures and semantic regions, while features from higher layers exhibit fine and high-frequency
information [Tumanyan et al.| (2023)); [Luo et al,| (2023). Furthermore, features become more fine-
grained over time steps [Hertz et al.| (2022). As these features have different information depending
on their embedded layers and processed timesteps, it is important to select diverse features to fully
utilize the information they provide.

3.1 DIFFUSION FEATURES SELECTION

Here, we first present a method for selecting features by analysis. Our approach involves selecting
representative features from all the denoising timesteps and building our sketch generator, Gsgetch
to extract a sketch from an image by learning from a single data. To perform analysis, we randomly
sampled images and collected all the features from multiple layers and timesteps during Denoising
Diffusion Implicit Model (DDIM) sampling, with a total of 50 steps [Song et al.| (2020). For an
experiment, features from a total of 50,000 data (50 UNet features with varying timesteps from
1,000 randomly generated images) were gathered.
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Figure 2:  Analysis on sampled
features. PCA is applied to DDIM
sampled features, colored with
denoising timesteps.

We conducted Principal component analysis (PCA) on these features from all timesteps to examine
their distributions depending on their timesteps. The PCA results are visualized in Fig[2] in which
smooth trajectories across the timesteps are shown. Therefore, selecting features from intervals
can be more beneficial than using a single feature, as it provides richer information, as previously
suggested [Luo et al.| (2023). Upon further examination, we can observe that the features tend to
start at a similar point in their initial timesteps (! ~ 50) and diverge thereafter (cyan box). In
addition, during the initial steps, nearby values do not show a large difference compared to those in
the middle (black box), while the final features exhibit distinct values even though they are on the
same trajectory (orange box).

These findings provide insights that can guide the selection of features. As we aim to capture
the informative features across the timesteps instead of using all features, we first conducted a K-
means clustering analysis (K-means) |[Hotelling| (1933) using Within Clusters Sum of Squares dis-
tance (WCSS) to determine the number of feature clusters. From this process, we chose our K as 13
although this K value may vary with the number of diffusion sampling processes. We selected the
features from the center of each cluster to use them as input to our sketch generation network. The
detailed process of clustering and further experiments for different sampling processes and different
models are presented in Sec. |B|of the Appendix.

3.2 DIFFUSION FEATURES AGGREGATION

Inspired by feature aggregation networks for downstream tasks|Xu et al.|(2023)); ILuo et al.|(2023)), we
build our two-level aggregation network and feature fusing decoder (FFD), both of which constitute
our new sketch generator Gxercr,. The architectures of Gggerer, and FFD are shown in Fig. [4] (b)
and (d), respectively. The diffusion features f;;, generated on layer [ and timestep ¢, are passed
through the representative feature gate G*. They are then upsampled to a certain resolution by U,,
or Uy, and passed through an aggregation network which consists of bottleneck layer (B]™ or Bf” )
and mixing layer with mixing weights w. The second aggregation network receives the first fused
feature F'r,; as an additional input feature.

T lg—1

Ffstfzzwu B (Um(G"(f1,¢))), Ffmfzzwzt B (Uep(G™ (f1,1)) “szl' P(Up(Fyst))

t=0 1=1 t=01=14 =1
(1)

Here, L is the total number of UNet layers, while /; indicates the middle layer, which are set to
be 12 and 10, respectively. Bottleneck layers B;" and Btp are shared across timesteps. 7' is the
total number of timesteps. F'ys; denotes the first level aggregated features and F'y;,, denotes the final
aggregated features. These two levels of aggregation allow us to utilize the features in a memory
efficient manner by mixing the features sequentially in a lower resolution first and then in a higher
resolution.

3.3 VAE DECODER FEATURES

Unlike recent applications on utilizing diffusion features, where semantic correspondences are more
important than high-frequency details, sketch generation utilizes both semantic information and
high-frequency details such as texture. As shown in Fig. |3 VAE decoder features contain high-
frequency details such as hair and wrinkles. From this observation, we designed our network to
utilize VAE features following the aggregation of UNet features. Extended visualizations are pro-
vided in the Appendix.
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Figure 3: Visualization of features
from UNet and VAE in lower and
higher resolution layers. Lower res-
olution layers are the first layers
while higher resolution layers are
the 11th layer for UNet and the 9th
layer for VAE.
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We utilize all the VAE features from the residual blocks to build FFD. The aggregated features F'y;;,
and VAE features are fused together to generate the output sketch. Specifically, in the fusing step 1,
VAE features with the same resolution are passed through the channel reduction layer followed by
the convolution layer. These processed features are concatenated to the previously fused feature x;
and the result is passed through the fusion layer to output x;4 1. For the first step (¢ = 0), xo is Flysn,.
All features in the same step have the same resolution. We denote the number of total features at ¢
as IV without subscript for simplicity. This process is shown in Fig. ] (d) and can be expressed as

follows:
N N

Tit1 = FUSE[{Z COHV(CH(Ui,n))} =+ mi]7 fsketch = OUT[{Z COI’IV(CH(UM,”))} +xnr + IsouTce]
n=1 n=1
(2)

where C'H is the channel reduction layer, Conv is the convolution layers, FUSE is the fusion layer,

OUT is the final convolution layer applied before outputting Lsketens > and addition represent
concatenation in the channel dimension. Only at the last step (¢ = M), the source image, Isyyrce 1S
also concatenated to generate the output sketch.

4 DIFFSKETCH

DiffSketch learns to generate a pair of image and sketch through the process described below, which
is also shown in Fig.[4]

1. First, the user generates an image using a prompt with Stable Diffusion (SD)
(2022) and draws a corresponding sketch while its diffusion features F' are kept.

2. The diffusion features F', its corresponding image Is,yce, and drawn sketch Igxescrn, con-
stitute a triplet data to train the sketch generator G sxescp, With directional CLIP guidance.

3. With trained Gggetcn, paired image and sketch can be generated with a condition. This
becomes the input for the distilled network for fast sketch extraction.

In the following subsections, we will describe the structure of sketch generator G sxescn (Sec. @),
its loss functions (Sec.[#.2)), and the distilled network (Sec.#.4).

(a) Stable Diffusion &  (c) Loss Function

Denoising Diffusion UNet
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a fiti= = g
f f
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(b) Sketch Generator Ge;.:cpn {fu {f;_t
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i )l Decoder m Fusion layer FUSE il
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Frin Tspetcn (d) Feature Fusing Decoder Loketcn
o—© : Selected feature Gate G* @ : Concatenation of channel dimension

Figure 4: Overview of Diffsketch. The UNet features generated during the denoising process are fed
to the Aggregation networks to be fused with the VAE features to generate a sketch corresponding
to the image that Stable Diffusion generates.
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Figure 5: Illustration of CDST. Training
starts with C, which is an encoded prompt
and is diffused as the training iteration pro-
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4.1 SKETCH GENERATOR

Our sketch generator G ggetcp, 18 built to utilize the features from the denoising diffusion process per-
formed by UNet and VAE as described in Secs.[3.2]and [3.3] Gjcscn takes the selected features from
UNet as input, and aggregate them and fuse them with the VAE decoder features v; ,, to synthesizes

the corresponding sketch I sketch- Unlike other image-to-image translation-based sketch extraction
methods in which the network takes an image as input, our method accepts multiple deep features
that have different spatial resolutions and channels.

4.2 OBJECTIVES
To train G sgerch, We utilize the following loss functions:

L= Lrec + )\withianilhin + )\acrossLacross (3)

where Ayithin and Aycross are the balancing weights. Lyimin and Lycoss are directional CLIP losses for
domain adaptation, proposed in Mind-the-gap (MTG) |Zhu et al.| (2022)). Lymin preserves the direc-
tion within the style (image-image and sketch-sketch), by enforcing the difference between synthetic
image I;qmp from SD and Ioy;ce to be similar to that between generated sketch Isqmpsketcn from
Gsieten and Iggeten in CLIP embedding space. Similarly, L5 enforces the difference between
Lsampsketch and Isqmp to be similar to that between Loy rce and Iggescn. While MTG uses an MSE
loss for the pixel-wise reconstruction, we use an L1 distance to avoid blurry sketch results, which is
important in the generation of sketches|Ashtari et al.[(2022). Our L. can be expressed as follows:

Liec = AuiLit + Aupips Lipips + AcLipsim LeLipsim 4

where ApLj, ALpps, and AcLipsim are the balancing weights. Lj; calculates the pixel-wise recon-
struction, Ly prps [Zhang et al.| (2018)) captures the perceptual similarity, and Ly psim calculates the
semantic similarity in the cosine distance. More details can be found in Sec.

4.3 SAMPLING SCHEME FOR TRAINING

Our method uses one source image and its corresponding sketch as the only ground truth when
guiding the sketch style, using the direction of CLIP embeddings. Therefore, our losses rely on well-
constructed CLIP manifold. We found that when the domains of two images Isoyrce and Isqm, differ
largely, the confidence in the directional CLIP loss becomes lower (explanation and experiment are
provided in Sec.[5.2). To fully utilize the capacity of the diffusion model and produce sketches in
diverse domains, however, it is important to train the model on diverse examples.

To ensure learning from diverse examples without decreasing the confidence of directional CLIP
losses, we propose a novel sampling scheme, condition diffusion sampling for training (CDST) in
which the condition is diffused from a single point to whole sampling space of SD. We envision
that this sampling can be useful when training a model with a conditional generator. CDST initially
samples a data I,4,, from one known condition encoded from prompt C' and gradually changes
the sampling distribution to the distribution of pretrained SD by using a diffusion algorithm when
training the network (see Fig. [3).

Here, to estimate the distribution of SD, we randomly sampled 100k prompts from LAION-
400M [Schuhmann et al| (2021) and used them as a subset of the trained text-image pairs of the
SD model. We then tokenized and embedded these prompts for preprocessing, following the pro-
cess of the pretrained SD model. We then conducted Shapiro-Wilk test [Shapiro & Wilk! (1965),
followed by Mardia test Mardial (1970; [1974) with a significance level of « = 5% and found that
the distribution of SD follows a multivariate normal distribution. The detailed process is stated in
Sec. [D]of the Appendix. The condition on the iteration 7 (0 < ¢ < S) can be described as follows:
a; =1/(1- %), Bi = \/g, C;" ~ N(p,®), Ci= ai(ﬁﬁic+ af; s c:emr (9
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where N represents the multivariate normal distribution, approximating the distribution of the pre-
trained SD. p represents the mean vector and ¥ represents the covariance matrix. S indicates the
number of the total diffusion steps during training.

4.4 DISTILLATION

Once the sketch generator Gggetcp, 1s trained, DiffSketch can generate pairs of images and sketches
in the trained style. This generation can be performed either randomly or with a specific condi-
tion. Due to the nature of the denoising diffusion model, in which the result is refined through the
denoising process, long processing time and high memory usage are required. Moreover, when ex-
tracting sketches from images, the quality can be degraded because of the inversion process. There-
fore, to perform image-to-sketch extraction efficiently while ensuring high-quality results, we train
DiffSketchy;stiieq using Pix2PixHD [Wang et al.| (2018]).

To train DiffSketchy;stizieq, We extract 30k pairs of image and sketch samples using our
trained DiffSketch, adhering to CDST. Additionally, we employ regularization to ensure that the
ground truth sketch Is;e:cn, can be generated and discriminated effectively during the training of
DiffSketchg;stiieq- With this trained model, images can be extracted in a given style much more
quickly than with the original DiffSketch.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

We implemented DiffSketch and trained generator Gsgeter, On an Nvidia V100 GPU for 1,200 it-
erations. When training G gjescn, we applied CDST with S in Eq. [5]to be 1,000. The model was
trained with a fixed learning rate of 2e-4. The balancing weights Aycross; Awithins AL1> ALpps, and
AcLipsim Wwere fixed at 1, 1, 30, 15, and 30, respectively. DiffSketchy;stieq Was trained on two
A6000 GPUs using the same architecture and parameters from its original paper except for the
output channel, where ours was set to one. We also added regularization on every 16 iterations.
DiffSketchy;stieq Was trained with 30,000 pairs that were sampled from DiffSketch with CDST
(S = 30,000). LPIPS Zhang et al.| (2018), SSIM [Wang et al.| (2004)), and FID Heusel et al.|(2017)
were used for a comparison with baselines while only LPIPS and SSIM were used for an ablation
study due to a limited number of test data (=100). LPIPS measured perceptual similarity, SSIM
measured structural similarity, and FID measured distribution similarity.

5.2 CONFIDENCE SCORE TEST

An underlying assumption of CDST is that for a bi-directional CLIP loss which is used for domain
adaptation|Yoon et al.[(2024));|Zhu et al.|(2022); |[Kim et al.|(2022), two images with a similar domain
(Usource and Isqmyp) leads to higher confidence compared to two images with a different domain. To
examine this, we devised a new metric confidence score. As the first step, we measured similarity
value Simqyithin and Simgeross of the CLIP features of images from different domains in the same
manner described as the Sec.[4.2] Specifically, the equation for similarity is as follows:

COS(Ix.[Y ~sty)+COS(]XSX 'IySy) (6)
N

where cos(a - b) is the cosine similarity and N is the total number for averaging. [x and Iy corre-
sponds to the CLIP embedding of images in each domain X and Y. Similarly Sx and Sy corresponds

—
to CLIP embedding of sketches in each domain X and Y. In detail, cos(Ix Iy - Sx Sy ) corresponds

Sim(X,Y) =

e
t0 Luyithin and cos(IxSx - Iy Sy) corresponds to Lyeross described in Sec. M With these com-
puted similarities, the confidence score in domain X and domain Y can be written as follows where
Sim(ALL, ALL) denotes the average similarity of all images, for which higher is better:

Sim(X,Y)

confidence(A.B) = o AL L ALL)

x 100 @)
We measured the confidence score using 4SKST |Seo et al.| (2023)), which consists of four different
sketch styles paired with color images. 4SKST is suitable for the confidence score test because it
contains images from two distinct domains, photos and anime, presented in four different styles. We
computed a confidence score to determine whether the directional CLIP loss is indeed reliable when
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the images for comparison are from the same domain. We conducted the test with three settings
using I 4 (Photo) and I (Anime), along with their corresponding sketch embeddings, S4 and Sp.
We then calculated the feature similarity within the photo domain, anime domain, and across the
two domains. As shown in Tableﬂ], for all four styles, confidence scores from the same domain were
higher than those from different domains. Accordingly, we proposed a sampling scheme, CDST
to train the generator in the same domain at the initial stage of the training, which leads to higher
confidence while widening its capacity in the latter iterations of training.

Table 1: Confidence scores on 4SKST with four different styles.

Similarity Stylel Style2 Style3 Style4 Average
confidence(Anime,Anime) | 104.2608 | 102.8716 | 108.2026 | 101.3530 || 104.1720
confidence(Photo,Photo) | 101.9346 | 98.8005 | 102.4516 | 100.5453 || 100.9330
confidence(Photo,Anime) | 94.5036 | 94.0189 | 98.1867 | 92.3874 | 94.7742

5.3 DATASETS

For training, DiffSketch requires a sketch corresponding to an image generated from SD. To facil-
itate a numerical comparison, we established the ground truth for given images. Specifically, three
distinct styles were employed for quantitative evaluation: 1) HED Xie & Tul(2015b) utilizes nested
edge detection and is one of the most widely used edge detection methods. 2) XDoG [Winnemoller,
et al.| (2012)) takes an algorithmic approach of using a difference of Gaussians to extract sketches.
3) Anim-informative |Chan et al.| (2022) employs informative learning, which is the state-of-the-art
among single modal sketch extraction methods and is trained on the Anime Colorization dataset|Kim
(2018), which consists of 14,224 sketches. For perceptual study, we added hand-drawn sketches of
two more styles. For testing, we employed the test set from the BSDS500 dataset Martin et al.
(2001). As a result, our training set consisted of 3 styles and the test dataset consisted of 600 pairs
(200 pairs for each style) of image-sketch for quantitative evaluation while 5 styles were used for the
perceptual study. Two additional hand-drawn sketches were used only for perceptual study because
there is no ground truth to compare with.

5.4 ABLATION STUDY

We conducted an ablation study on each component of our method compared to the baselines as
shown in Table[2] Experiment were performed to verify the contribution of each component; feature
selections, CDST, losses, and FFD. To perform the ablation study, we randomly sampled 100 im-
ages and extracted sketches with HED, XDog, and Anim-informative and paired them with all 100
images. All seeds were fixed to generate sketches from the same sample.

The ablation study was conducted as follows. For Random features, we randomly selected the
features from denoising timesteps while keeping the number of timesteps equal to ours (13). We
performed this random selection and analysis twice. For one timestep feature, we only used the
features from the final timestep ¢ = 0. To produce a result without CDST, we executed random
text prompt guidance for the diffusion sampling process during training. For the alternative loss
approach, we contrasted L1 Loss with L2 Loss for pixel-level reconstruction, as proposed in MTG.
To evaluate the effect of the FFD, sketches were produced after removing the VAE features.

The evaluation results of the ablation study are shown in Table [2} Ours achieved the highest average
scores for both metrics. Both Random features achieved overall low scores indicating that feature

Table 2: Quantitative results on ablation with LPIPS and SSIM. Best scores are denoted in bold.

Sketch Styles | anim-informative HED XDoG Average
Methods LPIPS SSIM |LPIPS SSIM |LPIPS SSIM [LPIPS SSIM
Ours 0.2054 0.6835 [0.2117 0.5420|0.1137 0.6924|0.1769 0.6393

Random features 1|0.2154 0.6718 |0.2383 0.5137{0.1221 0.6777{0.1919 0.6211
Random features 2 0.2042  0.6869 |0.2260 0.5281{0.1194 0.6783(0.1832 0.6311
One feature 0.2135 0.6791 [0.2251 0.5347|0.1146 0.6962|0.1844 0.6367
W/O CDST 0.2000 0.6880 [0.2156 0.5341{0.1250 0.6691|0.1802 0.6304
W/O L1 0.2993 0.3982 [0.2223 0.5011{0.1203 0.6547|0.2140 0.5180
W/O FFD 0.2650 0.5044 [0.2650 0.4061|0.2510 0.3795|0.2603 0.4300
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Figure 6: Comparison of results pro-
duced with and without using CDST.
CDST was applied in both training
and inference.

W/O CDST

Ours

manually drawn

selection helps obtain rich information. Similarly, using one time step features achieved lower scores
than ours on average, showing the importance of including diverse features. W/O CDST scored
lower than ours on both HED and XDoG styles. W/O L1 and W/O FFD performed the worst due to
lack of fine information from VAE.

Feature Selection We conducted an ablation study to examine if our selected features represent
all features well during the diffusion process. For this, a comparison with two baselines was made,
sampling at equal time intervals (t=[i*4+1 for i in the range of (0,13)]) similar to [Luo et al.[(2023)
and randomly selecting 13 features. We calculated the minimum Euclidean distance from each
feature and confirmed that our method resulted in the minimum distance across 1,000 randomly
sampled images. As illustrated in Table [3] our selected features have the lowest distance in the
feature space, while selecting equally similar to |Luo et al.[(2023) scored the second.

Table 3: Sum of the minimum distances from all features. Our selected features better represent
overall denoising features compared to sampling equally and randomly.

Method Ours | Equal time steps | Random sample
Euclidean Distance (10%) | 18.615 19.005 23.957

Condition Diffusion Sampling for Training While we tested on randomly generated images
(without CDST), to maintain consistency in the test set, CDST should be applied during both the
training of DiffSketch and the inference for training DiffSketchy;sti1.4. Therefore, we conducted
an additional ablation study on CDST, comparing Ours (trained and sampled with CDST), against
W/O CDST (trained and sampled without CDST). The outline of the sketch was clearly reproduced,
following the style, when CDST was used as shown in Fig. [f]

5.5 COMPARISON WITH BASELINES

We initially compared our method with 11 different alternatives, including state-of-the-art sketch ex-
traction methods [Ashtari et al.| (2022); [Seo et al.| (2023)), diffusion based stylization methods [Kwon
& Yel(2023);|Yang et al.| (2023); Zhang et al.|(2023c); (Chung et al.| (2024b)), and conventional style
transfer Huang & Belongie| (2017). However, four of the baselines |Ruiz et al.|(2023); Zhang et al.
(2023b));|Gal et al.|(2022);/Chung et al.|(2024a) failed or had sever artifacts thus presented in Sec. E]
of the Appendix. Among the remaining seven baselines, Ref2sketch |Ashtari et al.| (2022)) and S-
Ref2sketch |Seo et al.| (2023) are methods specifically designed to extract sketches in the style of a
reference by training the network on large sketch data. DiffuselT|Kwon & Ye|(2023)), StyleID Chung
et al.[(2024b)), and InST |Zhang et al.|(2023c) are designed for diffusion based image-to-image trans-
lation by disentangling style and content. AdalN Huang & Belongie| (2017) is conventional style
transfer method, and ZeCon |[Yang et al.| (2023)) is text based stylization method.

Table ] presents the result of quantitative evaluation. Overall, ours achieved the best scores. While
S-Ref2sketch scored the second highest, it relied on a large sketch dataset to train unlike ours that
required only one training data. Fig.[7] presents visual results produced by different methods. While
S-Ref2sketch, Ref2sketch, StyleID, and Adaln generated comparable quality in one or two sources,
they did not faithfully follow the exact style in others. DiffuselT sometimes failed to disentan-
gle style and content, while InST and ZeCon failed to extract sketches following the target style.
DiffSketchg;sti1eq4 generated superior results compared to these baselines, effectively maintaining
its styles and content.

5.6 PERCEPTUAL STUDY

We conducted a user study to evaluate different sketch extraction methods on human perception.
We recruited 21 participants to complete a survey that used test images from five different styles,
to extract sketches. Each participant was presented with a total of 20 sets of source image, target
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Source image

Figure 7: Qualitative comparison with baselines.

Table 4: Quantitative comparison of different methods on the BSDS500 datasets. Best scores are
denoted in bold, and the second-best are underlined.

BSDS500 - anime | BSDS500 - HED | BSDS500 - XDoG | BSDS500 - average
Methods |LPIPS SSIM FID |LPIPS SSIM FID |LPIPS SSIM FID |LPIPS SSIM FID
Ours 0.218 0.493 126.5|0.227 0.593 110.6| 0.143 0.649 62.8 | 0.196 0.578 100.0
Ref2sketch | 0.336 0.469 155.2|0.420 0.315 168.6| 0.571 0.131 274.5| 0.442 0.305 199.4
S-Ref2sketch | 0.239 0.510 99.1 | 0.397 0.342 162.3| 0.505 0.309 192.6| 0.380 0.387 151.3
DiffuseIT | 0.484 0.298 215.2| 0.492 0.191 214.2| 0.573 0.110 215.3| 0.516 0.200 214.9
StyleID 0.375 0.314 211.8|0.405 0.121 198.5| 0.241 0.459 135.4| 0.340 0.298 181.9
AdaIN 0.348 0.411 205.2| 0.392 0.256 200.1| 0.406 0.249 187.7| 0.382 0.305 197.7
InST 0.677 0.180 245.9|0.592 0.129 187.8|0.477 0.294 244.3| 0.582 0.201 226.0
ZeCon 0.702 0.243 254.6|0.619 0.160 253.3|0.494 0.341 262.5| 0.605 0.248 256.8

sketch style, and resulting sketch. Participants were asked to choose one that best follows the given
style while preserving the content of the source image. As shown in Table[5] our method received
the highest scores among all competing methods. Ours outperformed the diffusion-based methods
and even received a higher preference rating than the specialized sketch extraction method that was
trained on a large sketch dataset.

Table 5: Results from the perceptual study performed given a style example and the source image.
The percentages indicate the selection frequency. Ours was the most frequently chosen, with more
than double the selection rate of the second-highest.

Ours ‘ Ref2sketch ‘ S-Ref2sketch ‘ DiffuselT ‘ StylelD ‘ Adaln ‘ InST ‘ ZeCon ‘
4952% | 190% | 1738% | 1.19% | 1548% | 8.10% | 6.43% | 0.0% |

6 LIMITATION AND CONCLUSION

We proposed DiffSketch, a novel method to extract sketches in given styles by training a sketch gen-
erator using representative features. For the first time, we conducted the task of extracting sketches
from the features of a diffusion model and demonstrated that our method outperforms previous state-
of-the-art methods. The ability to extract sketches in input style, trained with one example, will have
various use cases not only for artistic purposes but also for personalizing sketch-to-image retrieval
and sketch-based image editing.

We built our generator network specialized for producing sketches by fusing aggregated features
with the features from a VAE decoder. Consequently, our method works well with diverse sketches
including dense sketches and outlines. However, because our method utilizes features during gener-
ation, it requires the user to draw a sketch, making it impossible to use existing sketch pairs. One
possible future research direction could involve utilizing features from inversion. To help under-
stand future research in this direction, we visualize the features from inversion to show that their
characteristics are similar to the features from generation in Sec.[B.2]of the Appendix.

Although we focused on sketch extraction, our analysis of selecting representative features and
the proposed training scheme are not limited to the domain of sketches. Extracting representative
features holds potential to improve applications leveraging diffusion features, including semantic
segmentation, visual correspondence, and depth estimation. We believe that this research direction
promises to broaden the impact and utility of diffusion feature-based applications.

10
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APPENDIX

This appendix consists of 5 Sections. Sec. [A] describes implementation details. Sec. [B] provides
additional details and findings on diffusion features selection. Sec. |C| presents extended details
of VAE decoder features. Sec. [D]contains the results of additional experiments on CDST. Sec. [E]
presents additional comparison with baselines and additional qualitative results with various style
sketches.

A. IMPLEMENTATION DETAILS

DiffSketch DiffSketch leverages Stable Diffusion v1.4 sampled with DDIM [Song et al.| (2020)
pretrained with the LAION-5B [Schuhmann et al.| (2022) dataset, which produced images of resolu-
tion 512 x 512. With the pretrained Stable Diffusion, we use a total of 50 time steps T for sampling.
The training of DiffSketch was performed for 1200 iterations which required less than 3 hours on
an Nvidia V100 GPU. For the training using HED [Xie & Tu|(2015b), we concatenated the first two
layers with the first three layers to stylize sketch. In case of XDoG |Winnemoller| (2011), we used
the Gary Grossi style.

DiffSketchy;s:iiieq  DiffSketchy;sti11.4 Was developed to conduct sketch extraction efficiently with
the streamlined generator. The training of DiffSketchy;stizeq Was performed for 10 epochs
for 30,000 sketch-image pairs generated from DiffSKetch, following CDST. The training of
DiffSketchy;stiiieq required approximately S hours on two Nvidia A6000 GPUs. The average in-
ference time of both DiffSketch and DiffSketchg;sti11c4 Was 4.74 seconds and 0.0139 seconds, re-
spectively, when tested on an Nvidia AS000 GPU with 1,000 images with resolutions of 512 x 512
using automatic precision.

B. DIFFUSION FEATURES SELECTION

B.1 DETAILS OF DIFFUSION FEATURE SELECTION PROCESS AND ANALYSIS

Average WCSS on randomly sampled 1,000 images
1e8

175

150

125

1 jt
Number of clusters

Figure 8: Visualization of WCSS values according to the number used for K-means clustering. The
left plots are the WCSS values of the features from randomly sampled images while the right plot
shows the average WCSS values of the features from all images.

To conduct K-means clustering for diffusion feature selection, we first employed the elbow method,
visualizing the results. However, a distinct elbow was not visually apparent, as shown in Fig.[8] The
left 6 images are WCSS values from randomly selected images. All 6 plots show similar patterns,
making it hard to select a definitive elbow as stated in the main paper. The right image, which
exhibits similar results, shows the average of WCSS on all 50,000 UNet features from 1,000 different
images.

Therefore, we chose to use the Silhouette score Rousseeuw|(1987) and Davies-Bouldin index | Davies
& Bouldin| (1979)), which are two of the most widely used numerical methods when choosing the
optimal number of clusters. However, they are two different methods, whose results do not always
match with each other. We first visualized and found the contradicting results of these two methods
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as shown in Fig. @ Therefore, we chose to use the one that first matches the i" highest silhouette
score and the i lowest Davies-Bouldin index simultaneously. This process of choosing the optimal
number of clusters can be written as follows :

Algorithm 1 Finding the Optimal Number of Clusters

1: MAX clusters = Total_time_steps/2

2: sil_indicies < sorted(range (M AX _clusters), key = Ak : silhouette_scores|k], reverse =
True)

3: db_indicies < sorted(range (M AX _clusters), key = Ak : db_scoreslk], reverse = False)

4: for i < 0 to M AX _clusters do

5 if sil_indicies[i] in db_indicies[: i 4+ 1] then

6: k_optimal = sil_indicies[i]+1

7¢

8

9

break
end if
: end for

We conducted this process twice with two different numbers of PCA components (10 and 30), yield-
ing the results shown in Fig.[I0] The averages (13.26 and 13.34) and standard deviations (0.69 and
0.69) were calculated. As the mode value with both PCA components was 13, and the rounded
average was also 13, we chose our optimal k to be 13. Using this number of clusters, we chose the
representative feature as the one nearest to the center of each cluster. From this process, we ended
up with the following t values: [0, 3, 8, 12, 16, 21, 25, 28, 32, 35, 39, 43, 47].

~ N ‘ . AN ]

image(a) image() image(c) image(c) image(e)

Figure 9: Visualization of contradicting results of Silhouette scores and Davis Bouldin indices on
five different images.

In the main paper, we identified several key insights through the visualization of features. For fu-
ture research and to provide additional insights, we manually classified images and visualized the
trajectory of features from different classes as shown in Fig. [IT] Here, we summarize extensively
about our findings through feature analysis. First, semantically similar images lead to similar trajec-
tories, although not identical. Second, features in the initial stage of the diffusion process (when t is
approximately 50) retain similar information despite significant differences in the resulting images.
Third, features in the middle stage of the diffusion process (when t is around 25) exhibit larger dif-
ferences between adjacent features in their time steps. Lastly, the feature at the final time step (t=0)
possesses distinctive information, varying significantly from previous values. This is also evident in
the additional visualization presented in Fig. [T}

Histogram of optimal K Histogram of optimal K
with 10 components with 30 components
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500 00 Figure 10:  Visualization of histogram
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200 200 numbers of PCA components.
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Figure 11: Additional analysis on sampled features. PCA is applied to DDIM sampled features
from different classes. Up : features colored with human-labeled classes. Down : features colored
with denoising timesteps

The automatically selected features indicate a prioritization of the final feature (t=0), and the selec-
tion was made more from middle steps than from initial steps (t=[21,25,28] versus t=[43,47]). Our
finding offers some guidance for manual feature selection to consider the time steps, especially when
memory is constrained. The order of the preference is the features from the last step (t=0), from the
middle (t is near 25), and from middle to final time steps while the features from initial steps are
preferred less in general. For instance, when selecting five features from 50 time steps, a possible
selection could be t=[0, 10, 20, 30, 40] instead of using simple equal timesteps (t = [9,18,27,36,45]).
However, for a task of semantic correspondence or segmentation, it is known that features from last
0 to 30% are more informative |Baranchuk et al.| (2021); |Xu et al.| (2023)); Tang et al.|(2023)); Zhang
et al.|(2023a), therefore one possible choice can be [0, 7, 14, 24, 34].

B.2 FEATURES FROM INVERSION, DIFFERENT STEPS, AND MODEL

While we focused on T=50 DDIM sampling, for generalization, we examined different intervals
(T=25, T=100) and different models. For these experiments, we randomly sampled 100 images.
While our previous experiments reported in Fig. [[T] were conducted with manually classified im-
ages, we utilized DINOv2 |Oquab et al.| (2023)), which was trained in a self-supervised manner and
has learned visual semantics. With DINOv2, we separated the data into 15 different clusters and
followed the process described in the main paper to plot the features. Here, we used 15 images from
each cluster to calculate the PCA axis while we used 17 classes in the main experiments. The re-
sults, as shown in Fig. [T3]and Fig.[I4] indicate that even with different sampling methods, the same
conclusions regarding the sampling method can be drawn. The last feature exhibits a distinct value,
while the features from the initial time step have similar values.

In addition, we also tested on features extracted during the inversion process. We randomly selected
20 images from human face Karras et al.|(2019) and cat photos|Choi et al.|(2020) to plot the features
as shown in Fig. [T2] Lastly, we tested on another model, Stable diffusion V2.1 which produces
768x768 images. Following the same process, we randomly sampled 100 images and clustered
with DINOv2 and plot the results as shown in Fig.[T3] This result also shows that even with different
models with different resolutions, the same conclusions can be drawn, showing the scalability of our
analysis.
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Figure 12: Inversion features from
., real images. The features from
.. DDIM inversion also follow a simi-
»  lar trajectory, indicating the possibil-
. ity of being used for our feature ag-
gregation.
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Figure 13: Additional analysis on sampled features. PCA is applied to 25 steps of DDIM sampled
features with different clusters. Up : features colored with DINOv2 clusters. Down : features
colored with denoising timesteps.
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Figure 14: Additional analysis on sampled features. PCA is applied to 100 steps of DDIM sampled
features with different clusters. Up : features colored with DINOv2 clusters. Down : features
colored with denoising timesteps.
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Color by clusters

Color by time steps

Figure 15: Additional analysis on Stable diffusion v2.1 sampled features. PCA is applied to 50
steps of DDIM sampled features with different clusters. Up : features colored with DINOv?2 clusters.
Down : features colored with denoising timesteps.

C. VAE DECODER FEATURES

The VAE features were fused with the Aggregation network features using FFD in the proposed
model architecture to add fine details of the image. Fig.[I6]shows a visualization of the VAE features.
We used a set of 20 generated face images and extracted features from different decoder layers of
the UNet and VAE decoders, at the last time step (t=0) similar to that of PNP
(2023). We observed that the use of VAE decoder resulted in higher-frequency details than the UNet
decoder. While the features from the UNet decoder contain semantic information, the features from
the VAE decoder produced finer details such as hair, wrinkles, and small letters.

(a) UNet decoder
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Figure 16: Extended visualization of features from UNet and VAE. (a) shows the UNet decoder
features in lower resolution (layers 1), intermediate resolution (layers 5), and higher resolution (lay-
ers 11). (b) shows the VAE decoder features in lower resolution (layers 1), intermediate resolution
(layers 6), and higher resolution (layers 9).
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D. CONDITION DIFFUSION SAMPLING FOR TRAINING

D.1 ADDITIONAL DETAILS ON CDST

As stated in the main paper, we randomly sampled 100k prompts to estimate the distribution of
SD. Specifically, we tokenized and embedded these 100k prompts in the space of the CLIP model.
With this embedding, we conducted PCA to extract 512 principal components. We then checked the
normality of the sampled embeddings with all 512 principal component axes using the Shapiro-Wilk
test/Shapiro & Wilk|(1965)) with a significance level of o = 5%.

As aresult, 214 components rejected the null hypothesis of normality. This indicates that each of its
marginals cannot be assumed to be univariate normal. Next, we conducted the Mardia test
with the same 100k samples, taking into account skewness and kurtosis to check if
the distribution is multivariate. The results failed to reject the null hypothesis of normality with a
significance level of o = 5%. Therefore, we assumed Dgp as a multivariate normal distribution for
our sampling during training. In addition, we calculated the Earth Moving Distance (EMD)
with 100k samples from LAION- 400M, which were not used for our analysis.
For comparison, we used the normal distribution for each axis, and the uniform distribution to find
that our N (244.22) is lower than the normal distribution for each axis (244.31) and the uniform
distribution (1480.57).

E. ADDITIONAL EXPERIMENTS

E.1 ADDITIONAL COMPARISON WITH BASELINES

As stated in the main paper, we presented four additional methods that failed to extract sketches
following the desired style or exhibited severe artifacts. As shown in Figure [I7] few-shot finetuning
methods [Ruiz et al. (2023); [Gal et al.| (2022) were unable to extract sketches when trained with a
single example. The results of ControlNet Zhang et al,| (2023b) showed severe artifacts because
the method was originally proposed to be trained with thousands of images. Diffstyle
, on the other hand, failed to preserve the content of source image. We also calculated LPIPS,
SSIM, and FID scores, as in our main experiments, and as noted in Tab. |§L our method achieved the
highest scores across all metrics.

Source image Target Ours DiffStyle DreamBooth Textural Inversion ControlNet

Figure 17: Experiment results on comparison with four additional baselines.

E.2 EXAMPLES IN EXPERIMENTS

We presented quantitative results and visual comparison with and without using CDST for the abla-
tion study described in the main paper. Here, we visualize additional results of the study in Fig. [T§]
For a perceptual study, a total of 23 participants were asked to make 20 different comparisons and
determine which sketch style appeared most similar to the target sketch. Examples of our perceptual
study is provided in Fig.[T9]and Fig.[20]
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Table 6: Quantitative comparison of different methods on the BSDS500 datasets. Best scores are
denoted in bold, and the second-best are underlined.

BSDS500 - anime BSDS500 - HED BSDS500 - XDoG | BSDS500 - average
Methods |LPIPS SSIM FID |LPIPS SSIM FID |LPIPS SSIM FID |LPIPS SSIM FID

Ours 0.218 0.493 126.5| 0.227 0.593 110.6| 0.143 0.649 62.8 | 0.196 0.578 100.0
DiffStyle | 0.542 0.361 206.7| 0.572 0.124 422.2| 0.676 0.069 317.6| 0.597 0.185 315.5
DreamBooth | 0.806 0.302 233.5| 0.746 0.185 277.8| 0.723 0.195 276.1| 0.758 0.227 262.5

TI 0.828 0.264 284.2| 0.771 0.164 313.1| 0.647 0.220 237.4| 0.749 0.216 2782
ControlNet | 0.901 0.021 303.3| 0.699 0.028 328.7| 0.627 0.031 278.7| 0.742 0.027 303.6
N ive N i One timestep FFD W/O

features 2 features (t=0) W/O CDST VAE features

b

Target

Figure 18: Visual examples of the ablation study. Ours generates higher quality results with details
such as face, separated with hair region, compared to the alternatives.

E.3 QUALITATIVE RESULTS

We present additional results of our method extracted in diverse styles which share the source image,
in Fig. 2T]and those of the comparison with baselines in Fig.[22] The additional comparison results
further confirm that DiffSketch;sti11.q4 €Xtract superior results compared to the baseline methods.

Content

Figure 19: Example results of perceptual study. Participants were asked to choose one sketch image
that has a style most similar to the style image while preserving the content of the content image
faithfully. (c) is ours.
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Figure 20: Example results of perceptual study. Participants were asked to choose one sketch image
that has a style most similar to the style image while preserving the content of the content image
faithfully. (b) is ours.

Figure 21: Additional results of Diffsketch;s¢iieq from shared sources.



Under review as a conference paper at ICLR 2025

Anime-
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Figure 22: Qualitative comparison with alternative sketch extraction methods on the BSDS500
dataset.
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