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ABSTRACT

We develop variational search distributions (VSD), a method for conditioning a
generative model of discrete, combinatorial designs on a rare desired class by
efficiently evaluating a black-box (e.g. experiment, simulation) in a batch sequen-
tial manner. We call this task active generation; we formalize active generation’s
requirements and desiderata, and formulate a solution via variational inference.
VSD uses off-the-shelf gradient based optimization routines, can learn powerful
generative models for desirable designs, and can take advantage of scalable predic-
tive models. We derive asymptotic convergence rates for learning the true condi-
tional generative distribution of designs with certain configurations of our method.
After illustrating the generative model on images, we empirically demonstrate that
VSD can outperform existing baseline methods on a set of real sequence-design
problems in various protein and DNA/RNA engineering tasks.

1 INTRODUCTION

We consider a variant of the active search problem (Garnett et al., 2012; Jiang et al., 2017; Vanchi-
nathan et al., 2015), where we wish to find members (designs) of a rare desired class in a batch
sequential manner with a fixed black-box evaluation (e.g. experiment) budget. We call sequential
active learning of a generative model of these designs active generation. Examples of rare designs
are compounds that could be useful pharmaceutical drugs, or highly active enzymes for catalyzing
chemical reactions. We assume the design space is discrete or partially discrete, high-dimensional
and practically innumerable. For example, the number of possible configurations of a single protein
is 20O(100) (see, e.g., Sarkisyan et al., 2016). Learning a generative model of these designs allows
us to circumvent the need for traversing the whole search space.

We are interested in this active generation objective for a variety of reasons. We may wish to study
the properties of the “fitness landscape” (Papkou et al., 2023) to gain a better scientific understanding
of a phenomenon such as natural evolution. Or, we may not be able to completely specify the
constraints and objectives of a task, but we would like to characterize the space of, and generate new
feasible designs. For example, we want enzymes that can degrade plastics in an industrial setting,
but we may not yet know the exact conditions (e.g. temperature, pH), some of which may be anti-
correlated with enzyme catalytic activity. Alternatively, if we know these multiple objectives and
constraints, we may only want to generate designs from a Pareto set.

Assuming we can take advantage of a prior distribution over designs, we formulate the search prob-
lem as inferring the posterior distribution over rare, desirable designs. Importantly, this posterior can
be used for generating new designs. Specifically, we use (black-box) variational inference (VI) (Ran-
ganath et al., 2014), and so refer to our method as variational search distributions (VSD). Our major
contributions are: (1) we formulate the batch active generation objective over a (practically) innu-
merable discrete design space, (2) we present a variational inference algorithm, VSD, which solves
this objective, (3) we show that VSD performs well theoretically and empirically, and (4) we connect
active generation to other recent advances in black-box optimization (BBO) of discrete sequences
that use generative models. VSD uses off-the-shelf gradient based optimization routines, is able to
learn powerful generative models, and can take advantage of scalable predictive models. In our ex-
periments we show that VSD can outperform existing baseline methods on a set of real applications.
Finally, we evaluate our approach on the related sequential BBO problem, where we want to find the
globally optimal design for a specific objective and show competitive performance when compared
with state-of-the-art methods, e.g., based on latent space optimization (LSO) (Gruver et al., 2023).
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2 METHOD

In this section we formalize our problem and describe its requirements and desiderata. We also
develop our proposed solution, based on variational inference, which we will refer to as variational
search distributions (VSD).

2.1 THE PROBLEM OF ACTIVE GENERATION

We are given a design space X , which can be discrete or mixed discrete-continuous and high dimen-
sional, and where for each instance that we choose x ∈ X , we measure some corresponding property
of interest (so-called fitness) y ∈ R. For example, in our motivating application of DNA/RNA or
protein sequences, X = VM , where V is the sequence vocabulary (e.g., amino acid labels, |V| = 20)
and M is the length of the sequence. However, we do not limit the application of our method to se-
quences. Using this framing, a real world experiment (e.g., measuring the activity of an enzyme)
can be modeled as an unknown relationship,

y = f�(x) + ϵ, (1)

for some black-box function (the experiment), f�, and measurement error ϵ ∈ R, distributed accord-
ing to p(ϵ) with Ep(ϵ)[ϵ] = 0. Instead of modeling the whole space, X , we are only interested in
a set of events which we choose based on fitness, S ⊂ X . In particular for active generation we
wish to learn a generative model, q(x), that only returns samples x(s) ∈ S by efficiently query-
ing the black-box function in Equation 1. We assume that S are rare events in a high dimensional
space, and that we have access to a prior belief, p(x), which helps narrow in on this subset of X .
We are given an initial dataset, DN := {(yn,xn)}Nn=1, which may contain only a few instances
of xn ∈ S. Given p(x) and DN we aim to generate batches of unique candidates, {xbt}Bb=1, for
black-box (experimental) evaluation in a series of rounds, t ∈ {1, . . . , T}, where B = O(1000)
and we desire xbt ∈ S. After each round DN is augmented with the black-box results of the batch,
i.e. DN ← DN ∪ {(xbt, ybt)}Bb=1. As we shall see later, our solution allows us to satisfy the follow-
ing requirements and additional desiderata for active generation.

Requirements & Desiderata. Active generation requirements (R) and other desiderata (D).

(R1) Rare feasible designs, S, are rare events in X
that need to be identified

(R2) Sequential non-myopic candidate generation,
x ∈ S, for sequential black-box evaluation

(R3) Discrete search over (combinatorially) large
design spaces, e.g. x ∈ X = VM

(R4) Batch generation of up to O(1000) diverse can-
didate designs per round

(R5) Generative models, x(s) ∼ q(x), that are task-
specific for rare, feasible designs

(D1) Guaranteed convergence for certain choices of
priors, variational distributions and predic-
tive models

(D2) Gradient based optimization strategies for can-
didate searching

(D3) Scalable predictive models that enable high-
throughput evaluation/experiments.

Like active search (Garnett et al., 2012) in our case we are interested in the solution space of the super
level-set, SSLS := {x : f�(x) > τ} for a threshold τ ∈ R (e.g., wild-type fitness). As we only have
access to noisy measurements, y, our task is to estimate the super level-set distribution, p(x|y > τ),
using active generation. Estimating this distribution over SSLS is computationally and statistically
challenging and, therefore, we cast this as a variational inference problem. We also consider the
case of BBO for which SBBO := argmaxx f�(x), and we show that we can accommodate this in our
variational framework by iteratively raising τt per round, t. We visualize the properties and models
involved in active generation as applied to a continuous “fitness landscape” in Figure 1.

2.2 VARIATIONAL SEARCH DISTRIBUTIONS

We cast the estimation of p(x|y > τ) as a sequential optimization problem. A suitable objective for
a round, t, is to minimize a divergence,

ϕ∗
t = argmin

ϕ
D[p(x|y > τ)∥q(x|ϕ)] (2)
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(a) argmaxx f�(x) (b) {x : f�(x) > τ} (c) p(x) (d) p(x|y > τ)

Figure 1: Fitness landscape properties and models. (a) A noise-less fitness landscape, f�(x), and the
maximum fitness design, SBBO = {x∗}, as the white ‘×’. (b) The super level-set, SSLS, of all fit
designs as the white hatched area. (c) Prior belief p(x). (d) The density/mass function of the super
level-set, p(x|y > τ), as blue contours. Our goal is to sequentially estimate a generative model for
the distribution of the super level-set (d). We assume a noisy relationship between f� and y, so the
super level-set will not have a hard boundary, and p(x|y > τ) will be defined over all X .

where q(x|ϕ) is a parameterized distribution from which we sample candidate designs xbt, (R5),
and which we aim to match to p(x|y > τ). The difficulty is that we cannot directly evaluate or
empirically sample from p(x|y > τ). However, if we consider the reverse Kullback-Leibler (KL)
divergence,

argmin
ϕ

DKL[q(x|ϕ)∥p(x|y > τ)] = argmin
ϕ

Eq(x|ϕ)

[
log

q(x|ϕ)
p(x)

− log p(y > τ |x)
]
, (3)

where we have expanded p(x|y > τ) using Bayes rule and dropped the constant term p(y > τ), we
note that we no longer require evaluation of p(x|y > τ) directly. We recognize the right-hand side
of Equation 3 as the well known (negative) variational evidence lower bound (ELBO),

LELBO(ϕ) := Eq(x|ϕ)[log p(y > τ |x)]− DKL[q(x|ϕ)∥p(x)] . (4)

For this we assume access to a prior distribution over the space of designs, p(x), that may be in-
formed from the data at hand (or pre-trained). Henceforth, as we will develop a sequential algorithm,
we will denote this prior as p(x|D0). We note the relationship between log p(y > τ |x) and the prob-
ability of improvement (PI) acquisition function from Bayesian optimization (BO) (Kushner, 1964),

log p(y > τ |x) ≈ log p(y > τ |x,DN ) = logEp(y|x,DN )[1[y > τ ]] = logαPI(x,DN , τ) . (5)

Here 1 : {false, true} → {0, 1} is the indicator function and p(y|x,DN ) is typically esti-
mated using the posterior predictive distribution of a Gaussian process (GP) given data, DN . So
p(y > τ |x,DN ) = Ψ((µN (x)− τ)/σN (x)), where Ψ(·) is a cumulative standard normal distribu-
tion function, and µN (x), σ2

N (x) are the posterior predictive mean and variance, respectively, of the
GP. We refer to this estimation strategy as GP-PI, and rewrite the ELBO accordingly,

LELBO(ϕ, τ,DN ) = Eq(x|ϕ)[logαPI(x,DN , τ)]− DKL[q(x|ϕ)∥p(x|D0)] . (6)
We refer to the method that maximizes the objective in Equation 6 as variational search distributions
(VSD), since we are using the variational posterior distribution as a means of searching the space of
fit designs, satisfying (R1), (R2) and (R4). It is well known that when the true posterior is a member
of the variational family indexed by ϕ, the above variational inference procedure has the potential
to recover the exact posterior distribution. To recommend candidates for black-box evaluation we
sample a set of designs from our search distribution each round,

{xbt}Bb=1 ∼
B∏

b=1

q(x|ϕ∗
t ), where ϕ∗

t = argmax
ϕ

LELBO(ϕ, τ,DN ) . (7)

We discuss the relationship between VSD and BO in Appendix G. In general, because of the dis-
crete combinatorial nature of our problem, we cannot use the re-parameterization trick (Kingma
& Welling, 2014) to estimate the gradients of the ELBO straightforwardly. Instead, we use the
score function gradient, also known as REINFORCE (Williams, 1992; Mohamed et al., 2020) with
standard gradient descent methods (D2) such as Adam (Kingma & Ba, 2014),
∇ϕLELBO(ϕ, τ,DN ) = Eq(x|ϕ)[(logαPI(x,DN , τ)− log q(x|ϕ) + log p(x|D0))∇ϕ log q(x|ϕ)] .

(8)
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Here we use Monte-Carlo sampling to approximate the expectation with a suitable variance re-
duction scheme, such as control variates (Mohamed et al., 2020). We find that the exponentially
smoothed average of the ELBO works well in practice, and is the same strategy employed in Daulton
et al. (2022). VSD implements black-box variational inference (Ranganath et al., 2014) for parame-
ter estimation, and despite the high-dimensional nature ofX , we find we only needO(1000) samples
to estimate the required expectations for ELBO optimization on problems with M = O(100), satis-
fying (R3). Note that Equation 6 – 8 do not involve any data (DN ) directly, only indirectly through
the acquisition function. Hence the scalability of VSD is dependent on the complexity of training
the underlying estimator of p(y|x,DN ).

2.3 CLASS PROBABILITY ESTIMATION

So far our method indirectly computes PI by transforming the predictions of a GP surrogate model,
p(y|x,DN ), as in Equation 5. Instead we may choose to follow the reasoning used by Bayesian
optimization by density-ratio estimation (BORE) in Tiao et al. (2021); Oliveira et al. (2022); Song
et al. (2022), and directly estimate the quantity we care about, p(y > τ |x,DN ). This can be ac-
complished using class probability estimation (CPE) on the labels z := 1[y > τ ] ∈ {0, 1} so
p(y > τ |x,DN ) = p(z = 1|x,DN ) ≈ πθ(x), where πθ : X → [0, 1]. We can estimate the class
probabilities using a proper scoring rule (Gneiting & Raftery, 2007) such as log-loss,

LCPE(θ,Dz
N ) := − 1

N

∑N

n=1
zn log πθ(xn) + (1− zn) log(1− πθ(xn)), (9)

where Dz
N = {(zn,xn)}Nn=1. The VSD objective and gradient estimator using CPE then become,
LELBO(ϕ, θ) = Eq(x|ϕ)[log πθ(x)]− DKL[q(x|ϕ)∥p(x|D0)] , (10)

∇ϕLELBO(ϕ, θ) = Eq(x|ϕ)[(log πθ(x)− log q(x|ϕ) + log p(x|D0))∇ϕ log q(x|ϕ)] . (11)
into which we plug θ∗t = argminθ LCPE(θ,Dz

N ). We refer to this strategy as CPE-PI. Using a CPE
enables the use of more scalable estimators than GP-PI, satisfying our desideratum (D3). This is
crucial if we choose to run more than a few rounds of experiments with B = O(1000). Since VSD
is a black-box method we may choose to use CPEs that are non-differentiable, such as decision tree
ensembles. The complete VSD algorithm is given in Algorithm 1 and depicted in Figure B.1. We
have allowed for a threshold function, τt = fτ ({y : y ∈ DN}, γt), that can be used to modify the
threshold each round. For example, an empirical quantile function τt = Q̂y(γt) where γt ∈ (0, 1)
as in Tiao et al. (2021). Or a constant τ for estimating a constant distribution of the super level-set.

Algorithm 1 VSD optimization loop with CPE-PI.

Require: Threshold function fτ and γ1, dataset DN , black-box f�, prior p(x|D0), CPE πθ(x),
variational family q(x|ϕ), budget T and B.

1: function FITMODELS(DN , τ )
2: Dz

N ← {(zn,xn)}Nn=1, where zn = 1[yn > τ ]
3: θ∗ ← argminθ LCPE(θ,Dz

N )
4: ϕ∗ ← argmaxϕ LELBO(ϕ, θ

∗)
5: return ϕ∗, θ∗

6: for round t ∈ {1, . . . , T} do
7: τt← fτ ({y : y ∈ DN}, γt)
8: ϕ∗

t , θ
∗
t ← FITMODELS(DN , τt)

9: {xbt}Bb=1← q(x|ϕ∗
t )

10: {ybt}Bb=1← {f�(xbt) + ϵbt}Bb=1

11: DN ←DN ∪ {(xbt, ybt)}Bb=1

12: τ∗← fτ ({y : y ∈ DN}, γ∗)
13: ϕ∗, θ∗ ← FITMODELS(DN , τ∗)
14: return ϕ∗, θ∗

2.4 THEORETICAL ANALYSIS

We show that VSD sampling distributions converge to a target distribution that characterizes the level
set given by τ , satisfying (D1) in two general settings. We first derive results assuming f� is drawn
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from a Gaussian process, i.e., f� ∼ GP(0, k), with a positive-semidefinite covariance (or kernel)
function k : X × X → R (Appendix E), using GP-PI as the CPE for VSD. These results are then
extended to probabilistic classifiers based on wide neural networks (NNs) (Appendix F) by means
of the neural tangent kernel (NTK) for the given architecture (Jacot et al., 2018). For the analysis,
we set B = 1 and N = t, though having B > 1 should improve the rates by a multiplicative factor.
Theorem 2.1. Under mild assumptions (E.1 to E.5), the variational distribution of VSD equipped
with GP-PI converges to the level-set distribution in probability at the following rate:

DKL[p(x|y > τt,Dt)∥p(x|y > τt, f�)] ∈ OP(t
−1/2) . (12)

This result is based on showing that the GP posterior variance vanishes at an optimal rate ofO(t−1)
in our setting (Lemma E.5). We also analyze the rate at which VSD finds feasible designs, or “hits”,
compared to an oracle with full knowledge of f�. After T rounds, the number of hits found by VSD
is HT =

∑T
t=1 1[yt > τt−1], where yt follows Equation 1 and xt ∼ p(x|y > τt−1,Dt−1). The

number of hits, H∗
T , from an agent that fully knows f� is the same but for generating conditioned on

f� with xt ∼ p(x|y > τt−1, f�). Using this definition and Theorem 2.1, we prove the following.
Corollary 2.1. Under the settings in Theorem 2.1, we also have that:

E[|HT −H∗
T |] ∈ O(

√
T ) . (13)

E[HT ] is related to the empirical recall measure (18) up to the normalization constant, but it does
not account for repeated hits, which are treated as false discoveries (false positives) under recall.
Lastly, for NN-based CPEs, we obtain convergence rates dependent on the spectrum of the NTK
(Proposition F.2), which we instantiate for infinitely wide ReLU networks below. For the full results
and proofs, please see Appendix E for the GP-based analysis and Appendix F for the NTK results.
Corollary 2.2. Let πθ be modeled via a fully connected ReLU network. Then, under assumptions
on identifiability and sampling (F.1 to F.6), in the infinite-width limit, VSD with CPE-PI achieves:

DKL[p(x|y > τt,Dt)∥p(x|y > τt, f�)] ∈ ÕP

(
t−

1
2(M+1)

)
. (14)

This result finally indicates that, when equipped with flexible NN-based CPEs, VSD is also capable
of recovering the target distribution for arbitrary sequence lengths in combinatorial problems.

3 RELATED WORK

We will consider related work firstly in terms of methods that have similar components to VSD, then
secondly in terms of related problems to our specification of active generation. VSD can be viewed
as one of many methods that makes use of the variational bound (Staines & Barber, 2013),

max
x

f�(x) ≥ max
ϕ

Eq(x|ϕ)[f�(x)] . (15)

The maximum is always greater than or equal to the expected value of a random variable. This
bound is useful for black-box optimization (BBO) of f�, and becomes tight if q(x|ϕ) → δ(x∗).
See Appendix G for more detail and VSD’s relation to BO. Other well known methods that make
use of this bound are natural evolution strategies (NES) (Wierstra et al., 2014), variational opti-
mization (VO) (Staines & Barber, 2013; Bird et al., 2018), estimation of distribution algorithms
(EDA) (Larrañaga & Lozano, 2001; Brookes et al., 2020), and Bayesian optimization with proba-
bilistic reparametrization (BOPR) (Daulton et al., 2022). For learning the parameters of the vari-
ational distribution, ϕ, they variously make use of maximum likelihood estimation or the score
function gradient estimator (REINFORCE) (Williams, 1992). Algorithms that explicitly modify
Equation 15 to stop the collapse of q(x|ϕ) to a point mass for batch design include design by
adaptive sampling (DbAS) (Brookes & Listgarten, 2018) and conditioning by adaptive sampling
(CbAS) (Brookes et al., 2019). They use fixed samples x(s) from q(x|ϕ∗

t−1) for approximating the
expectation, and then optimize ϕ using a weighted maximum-likelihood or variational style proce-
dure. Though DbAS and CbAS were formulated for offline (non-sequential) tasks, they have often
been used in a sequential setting (Ren et al., 2022). We can take a unifying view of algorithms that
use a surrogate model for f� by recognizing the general gradient estimator,

Eq(x|ϕ′)[w(x)∇ϕ log q(x|ϕ)] . (16)
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Method w(x) ϕ′ Fixed x(s) ∼ q(x|ϕ′) per round?
VSD log πθ∗(x) + log p(x|D0)− log q(x|ϕ) ϕ No (REINFORCE)

CbAS πθ∗(x)p(x|D0)/q(x|ϕ∗
t−1) ϕ∗

t−1 Yes (importance Monte Carlo)
DbAS πθ∗(x) ϕ∗

t−1 Yes (Monte Carlo)
BORE∗ πθ∗(x) ϕ No (REINFORCE)

BOPR α(x,DN ) ϕ No (REINFORCE)

Table 1: How related methods can be adapted from Equation 16. VSD, CbAS and DbAS may also
use a cumulative distribution representation of αPI(x,DN , τ) in place of πθ∗(x).

where we give each component in Table 1. For our experiments BORE has been adapted to discrete
X by using the score function gradient estimator, which we denote by BORE∗, while CbAS and
DbAS have been adapted to use a CPE – their original derivations use a PI acquisition function.

A number of finite horizon methods have been applied to biological sequence BBO tasks, such as
Amortized BO (Swersky et al., 2020), GFlowNets (Jain et al., 2022), and the reinforcement learning
based DynaPPO (Angermueller et al., 2019). LSO-like methods (Gómez-Bombarelli et al., 2018;
Tripp et al., 2020; Stanton et al., 2022; Gruver et al., 2023) tackle optimization of sequences by
encoding them into a continuous latent space within which candidate optimization or generation
takes place. Selected candidates are decoded back into sequences before black box evaluation; see
González-Duque et al. (2024) for a comprehensive survey. VSD does not require a latent space
nor an encoder, and as such can be seen as an amortized variant of probabilistic reparameterisation
methods (Daulton et al., 2022) or continuous relaxations (Michael et al., 2024). Heuristic stochastic
search methods such as AdaLead (Sinai et al., 2020) and proximal exploration (PEX) (Ren et al.,
2022) have also demonstrated strong empirical performance on these tasks. We compare the prop-
erties of the most relevant methods to our problem in Table 2.

In contrast to just finding the maximum using BBO, active generation considers another problem
– generating samples from a rare set of feasible solutions. Generation methods that estimate the
super level-set distribution, p(x|y > τ), include CbAS, which optimizes the forward KL divergence,
DKL[p(x|y > τ)∥q(x|ϕ)] using importance weighted cross entropy estimation (Rubinstein, 1999).
Batch-BORE (Oliveira et al., 2022) also optimizes the reverse KL divergence and uses CPE, but
with Stein variational inference (Liu & Wang, 2016) for diverse batch candidates (with a continuous
relaxation for discrete variables). There is a rich literature on the related task of active learning and
BO for level set estimation (LSE) (Bryan et al., 2005; Gotovos et al., 2013; Bogunovic et al., 2016;
Zhang et al., 2023a). However, we focus on learning a generative model of a discrete space.

For active generation VSD, CbAS and DbAS all use an acquisition function defined in the original
domain, X , to weight gradients (see Equation 16) for learning a conditional generative model, from
which xbt are sampled. An alternative is to use guided generation, that is to train an unconditional
generative model, and then have a discriminative model guide (condition) the samples from the
unconditional model at test time. This plug-and-play of a discriminative model has shown promise
for controlled image and text generation of pre-trained models (Nguyen et al., 2017; Dathathri et al.,
2020; Li et al., 2022; Zhang et al., 2023b). LaMBO (Stanton et al., 2022) and LaMBO-2 (Gruver
et al., 2023) take a guided generation approach to solve the active generation problem. LaMBO
uses an (unconditional) masked language model auto-encoder, and then optimizes sampling from its
latent space using an acquisition function as a guide. LaMBO-2 takes a similar approach, but uses a
diffusion process as the unconditional model, and modifies a Langevin sampling de-noising process
with an acquisition function guide.

4 EXPERIMENTS

Firstly we test our method, VSD, on its ability to generate complex, structured designs, x, in a single
round by training it to generate a subset of handwritten digits from flattened MNIST images (LeCun
et al., 1998) in Sec. 4.1. We then compare VSD on two sequence design tasks against existing
baseline methods. The first of these tasks (Sec. 4.2) is to generate as many unique, fit sequences as
possible using the datasets DHFR (Papkou et al., 2023), TrpB (Johnston et al., 2024) and TFBIND8
(Barrera et al., 2016). These datasets contain near complete evaluations of X , and to our knowledge
DHFR and TrpB are novel in the machine learning literature. The second (Sec. 4.3) is a more
traditional black-box optimization task of finding the maximum of an unknown function; using
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Method Rare x
∈ S (R1)

Sequential (R2)

Discrete X
(R3)

Batch {x
bt
}Bb=1

(R4)

Generative q(
x|ϕ

) (R5)

Guaranteed (D1)

Gradient descent (D2)

Scalable (D3)

General acq./rew
ard fn.

Amortiz
ation

BOPR (Daulton et al., 2022) ✗ ✓ ✓ ✗ – ✓ ✓ ✗ ✓ –
BORE (Tiao et al., 2021) ✗ ✓ – ✗ – ✓ ✓ ✓ ✗ –

Batch BORE (Oliveira et al., 2022) ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓
DbAS (Brookes & Listgarten, 2018) ✓ – ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓

CbAS (Brookes et al., 2019) ✓ – ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓
Amortized BO (Swersky et al., 2020) ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

GFlowNets (Jain et al., 2022) ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓
DynaPPO (Angermueller et al., 2019) ✗ ✓ ✓ ✓ ✓ ✗ ✓ – ✓ ✓

AdaLead (Sinai et al., 2020) ✗ ✓ ✓ ✓ ✗ ✗ ✗ – ✗ ✗
PEX (Ren et al., 2022) ✗ ✓ ✓ ✓ ✗ ✗ ✗ – ✗ ✗

GGS (Kirjner et al., 2024) ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
LSO e.g. (Tripp et al., 2020) ✗ ✓ ✓ ✗ ✓ ✗ ✓ – ✓ –

LaMBO (Stanton et al., 2022) ✓ ✓ ✓ ✓ ✓ ✗ ✓ – ✓ ✓
LaMBO-2 (Gruver et al., 2023) ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

VSD (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

Table 2: Feature table of competing methods: ✓ has feature, ✗ does not have feature, – partially has
feature, or requires only simple modification. We follow Swersky et al. (2020) in their definition of
amortization referring to the ability to use q(x|ϕ∗

t−1) for warm-starting the optimization of ϕt.

datasets AAV (Bryant et al., 2021), GFP (Sarkisyan et al., 2016) and the biologically inspired Ehrlich
functions (Stanton et al., 2024). The corresponding datasets involve |V| ∈ {4, 20}, 4 ≤ M ≤ 237
and 65, 000 < |X | < 20237. We discuss the settings and properties of these datasets in greater
detail in Appendix C. For the biological sequence experiments we run a predetermined number of
experimental rounds, T = 10 or 32 for the Ehrlich functions. We set the batch size to B = 128, and
use five different seeds for random initialization. We compare against DbAS (Brookes & Listgarten,
2018), CbAS (Brookes et al., 2019), AdaLead (Sinai et al., 2020), and PEX (Ren et al., 2022) – all
of which we have adapted to use a CPE, BORE (Tiao et al., 2021) – which we have adapted to use
the score function gradient estimator, and a naı̈ve baseline that uses random samples from the prior,
p(x|D0). To reduce confounding, all methods share the same surrogate model, acquisition functions,
priors and variational distributions where possible. We compare against LaMBO-2 (Gruver et al.,
2023) on the Ehrlich functions, it uses its own surrogate and generative models.

4.1 CONDITIONAL GENERATION OF HANDWRITTEN DIGITS

Our motivating application for VSD is to model the space of fit DNA and protein sequences, which
are string-representations of complex 3-dimensional structures. In this experiment we aim to demon-
strate, by analogy, that VSD can generate sequences that represent 2-dimensional structures. For
this task, we have chosen to ‘unroll’ (reverse the order of every odd row, and flatten) down-scaled
(14 × 14 pixel, 8-bit) MNIST (LeCun et al., 1998) images into sequences, x, where M = 196 and
|V| = 8. We then train long short-term memory (LSTM) recurrent neural network (RNN) and
decoder-only causal transformer generative models on the entire MNIST training set by maximum
likelihood (ML). These generative distributions are used as the prior models, p(x|D0), for VSD and
we detail their form in Appendix C.3. The task is then to use VSD in one round to estimate the pos-

(a) LSTM Prior (b) Transformer Prior (c) LSTM Posterior (d) Transformer Posterior

Figure 2: (a) and (b) are samples from the LSTM and transformer priors, respectively. (c) and (d)
show samples from the LSTM and transformer VSD variational distributions respectively. We also
report the samples mean scores according to the CPE probabilities.
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terior p(x|y ∈ {3, 5}) using a CPE trained on labels zn = 1[yn ∈ {3, 5}]. We use a convolutional
architecture for the CPE given in Appendix C.4, and it achieves a test balanced accuracy score of
∼ 99%. We parameterize the variational distributions, q(x|ϕ), in the same way as the priors, and
initialize these distribution parameters from the prior distribution parameters. During training with
ELBO the prior distribution parameters are locked, and we run training for 5000 iterations. This is
exactly lines 8 and 9 in Algorithm 1. Samples are visualized from the resulting variational distri-
butions with the corresponding priors in Figure 2. We see that the prior LSTM and transformer are
able to generate convincing digits once the sampled sequences are ‘re-rolled’, and that VSD is able
to effectively refine these distributions, even though it does not have access to any data directly –
only scores from the CPE. Both the LSTM and transformer yield qualitatively similar results, and
have similar mean scores from the CPE.

4.2 FITNESS LANDSCAPES

In this setting we wish to find fit sequences x ∈ SSLS, so we fix τ over all rounds. We only consider
the combinatorially (near) complete datasets to avoid any pathological behavior from relying on
machine learning oracles (Surana et al., 2024). Results are presented in Figure 3. The primary
measures by which we compare methods are precision, recall and performance,

Precisiont =
1

min{tB, |S|}

t∑
r=1

B∑
b=1

1[ybr > τ ] · 1[xbr /∈ X q
b−1,r], (17)

Recallt =
1

min{TB, |S|}

t∑
r=1

B∑
b=1

1[ybr > τ ] · 1[xbr /∈ X q
b−1,r], (18)

Performancet =
t∑

r=1

B∑
b=1

ybr · 1[xbr /∈ X q
b−1,r]. (19)

Here X q
br ⊂ X is the set of experimentally queried sequences by the bth batch member of the

rth round, including the initial training set. These measures are comparable among probabilistic
and non probabilistic methods. Precision and recall measure the ability of a method to efficiently
explore S, where min{tB, |S|} is the size of the selected set at round t (bounded by the number of
good solutions), and min{TB, |S|} is the number of positive elements possible in the experimental
budget. Performance measures the cumulative fitness of the unique batch members, but unlike Jain
et al. (2022) we do not normalize this measure.

For exact experimental settings we refer the reader to Appendix C.1. We set τ to be that of the
wild-type sequences in the DHFR and TrpB datasets, and use τ = 0.75 for TFBIND8. We find
that a uniform prior over sequences, and a mean field variational distribution (Equation 22) are
adequate for these experiments, as is a simple MLP for the CPE. Results are presented in Figure 3.
VSD is the best performing method by most of the measures. We have found the AdaLead and PEX
evolutionary-search based methods to be effective on lower-dimensional problems (TFBIND8 being
the lowest here), however we consistently observe their performance degrading as the dimension of
the problem increases. We suspect this is a direct consequence of their random mutation strategies
being suited to exploration in low dimensions, but less efficient in higher dimensions compared
to the learned generative models employed by VSD, CbAS, and DbAS. Our modified version of
BORE (which is just the expected log-likelihood component of Equation 10) performs badly in all
cases, and this is a direct consequence of its variational distribution collapsing to a point mass. In a
non-batch setting this behavior is not problematic, but shows the importance of the KL divergence of
VSD in this batch setting. We replicate these experiments in Appendix D.1 using GP-PI, also backed
by our guarantees. In all cases VSD’s results remain similar or improve slightly, whereas the other
methods results remain similar or degrade. We report on batch diversity scores in Appendix D.3.

4.3 BLACK-BOX OPTIMIZATION

In this experiment we use VSD on the related task of BBO for finding SBBO. We set τt adaptively
by specifying it as an empirical quantile Q̃t

y of the observed target values at round t,

τt = Q̃t
y(γt=pηt−1) (20)
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(a) DHFR (b) TrpB (c) TFBIND8

Figure 3: Fitness landscape results. Precision (Equation 17), recall (Equation 18) and performance
(Equation 19) – higher is better – for the combinatorially (near) complete datasets, DHFR, TrpB and
TFBIND8. The random method is implemented by drawing B samples uniformly.

where pt−1 is a percentile from the previous round, and η ∈ [0, 1] is an annealing parameter for
τt that trades off exploration and exploitation. Performance is measured by simple regret rt, which
quantifies the fitness gap between the globally optimal design and the best design found,

rt = y∗ −max
y
{ybi}B,t

b=1,i=1. (21)

Here y∗ is the fitness value of the globally optimal sequence x∗. We use the higher dimensional
AAV (y∗=19.54), GFP (y∗=4.12) and Ehrlich functions (y∗=1) datasets/benchmarks to show that
VSD can scale to higher dimensional problems. X of AAV and GFP is completely intractable to fully
explore experimentally, and so we use a predictive oracle trained on all the original experimental data
as the ground-truth black-box function. We use the CNN-based oracles from Kirjner et al. (2024) for
these experiments. However, we note here that some oracles used in these experiments do not predict
well out-of-distribution (Surana et al., 2024), which limits their real-world applicability. The Ehrlich
functions (Stanton et al., 2024) are challenging biologically inspired closed-form simulations that
cover all X . We compare against a genetic algorithm (GA), CbAS and LaMBO-2 (Gruver et al.,
2023) for sequences of length M = {15, 32, 64} using the POLI and POLI-BASELINES benchmarks
and baselines software (González-Duque et al., 2024). For these experiments we use CNNs for the
CPEs – all experimental settings are in Appendix C.2.

The results are summarized in Figure 4 and 5. Batch diversity scores for these experiments are pre-
sented in Appendix D.3, and for HOLO Ehrlich function implementation results see Appendix D.2.
VSD is among the leading methods for all experiments. VSD takes better advantage of the more
complex variational distributions than CbAS and DbAS since it can sample from the adapted vari-
ational distribution while learning it. We can see that AdaLead, PEX and often BORE all perform
worse than random for reasons previously mentioned. Simple regret can drop below zero for AAV
& GFP since an oracle is used as the black box function, but the global maximizer is taken from the
experimental data. VSD outperforms CbAS on the Ehrlich function benchmarks, and is competitive
with LaMBO-2. We also present an ablation study in Appendix D.4.
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G
FP

A
AV

(a) Independent (b) LSTM (c) Transformer

Figure 4: AAV & GFP BBO results. Simple regret (Equation 21) – lower is better – on GFP and
AAV with independent and auto-regressive variational distributions. The PEX and AdaLead results
are replicated between the plots, since they are unaffected by choice of variational distribution.

(a) M = 15 (b) M = 32 (c) M = 64

Figure 5: Ehrlich function (POLI implementation) BBO results. VSD and CbAS with different
variational distributions; mean field (MF), LSTM and transformer (TFM), compared against genetic
algorithm (GA) and LaMBO-2 baselines.

5 CONCLUSION

We have presented the problem of active generation — sequentially learning a generative model
for designs of a rare class by efficiently evaluating a black-box function — and a method for ef-
ficiently generating samples which we call variational search distributions (VSD). Underpinned by
variational inference, VSD satisfies critical requirements and important desiderata, and we show that
VSD converges asymptotically to the true level-set distribution at the same rate as a Monte-Carlo
estimator with full knowledge of the true distribution. We showcased the benefits of our method
empirically on a set of combinatorially complete and high dimensional sequential-design biological
problems and show that it can effectively learn powerful generative models of fit designs. There is a
close connection between active generation and black-box optimization, and with the advent of pow-
erful generative models we hope that our explicit framing of generation of fit sequences will lead to
further study of this connection. Finally, our framework can be generalized to more complex applica-
tion scenarios, involving learning generative models over Pareto sets, SPareto, in a multi-objective set-
ting, or other challenging combinatorial optimization problems (Bengio et al., 2021), such as graph
structures (Annadani et al., 2023), and mixed discrete-continuous variables. All of which are worth
investigating as future work directions. For the code implementing the models and experiments in
this paper, please see https://github.com/csiro-funml/variationalsearch.
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Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
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Andrei Papkou, Lucia Garcia-Pastor, José Antonio Escudero, and Andreas Wagner. A rugged yet
easily navigable fitness landscape. Science, 382(6673):eadh3860, 2023.

Mary Phuong and Marcus Hutter. Formal algorithms for transformers. arXiv preprint
arXiv:2207.09238, 2022.

Rajesh Ranganath, Sean Gerrish, and David Blei. Black box variational inference. In Artificial
intelligence and statistics, pp. 814–822. PMLR, 2014.

Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning. The
MIT Press, Cambridge, MA, 2006.

Zhizhou Ren, Jiahan Li, Fan Ding, Yuan Zhou, Jianzhu Ma, and Jian Peng. Proximal exploration
for model-guided protein sequence design. In International Conference on Machine Learning,
pp. 18520–18536. PMLR, 2022.

Reuven Rubinstein. The cross-entropy method for combinatorial and continuous optimization.
Methodology and computing in applied probability, 1:127–190, 1999.

Karen S Sarkisyan, Dmitry A Bolotin, Margarita V Meer, Dinara R Usmanova, Alexander S Mishin,
George V Sharonov, Dmitry N Ivankov, Nina G Bozhanova, Mikhail S Baranov, Onuralp Soyle-
mez, et al. Local fitness landscape of the green fluorescent protein. Nature, 533(7603):397–401,
2016.

Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. The MIT Press, 2001.

Shayle R Searle. Matrix algebra useful for statistics. John Wiley & Sons, 1982.

Sam Sinai, Richard Wang, Alexander Whatley, Stewart Slocum, Elina Locane, and Eric D Kelsic.
Adalead: A simple and robust adaptive greedy search algorithm for sequence design. arXiv
preprint arXiv:2010.02141, 2020.

14



Published as a conference paper at ICLR 2025

Samuel L. Smith, Benoit Dherin, David G. T. Barrett, and Soham De. On the origin of implicit
regularization in stochastic gradient descent. In Proceedings of the 10th International Conference
on Learning Representations (ICLR 2021). OpenReview, 2021.

Jiaming Song, Lantao Yu, Willie Neiswanger, and Stefano Ermon. A general recipe for likelihood-
free bayesian optimization. In International Conference on Machine Learning, pp. 20384–20404.
PMLR, 2022.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suria Gunasekar, and Nathan Srebro. The implicit
bias of gradient descent on separable data. Journal of Machine Learning Research, 19, 2018.

Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process optimiza-
tion in the bandit setting: no regret and experimental design. In Proceedings of the 27th Interna-
tional Conference on International Conference on Machine Learning, ICML’10, pp. 1015–1022,
Madison, WI, USA, 2010. Omnipress. ISBN 9781605589077.

Joe Staines and David Barber. Optimization by variational bounding. In ESANN, 2013.

Samuel Stanton, Wesley Maddox, Nate Gruver, Phillip Maffettone, Emily Delaney, Peyton Green-
side, and Andrew Gordon Wilson. Accelerating Bayesian optimization for biological sequence
design with denoising autoencoders. In International Conference on Machine Learning, pp.
20459–20478. PMLR, 2022.

Samuel Stanton, Robert Alberstein, Nathan Frey, Andrew Watkins, and Kyunghyun Cho.
Closed-form test functions for biophysical sequence optimization algorithms. arXiv preprint
arXiv:2407.00236, 2024.

Shikha Surana, Nathan Grinsztajn, Timothy Atkinson, Paul Duckworth, and Thomas D Barrett.
Overconfident oracles: Limitations of in silico sequence design benchmarking. In ICML 2024 AI
for Science Workshop, 2024.

Kevin Swersky, Yulia Rubanova, David Dohan, and Kevin Murphy. Amortized bayesian optimiza-
tion over discrete spaces. In Conference on Uncertainty in Artificial Intelligence, pp. 769–778.
PMLR, 2020.

Shion Takeno, Yu Inatsu, Masayuki Karasuyama, and Ichiro Takeuchi. Posterior sampling-based
Bayesian optimization with tighter Bayesian regret bounds. In Proceedings of the 41 st Inter-
national Conference on Machine Learning (ICML 2024), volume 235, Vienna, Austria, 2024.
PMLR.

Louis C Tiao, Aaron Klein, Matthias W Seeger, Edwin V Bonilla, Cedric Archambeau, and Fabio
Ramos. Bore: Bayesian optimization by density-ratio estimation. In International Conference on
Machine Learning, pp. 10289–10300. PMLR, 2021.

Brandon Trabucco, Xinyang Geng, Aviral Kumar, and Sergey Levine. Design-bench: Benchmarks
for data-driven offline model-based optimization. CoRR, abs/2202.08450, 2022.
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A ACRONYMS

ACRONYMS

BBO black-box optimization. 1, 2, 5, 6, 8, 10, 16, 19–21, 23

BO Bayesian optimization. 3, 5, 6, 35

BOPR Bayesian optimization with probabilistic reparametrization. 5–7, 18

BORE Bayesian optimization by density-ratio estimation. 4, 6–9, 16–18, 20, 22

CbAS conditioning by adaptive sampling. 5–10, 16–18, 20, 22

CPE class probability estimation. 4–9, 16–19, 21, 22, 35

DbAS design by adaptive sampling. 5–9, 16–18, 22

EDA estimation of distribution algorithms. 5

ELBO evidence lower bound. 3, 4, 8

ES evolution strategies. 5

GA genetic algorithm. 9

GP Gaussian process. 3–5, 8, 18, 20, 29, 31

KL Kullback-Leibler. 3, 6, 8

LSE level set estimation. 6

LSO latent space optimization. 1, 6, 7

LSTM long short-term memory. 7, 8, 10, 17, 18, 20–23

ML maximum likelihood. 7, 21, 22

NES natural evolution strategies. 5

NTK neural tangent kernel. 5

PEX proximal exploration. 6–10, 17, 18, 21

PI probability of improvement. 3–6, 8, 18, 20, 29, 35

RNN recurrent neural network. 7, 18

UCB upper confidence bound. 9

VI variational inference. 1

VO variational optimization. 5

VSD variational search distributions. 1–10, 16–18, 20–23, 29, 31, 35, 36
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B DEPICTION OF ACTIVE GENERATION

See Figure B.1 for graphical depictions of active generation as implemented by VSD, compared
to batch BO. Active generation using VSD follows Algorithm 1 to sequentially approximate
p(x|y > τ). It uses samples from the current learned approximation of this distribution, q(x|ϕ∗

t ), for
proposing candidates to evaluate each round. Unmodified batch BO in the discrete setting without
any specialization requires a list of candidates, from which a batch of candidates are selected per
round using a surrogate model with a batch acquisition function, e.g. see Wilson et al. (2017). The
surrogate model’s hyper-parameters, θ, are estimated by minimizing negative log marginal likeli-
hood, LNLML(θ,DN ). Mechanistically, active generation learns a generative model of valuable can-
didates to circumvent the requirement of having to select candidates from a list. This is especially
important for searching over the space of sequences, X , where enumerating feasible candidates is
often intractable. Furthermore, active generation naturally lends itself to large batch sizes, while
explicit batch optimization is often computationally intensive and is limited to O(10) candidates
per batch Wilson et al. (2017). As mentioned in section 3, alternatives to active generation for spe-
cializing batch BO to the discrete domain also include LSO (Tripp et al., 2020) and amortized BO
(Swersky et al., 2020) among others.
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Figure B.1: Depictions of (a) active generation as implemented by VSD, and (b) batch Bayesian
optimization as applied to discrete sequences. Please see the text for a discussion of the differences
between these approaches.

C EXPERIMENTAL DETAILS

We use three well established datasets; a green fluorescent protein (GFP) from Aequorea Victo-
ria (Sarkisyan et al., 2016), an adeno-associated virus (AAV) Bryant et al. (2021); and DNA binding
activity to a human transcription factor (TFBIND8) (Trabucco et al., 2022; Barrera et al., 2016).
These datasets have been used variously by Brookes & Listgarten (2018); Brookes et al. (2019);
Angermueller et al. (2019); Kirjner et al. (2024); Jain et al. (2022) among others. The GFP task is
to maximize fluorescence, this protein consists of 238 amino acids, of which 237 can mutate. The
AAV task us to maximize the genetic payload that can be delivered, and the associated protein has
28 amino acids, all of which can mutate. A complete combinatorial assessment is infeasible for
these tasks, and so we use the convolution neural network oracle presented in Kirjner et al. (2024)
as in-silico ground truth. TFBIND8 contains a complete combinatorial assessment of the effect of
changing 8 nucleotides on binding to human transcription factor SIX6 REF R1 (Barrera et al., 2016).
The dataset we use contains all 65536 sequences prepared by Trabucco et al. (2022).

We also use two novel datasets from recent works that experimentally assess the (near) complete
combinatorial space of short sequences. The first dataset measures the antibiotic resistance of Es-
cherichia coli metabolic gene folA, which encodes dihydrofolate reductase (DHFR) (Papkou et al.,
2023). Only a sub-sequence of this gene is varied (9 nucleic acids which encode 3 amino acids),
and so a near-complete (99.7%) combinatorial scan is available. For variants that have no fitness
(resistance) data available, we give a score of −1. The next dataset is near-complete combinatorial
scan of four interacting amino acid residues near the active site of the enzyme tryptophan synthase
(TrpB) (Johnston et al., 2024), with 159,129 unique sequences and fitness values, we use −0.2 for
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the missing fitness values (we do not use the authors’ imputed values). These residues are explicitly
shown to exhibit epistasis – or non-additive effects on catalytic function – which makes navigating
this landscape a more interesting challenge from an optimization perspective.

Finally, we use the recently proposed Ehrlich functions (Stanton et al., 2024) benchmark. These
functions are challenging closed form biological analogues, specifically designed to test BBO meth-
ods on high dimensional sequence design tasks without having to resort to physical experimenta-
tion or machine learning oracles. We use the POLI and POLI-BASELINES software package for the
benchmark and baselines (González-Duque et al., 2024), and test on both the original HOLO imple-
mentation (Stanton et al., 2024) as well as the native POLI implementation of these functions.

The properties of these datasets and benchmarks are presented in Table C.1.

Dataset |V| M |Xavailable| |X |
TFBIND8 4 8 65,536 65,536

TrpB 20 4 159,129 160,000
DHFR 4 9 261,333 262,144

AAV 20 28 42,340 2028

GFP 20 237 51,715 20237

Ehrlich-15 20 15 2015 2015

Ehrlich-32 20 32 2032 2032

Ehrlich-64 20 64 2064 2064

Table C.1: Alphabet size, sequence length, and number of available sequences for each of the
datasets we use in this work.

We optimize VSD, CbAS, DbAS and BORE for a minimum of 3000 iterations each round (5000 for
all experiments but the Ehrlich functions) using Adam (Kingma & Ba, 2014). When we use a CPE,
AdaLead’s κ parameter is set to 0.5 since the CPE already incorporates the appropriate threshold.

C.1 FITNESS LANDSCAPES SETTINGS

For the DHFR and TrpB experiments we set maximum fitness in the training dataset to be that of
the wild type, and τ to be slightly below the wild type fitness value (so we have ∼ 10 positive
examples to train the CPE with). We use a randomly selected Ntrain = 2000 below the wild-type
fitness to initially train the CPE, we also explicitly include the wild-type. The thresholds and wild-
type fitness values are; DHRF: τ = −0.1, ywt = 0, TrpB: τ = 0.35, ywt = 0.409. We follow the
same procedure for the TFBIND8 experiment, however, there is no notion of a wild-type sequence
in this data, and so we set τ = 0.75, and ytrain max = 0.85. We use a uniform prior over sequences,
p(x) =

∏M
m=1 Categ(xm|1 · |V|−1), since these are relatively small search spaces, and the sub-

sequences of nucleic/amino acids have been specifically selected for their task. Similarly, we find
that relatively simple independent (mean-field) variational distributions of the form in Equation 22
and MLP based CPEs work best for these experiments (details in Sec. C.4).

C.2 BLACK-BOX OPTIMIZATION SETTINGS

We follow Kirjner et al. (2024) in the experimental settings for the AAV and GFP datasets, but we
modify the maximum fitness training point and training dataset sizes to make them more amenable
to a sequential optimization setting. The initial percentiles, schedule, and max training fitness values
are; AAV: p0 = 0.8, η = 0.7, ymax = 5, GFP: p0 = 0.8, η = 0.7 ymax = 1.9. We aim for pT = 0.99.
The edit distance between x∗ and the fittest sequence in the CPE training data is 8 for GFP, and 13
for AAV. We again use a random Ntrain = 2000 for training the CPEs, which in this case are CNNs
– architecture specifics are in Sec. C.4.

For the Ehrlich function experiment, we use sequence lengths of M = {15, 32, 64} with 2 motifs
for the shorter sequence lengths, and 8 motifs for M = 64. All use a motif length of 4 and a
quantization of 4. B = 128, T = 32 and only 128 random samples of the function are used for DN

– these are resampled for each seed. As before, 5 different random seeds are used for these trials,
and for VSD we use an the same scheduling function for τt as in Equation 20, with p0 = 0.5 and
η = 0.87 (so pT = 0.99). The lower initial percentile is used since the training dataset is much
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smaller than in the other experiments, and we find allowing for more exploration initially improves
VSD’s performance.

In these higher dimensional settings, we find that performance of the methods heavily relies on
using an informed prior (in the case of VSD and CbAS), or initial variational distribution (in the
case of DbAS and BORE). To this end, we follow Brookes et al. (2019) and fit the initial variational
distribution to the CPE training sequences (regardless of fitness), but we use maximum likelihood.
For the more complex variational distributions (LSTM and transformer), we have to be careful not
to over-fit – so we implement early stopping and data augmentation techniques. Then for VSD and
CbAS we copy this distribution and fix its parameters for the remainder of the experiment for use
as a prior. We also use this prior for the Random method, but AdaLead and PEX use alternative
generative heuristics. For these experiments we use the simple independent variational distribution
and the same LSTM and causal decoder-only transformer models from Sec. 4.1.

C.3 VARIATIONAL DISTRIBUTIONS

In this section we summarize the main variational distribution architectures considered for VSD,
BORE, CbAS and DbAS, and the sampling distributions for the Random baseline method. Some-
what surprisingly, we find that we often obtain good results for the biological sequence experiments
using a simple independent (or mean-field) variational distribution, especially in lower dimensional
settings,

q(x|ϕ) =
M∏

m=1

Categ(xm|softmax(ϕm)), (22)

where xm ∈ V and ϕm ∈ R|V|. However, this simple mean-field distribution was not capable of
generating convincing handwritten digits or, in some cases, higher-dimensional sequences. We have
also tested a variety of transition variational distributions,

q(xt|xt−1, ϕ) =

M∏
m=1

Categ(xtm|softmax(NNm(xt−1, ϕ))), (23)

where NNm(xt−1, ϕ) is the mth vector output of a neural network that takes a sequence from the
previous round, xt−1, as input. We have implemented multiple neural net encoder/decoder archi-
tectures for NNm(xt−1, ϕ), but we did not consider architectures of the form NNm(ϕ) since the
variational distribution in Equation 22 can always learn a ϕm = NNm(ϕ′). We found that none of
these transition architectures significantly outperformed the mean-field distribution (Equation 22)
when it was initialized well (e.g. fit to the CPE training sequences), see Sec. D.4 for results. We also
implemented auto-regressive variational distributions of the form,

q(x|ϕ) = Categ(x1|softmax(ϕ1))

M∏
m=2

q(xm|x1:m−1, ϕ1:m) where, (24)

q(xm|x1:m−1, ϕ1:m) =

{
Categ(xm|softmax(LSTM(xm−1, ϕm−1:m))),

Categ(xm|softmax(DTransformer(x1:m−1, ϕ1:m))).

For a LSTM RNN and a decoder-only transformer with a causal mask, for the latter see Phuong &
Hutter (2022, Algorithm 10 & Algorithm 14) for maximum likelihood training and sampling imple-
mentation details respectively. We list the configurations of the LSTM and transformer variational
distributions in Table C.2. We use additive positional encoding for all of these models. When using
these models for priors or initialization of variational distributions, we find that over-fitting can be
an issue. To circumvent this, we use early stopping for larger training datasets, or data augmentation
techniques for smaller training datasets (as in the case of the Ehrlich functions).

C.4 CLASS PROBABILITY ESTIMATOR ARCHITECTURES

For the fitness landscape experiments on the smaller combinatorially complete datasets we use a
two-hidden layer MLP, with an input embedding layer. The architecture is given in Figure C.2 (a).
For the larger dimensional AAV and GFP datasets and Ehrlich function benchmark, we use the
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Configuration Digits AAV GFP Ehrlich 15 Ehrlich 32 Ehrlich 64
LSTM Layers 5 4 4 3 3 3

Network size 128 32 32 32 32 64
Embedding size 4 10 10 10 10 10

Transformer Layers 4 1 1 2 2 2
Network Size 256 64 64 32 64 128

Attention heads 8 2 2 1 2 3
Embedding size 32 20 20 10 20 30

Table C.2: LSTM and transformer network configuration.

convolutional architecture given in Figure C.2 (b). On all but the Ehrlich benchmark, five fold cross
validation was used to select the hyper parameters before the CPEs are trained on the whole training
set for use in the subsequent experimental rounds. For the Ehrlich benchmark we do not use cross-
validation to select the CPE hyper parameters – but we do use an additive ensemble of 10 randomly
initialized CNNs for the CPE following LaMBO-2. Model updates are performed by retraining on
the whole query set.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 FITNESS LANDSCAPES – GAUSSIAN PROCESS PROBABILITY OF IMPROVEMENT

Here we present additional fitness landscape experimental results, where we have used a GP as
a surrogate model for p(y|x,DN ) in conjunction with a complementary Normal CDF as the PI
acquisition function. This is one of the main frameworks supported by our theoretical analysis.
VSD, DbAS, CbAS and BORE can make use of the GP-PI acquisition function, and so BORE is
BOPR (Daulton et al., 2022) in this instance since we are not using a CPE. PEX and AdaLead only
use the GP surrogate, as per their original formulation. The GP uses a simple categorical kernel with
automatic relevance determination from Balandat et al. (2020),

k(x,x′) = σ exp

(
− 1

M

M∑
m=1

1[xm = x′
m]

lm

)
, (25)

where σ and lm are hyper-parameters controlling scale and length-scale respectively. See Figure D.3
for the results.

D.2 EHRLICH FUNCTION HOLO RESULTS

See Figure D.4 for BBO results on the original HOLO Ehrlich function implementation (Stanton
et al., 2024). We present additional diversity scores for these and the POLI implementation in
Sec. D.3.

D.3 DIVERSITY SCORES

The diversity of batches of candidates is a common thing to report in the literature, and to that end
we present the diversity of our results here. We have taken the definition of pair-wise diversity from
(Jain et al., 2022) as,

Diversityt =
1

B(B − 1)

∑
xi∈DBt

∑
xj∈DBt\{xi}

Lev(xi,xj), (26)

where Lev : X ×X → N0 is the Levenshtein distance. We caution the reader as to the interpretation
of these results however, as more diverse batches often do not lead to better performance, precision,
recall or simple regret (as can be seen from the Random method results). Though insufficient diver-
sity can also explain poor performance, as in the case of BORE. Results for the fitness landscape
experiment are presented in Figure D.5, and black-box optimization for AAV & GFP in Figure D.6
and Ehrlich functions in Figure D.7.
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Sequential(
Embedding(

num_embeddings=A,
embedding_dim=8

),
Dropout(p=0.2),
Flatten(),
LeakyReLU(),
Linear(

in_features=8 * M,
out_features=32

),
LeakyReLU(),
Linear(

in_features=32,
out_features=1

),
)

(a) MLP architecture

Sequential(
Embedding(

num_embeddings=A,
embedding_dim=10

),
Dropout(p=0.2),
Conv1d(

in_channels=10,
out_channels=16,
kernel_size=3 or 7,

),
LeakyReLU(),
MaxPool1d(

kernel_size=2 or 4,
stride=2 or 4,

),
Conv1d(

in_channels=16,
out_channels=16,
kernel_size=7,

),
LeakyReLU(),
MaxPool1d(

kernel_size=2 or 4,
stride=2 or 4,

),
Flatten(),
LazyLinear(

out_features=128
),
LeakyReLU(),
Linear(

in_features=128,
out_features=1

),
)

(b) CNN architecture

Figure C.2: CPE architectures used for the experiments in PyTorch syntax. A = |V|, M = M ,
GFP uses a max pooling kernel size and stride of 4, all other datasets and benchmarks use 2. The
Ehrlich function benchmark uses and ensemble of 10 randomly initialized CNNs that are additively
combined. The Ehrlich-15 functions use a kernel size of 3, all other BBO experiments use a kernel
size of 7. LaMBO-2 uses the same kernel size as our CNNs for the Ehrlich functions.

D.4 ABLATIONS – VARIATIONAL AND PRIOR DISTRIBUTIONS

In Figure D.8 we present ablation results for VSD using different priors and variational distributions.
We use the BBO experimental datasets for this task as they are higher-dimensional and so more
sensitive to these design choices. We test the following prior and variational posterior distributions:

IU Independent categorical variational posterior distribution of the form in Equation 22, and a
uniform prior distribution, p(x) =

∏M
m=1 Categ(xm|1 · |V|−1).

I Independent categorical prior and variational posterior of the form in Equation 22. The
prior is fit using ML on the initial CPE training data.

LSTM LSTM prior and variational posterior of the form Equation 24. The prior is fit using ML on
the initial CPE training data.

DTFM Decoder-only causal transformer prior and variational posterior of the form Equation 24.
The prior is fit using ML on the initial CPE training data.
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(a) DHFR (b) TrpB (c) TFBIND8

Figure D.3: Fitness landscape results using GP-PI. Precision (Equation 17), recall (Equation 18)
and performance (Equation 19) – higher is better – for the combinatorially (near) complete datasets,
DHFR and TrpB and TFBIND8. The random method is implemented by drawing B samples uni-
formly.

(a) M = 15 (b) M = 32 (c) M = 64

Figure D.4: Ehrlich function (HOLO implementation) BBO results. VSD and CbAS with different
variational distributions; mean field (MF), LSTM and transformer (TFM), compared against genetic
algorithm (GA) and LaMBO-2 baselines.

TAE Independent categorical prior and a transition-style auto-encoder variational posterior of the
form Equation 23, where we use two-hidden layer MLPs for the encoder and decoder. The
prior is fit using ML on the initial CPE training data.

TCNN Independent categorical prior and a transition-style convolutional auto-encoder variational
posterior of the form Equation 23, where we use a convolutional encoder, and transpose
convolutional decoder. The prior is fit using ML on the initial CPE training data.

We use the informed-independent priors with the transition variational distributions since they are
somewhat counter-intuitive to use as priors themselves.

23



Published as a conference paper at ICLR 2025

(a) DHFR (b) TrpB (c) TFBIND8

Figure D.5: Fitness landscape diversity results. Higher is more diverse, as defined by Equation 26.

G
FP

A
AV

(a) Independent (b) LSTM (c) Transformer

Figure D.6: Black-box optimization results for diversity on GFP and AAV with independent and
auto-regressive variational distributions. Higher is more diverse, as defined by Equation 26. The
PEX and AdaLead results are replicated between the plots, since they are unaffected by choice of
variational distribution.

From Figure D.8 we can see that while using an uninformative prior works in the lower-dimensional
fitness landscape experiments, using an informative prior is crucial for these higher dimensional
problems. We found a similar result when using this uninformative prior with CbAS, or using a
uniform initialization with DbAS and BORE. The methods are not able to make any significant
progress within the experimental budget given. The independent and transition variational distri-
butions achieve similar performance, whereas the auto-regressive models generally outperform all
others. This is because of the LSTM and transformer’s superior generalization performance when
generating sequences – measured both when training the priors (on held-out sequences) and during
VSD adaptation.

E THEORETICAL ANALYSIS FOR GP-BASED CPES

In this section, we present theoretical results concerning VSD and its estimates when equipped
with Gaussian process regression models (Rasmussen & Williams, 2006). We show that VSD sam-
pling distributions converge to a target distribution that characterizes the level set given by τ . The
approximation error mainly depends on the predictive uncertainty of the probabilistic model with
respect to the true underlying function f�. For the analysis, we will assume that f� is drawn from a
Gaussian process, i.e., f� ∼ GP(0, k), with a positive-semidefinite covariance (or kernel) function
k : X × X → R. In this case, we can show that the predictive uncertainty of the model converges
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(a) M = 15 (b) M = 32 (c) M = 64

Figure D.7: Black-box optimization results for diversity on the POLI and HOLO implementations of
the Ehrlich functions. Higher is more diverse, as defined by Equation 26.

(in probability) to zero as the number of observations grows. From this result, we prove asymptotic
convergence guarantees for VSD equipped with GP-PI-based CPEs. These results form the basis for
our analysis of CPEs based on neural networks (Appendix F).

E.1 GAUSSIAN PROCESS POSTERIOR

Let f� ∼ GP(0, k) be a zero-mean Gaussian process with a positive-semidefinite covariance function
k : X × X → R. Assume that we are given a set DN := {(xi, yi)}Ni=1 of N ≥ 1 observations
yi = f�(xi) + ϵi, where ϵ ∼ N

(
0, σ2

ϵ

)
and xi ∈ X . The GP posterior predictive distribution at any

x ∈ X is then given by (Rasmussen & Williams, 2006):

f�(x)|DN ∼ N
(
µN (x), σ2

N (x)
)

(27)

µN (x) = kN (x)⊤(KN + σ2
ϵ I)

−1yN (28)

kN (x,x′) = k(x,x′)− kN (x)⊤(KN + σ2
ϵ I)

−1kN (x′) (29)

σ2
N (x) = kN (x,x) , (30)

where kN (x) := [k(x,xi)]
N
i=1 ∈ RN , KN := [k(xi,xj)]

N,N
i,j=1 ∈ RN×N , and yN := [yi]

N
i=1 ∈ RN .

Batch size. In the following, we will assume a batch of size B = 1 to keep the proofs simple.
With this assumption, at every iteration t ≥ 1, we have N = t observations available in the dataset.
We would, however, like to emphasize that sampling a batch of multiple observations, instead of
a single observation, per iteration should only improve the convergence rates by a constant (batch-
size-dependent) multiplicative factor. Therefore, our results remain valid as an upper bound for the
convergence rates of VSD in the batch setting.

E.2 BACKGROUND

We will consider an underlying probability space (Ω,A,P), where Ω is the sample space, A denotes
the σ-algebra of events, and P is a probability measure. For any event A ∈ A, we have that P[A] ∈
[0, 1] quantifies the probability of that event. For events involving a random variable, e.g., χ :
(Ω,A) → (R,BR), where BR denotes the Borel σ-algebra of the real line with its usual topology,
we will let:

P[χ > 0] = P[{ω ∈ Ω : χ(ω) > 0}] . (31)
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(a) AAV (b) GFP

Figure D.8: Ablation results for the AAV and GFP BBO experiments. VSD is trialed with different
prior and variational posterior combinations, “I” indicates a simple independent informed prior and
posterior, “IU” is the same but with a uniform prior, “LSTM” and “DTFM” are the LSTM and
decoder only transformer prior and posteriors, “TCNN” and “TAE” are transition convolutional
encoder-decoder and auto-encoder posteriors, with informed independent priors. See text for details.

We will also use conditional expectations, i.e., given a σ-sub-algebra S of A, the conditional expec-
tation E[χ|S] is a S-measurable random variable such that:

∀A ∈ S ,

∫
A
E[χ|S] dP =

∫
A
χ dP = E[χ|A] . (32)

We will denote by {Ft}∞t=0 an increasing filtration on A. For instance, we could set Ft as the σ-
algebra generated by the random variables in the algorithm (i.e., the candidates, target observations,
etc.) at time t. For more details on the measure-theoretic definition of probability, we refer the
reader to classic textbooks in the area (e.g. Bauer, 1981; Durrett, 2019)

We will use the following well known notation for asymptotic convergence results. For a given
strictly positive function g : N → R, we define O(g(t)) as the set of functions asymptotically
bounded by g (up to a constant factor) as:

O(g(t)) :=
{
h : N→ R

∣∣∣∣ lim sup
t→∞

|h(t)|
g(t)

<∞
}
, (33)

and for convergence in probability we use its stochastic counterpart:

OP(g(t)) :=

{
ρ : N× (Ω,A)→ (R,BR)

∣∣∣∣ lim
C→∞

lim sup
t→∞

P
[
|ρ(t)|
g(t)

> C

]
= 0

}
, (34)

which is equivalent to:

∀ε > 0, ∃Cε ∈ (0,∞) : P
[
|ρt|
g(t)

> Cε

]
≤ ε, ∀t ≥ Tε , (35)
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for some Tε ∈ N. For almost sure convergence, we may also say that a sequence of random variables
ρt, t ∈ N, is almost surely O(g(t)) if P[ρt ∈ O(g(t))] = 1. A deeper overview on these notations
and their properties can be found in Garcı́a-Portugués (2024). In addition, as it is common in the
multi-armed bandits literature, we use the variants Õ and ÕP to denote asymptotic rates which are
valid up to logarithmic factors.

E.3 AUXILIARY RESULTS

We start with a few technical results which will form the basis for our derivations. The following re-
cursive relations allow us to derive convergence rates for the variance of a GP posterior by analyzing
how much it reduces per iteration.
Lemma E.1 (Chowdhury & Gopalan (2017, Appendix F)). The posterior mean and covariance
functions of a Gaussian process given t ≥ 1 observations obey the following recursive identities:

µt(x) = µt−1(x) +
k(x,xt)

σ2
ϵ + σ2

t−1(xt)
(yt − µt−1(x)) (36)

kt(x,x
′) = kt−1(x,x

′)− kt−1(x,xt)kt−1(xt,x
′)

σ2
ϵ + σ2

t−1(xt)
(37)

σ2
t (x) = σ2

t−1(x)−
k2t−1(x,xt)

σ2
ϵ + σ2

t−1(xt)
, (38)

for x,x′ ∈ X .

We will also make use of the following version of the second Borel-Cantelli lemma adapted from
Durrett (2019, Thr. 4.5.5) and its original statement in Dubins & Freedman (1965).
Lemma E.2 (Second Borel-Cantelli lemma). Let {At}∞t=1 be a sequence of events where At ∈ Ft,
for all t ∈ N, and let χt : ω 7→ 1[ω ∈ At], for ω ∈ Ω. Then the following holds with probability 1:

lim
T→∞

∑T
t=1 χt∑T

t=1 P[At|Ft−1]
= L <∞ , (39)

assuming P[A1|F0] > 0. In addition, if limT→∞
∑T

t=1 P[At|Ft−1] =∞, then L = 1.

The next result provides us with an upper bound on the posterior variance of a Gaussian process
which is valid for any covariance function.

Lemma E.3. Let k : X ×X → R be any positive-semidefinite kernel on X , and let k̃ : X ×X → R
be a kernel defined as:

k̃(x,x′) =

{
k(x,x), x = x′

0, x ̸= x′,
(40)

for x,x′ ∈ X . Given any set of observations {xi, yi}ti=1, for t ≥ 1, denote by σ2
t the predictive

variance of a GP model with prior covariance given by k, and let σ̃2
t denote the predictive variance

of a GP model configured with k̃ as prior covariance function, where both models are given the
same set of observations. Then the following holds for all t ≥ 0:

σ2
t (x) ≤ σ̃2

t (x) =
σ2
ϵ σ̃

2
0(x)

σ2
ϵ +Nt(x)σ̃2

0(x)
, ∀x ∈ X , (41)

where Nt(x) denotes the number of observations at x, and σ̃2
0(x) = σ2

0(x) := k(x,x), for x ∈ X .

Proof. It is not hard to show that k̃ defines a valid positive-semidefinite covariance function when-
ever k is positive semidefinite. We will then focus on proving the main statement by an induction
argument. The proof that the statement holds for the base case at t = 0 is trivial given the definition:

σ2
0(x) = k(x,x) = k̃(x,x) = σ̃2

0(x), ∀x ∈ X . (42)
Now assume that, for a given t > 0, it holds that σ2

t (x) ≤ σ̃2
t (x), for all x ∈ X . We will then check

if the inequality remains valid at t+ 1. By Lemma E.1, we have that:

σ2
t+1(x) = σ2

t (x)−
k2t (x,xt+1)

σ2
t (xt+1) + σ2

ϵ

(43)
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For any x ∈ X such that x ̸= xt+1, we know that k̃t(x,xt+1) ≥ 0, so that (again by Lemma E.1):

k̃2t (x,xt+1) ≤ k̃2(x,xt+1) = 0 , (44)
which shows that:

∀x ̸= xt+1, σ2
t+1(x) ≤ σ2

t (x) ≤ σ̃2
t (x) = σ̃2

t+1(x) . (45)
At x = xt+1, we can rewrite σ2

t+1(x) = σ2
t+1(xt+1) as:

σ2
t+1(xt+1) =

σ2
ϵσ

2
t (xt+1)

σ2
t (xt+1) + σ2

ϵ

. (46)

We then check the difference:

σ2
t+1(xt+1)− σ̃2

t+1(xt+1) =
σ2
ϵσ

2
t (xt+1)

σ2
t (xt+1) + σ2

ϵ

− σ2
ϵ σ̃

2
t (xt+1)

σ̃2
t (xt+1) + σ2

ϵ

=
σ2
ϵσ

2
t (xt+1)(σ̃

2
t (xt+1) + σ2

ϵ )− σ2
ϵ σ̃

2
t (xt+1)(σ

2
t (xt+1) + σ2

ϵ )

(σ2
t (xt+1) + σ2

ϵ )(σ̃
2
t (xt+1) + σ2

ϵ )

=
σ4
ϵ (σ

2
t (xt+1)− σ̃2

t (xt+1))

(σ2
t (xt+1) + σ2

ϵ )(σ̃
2
t (xt+1) + σ2

ϵ )

≤ 0 ,

(47)

since σ2
t (xt+1) ≤ σ̃2

t (xt+1) by our assumption for time t. Therefore, we have shown that:
σ2
t (x) ≤ σ̃2

t (x) =⇒ σ2
t+1(x) ≤ σ̃2

t+1(x) , ∀x ∈ X . (48)
From the conclusion above and the base case, the inequality in the main result follows by induction.

Now we derive an explicit form for σ̃2
t . Note that this case corresponds to an independent Gaussian

model, i.e., f�(x) ⊥⊥ f�(x′) whenever x ̸= x′, for f� ∼ GP(0, k̃). For any t ≥ 1, this model’s
predictive variance at any x ∈ X is given by:

σ̃2
t (x) =


σ̃2
t−1(x), x ̸= xt

σ2
ϵ σ̃

2
t−1(xt)

σ2
ϵ + σ̃2

t−1(xt)
=

(
1

σ̃2
t−1(xt)

+
1

σ2
ϵ

)−1

, x = xt

(49)

Looking at the reciprocal, we have that:

∀t ≥ 1,
1

σ̃2
t (x)

=
1

σ̃2
t−1(xt)

+
1[xt = x]

σ2
ϵ

, ∀x ∈ X . (50)

Therefore, every observation at x is simply adding a factor of σ−2
ϵ to σ̃−2

t (x). Unwrapping this
recursion leads us to:

∀t ≥ 1,
1

σ̃2
t (x)

=
1

σ̃2
0(x)

+
1

σ2
ϵ

t∑
i=1

1[xi = x] , ∀x ∈ X . (51)

The result in Lemma E.3 then follows as the reciprocal of the above, which concludes the proof.

Lemma E.4. Let f� ∼ GP(0, k) for a given k : X × X → R, where σ2
X := supx∈X k(x,x) <∞,

and |X | <∞. Then f� is almost surely bounded, and:

E
[
sup
x∈X
|f�(x)|

]
≤ σX

√
2 log |X | . (52)

Proof. The result follows by an application of a concentration inequality for the maximum of a
finite collection of sub-Gaussian random variables (Boucheron et al., 2013, Sec. 2.5). Note that
{f�(x)}x∈X is a collection of |X | Gaussian, and therefore sub-Gaussian, random variables with
sub-Gaussian parameter given by σ2

X ≥ σ2
t (x), for all X . Applying the maximal inequality for a

finite collection sub-Gaussian random variables (Boucheron et al., 2013, Thr. 2.5), we have that:

E
[
max
x∈X

f�(x)

]
≤ σX

√
2 log |X | <∞ . (53)

By symmetry, we know that−f�(x) is also sub-Gaussian with the same parameter, so that the bound
remains valid for maxx∈X −f�(x). As a consequence, the expected value of the maximum of |f�(x)|
is upper bounded by the same constant. On a finite set, the maximum and the supremum coincide.
As the expected value of the supremum is finite, the supremum must be almost surely finite by
Markov’s inequality, and therefore f� is almost surely bounded.
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E.4 ASYMPTOTIC CONVERGENCE

The main assumption we will be working with in this section is the following.
Assumption E.1. The objective function is a sample from a Gaussian process f� ∼ GP(0, k), where
k : X × X → R is a bounded positive-semidefinite kernel on X .

The next result allows us to derive a convergence rate for the posterior variance of a GP as a function
of the sampling probabilities. This result might also be useful by itself for other sampling problems
involving GP-based approximations.
Lemma E.5. Let {xt}t≥1 be a sequence of X -valued random variables adapted to the filtration
{Ft}t≥1. For a given x ∈ X , assume that the following holds:

∃T∗ ∈ N : ∀T ≥ T∗,

T∑
t=1

P[xt = x | Ft−1] ≥ BT > 0 , (54)

for a some sequence of lower bounds {Bt}t∈N. Then, under Assumption E.1, given observations at
{xi}ti=1, the following holds with probability 1:

σ2
t (x) ∈ O(B−1

t ). (55)

In addition, if Bt →∞, then limt→∞ Btσ
2
t (x) ≤ σ2

ϵ .

Proof. At any iteration t, the posterior variance σ2
t of a GP model is upper bounded by a worst case

assumption of no correlation between observations (see Lemma E.3). In this case, we have that:

σ2
t (x) ≤ σ̃2

t (x) =
σ2
ϵ σ̃

2
0(x)

σ2
ϵ +Ntσ̃2

0(x)
, (56)

where σ̃2
0(x) := k̃(x,x) = k(x,x), and Nt := Nt(x) ≤ t denotes the total number of observations

taken at x as of iteration t. Without loss of generality, assume that σ̃2
0(x) = 1.

The only random variable to be bounded in Equation 56 is Nt. Let χt := 1[xt = x], so that:

Nt =

t∑
i=1

χi =

t∑
i=1

1[xt = x] , t ≥ 1. (57)

We now apply the second Borel-Cantelli lemma (Lemma E.2) to Nt. Namely, let N̂t denote the sum
of conditional expectations of {χi}ti=1 given available data, i.e.:

N̂t :=

t∑
i=1

E[χi | Fi−1] =

t∑
i=1

E[1[xt = x] | Fi−1] =

t∑
i=1

P[xi = x | Fi−1] . (58)

By Lemma E.2, we know that the following holds for some L ∈ R:

lim
t→∞

Nt

N̂t

= L <∞ . (59)

Hence, Nt is asymptotically equivalent to N̂t. Applying this fact to σ̃2
t , we have that:

lim
t→∞

Btσ̃
2
t (x) = lim

t→∞

Btσ
2
ϵ

σ2
ϵ +Nt

= lim
t→∞

Btσ
2
ϵ

σ2
ϵ + LN̂t

≤ lim
t→∞

Btσ
2
ϵ

σ2
ϵ + LBt

≤ 1

L
lim
t→∞

min{LBt, σ
2
ϵ }

<∞ ,

(60)
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which holds with probability 1. Lastly, note that, if Bt → ∞, then L = 1 by Lemma E.2, and the
last limit above becomes σ2

ϵ . The main result then follows by an application of Lemma E.3 and the
definition of the big-O notation (see Equation 33).1

We assume a finite search space, which is the case for spaces of discrete sequences of bounded
length. However, we conjecture that our results can be extended to continuous or mixed discrete-
continuous search spaces via a discretization argument under further assumptions on the kernel k
(e.g., ensuring that f� is Lipschitz continuous, as in Srinivas et al. (2010)).

Assumption E.2. The search space X is finite, |X | <∞.

We assume that our family of variational distributions is rich enough to be able to represent the
PI-based distribution p(x|y > τt,Dt), which is the optimum of our variational objective when the
optimal classifier is given by GP-PI. Although this assumption could be seen as strong, note that,
due to Gaussian noise, the classification probability p(y > τt|x,Dt) should be a reasonably smooth
function of x, which facilitates the approximation of the resulting posterior by a generative model.

Assumption E.3. For every t ≥ 0, p(x|y > τt,Dt) is a member of the variational family, i.e.:

∃ϕ∗
t : D[q(x|ϕ∗

t )∥p(x|y > τt,Dt)] = 0. (61)

The next assumption is a technical one to ensure that the thresholds will not diverge to infinity.

Assumption E.4. The sequence of thresholds is almost surely bounded:2

sup
t∈N
|τt| ≤ τ∗ <∞ . (62)

We can now state our main result regarding the GP-based approximations learned by VSD.

Theorem E.1. Let assumptions E.1 to E.4 hold. Then the following holds with probability 1 for
VSD equipped with GP-PI:

σ2
t (x) ∈ O(t−1) , (63)

at every x ∈ X such that p(x) > 0.

Proof. Let ℓt(x) := p(y > τt|x,Dt). For any given x ∈ X where p(x) > 0, by Assumption E.2,
we have that the next candidate will be sampled according to:

∀t ≥ 0, P[xt+1 = x | Ft] = p(x|y > τt,Dt)

=
ℓt(x)p(x)

Ep(x)[ℓt(x)]

≥ ℓt(x)p(x),

(64)

where we used the fact that Ep(x)[ℓt(x)] ≤ 1, since ℓt(x) ≤ 1, for all x ∈ X . As p(x) > 0, we only
have to derive a lower bound on ℓt(x) to apply Lemma E.5 and derive a convergence rate.

A lower bound on ℓt(x) is given by:

∀t ≥ 0, ℓt(x) = Ψ

(
µt(x)− τt√
σ2
t (x) + σ2

ϵ

)
≥ Ψ

(
−∥µt∥∞ + τ∗

σϵ

)
, (65)

where Ψ(·) denotes the cumulative distribution function of a standard normal random variable,
and ∥·∥∞ denotes the essential supremum of a function under P (the probability measure of the
underlying abstract probability space). Therefore, if limt→∞∥µt∥∞ < ∞, we will have that
limt→∞ ℓt(x) > 0, and the sum in Lemma E.5 will diverge.

By Jensen’s inequality for conditional expectations, we have that:

∀t ≥ 0, ∥µt∥∞ = ∥E[f� | Ft]∥∞ ≤ E[∥f�∥∞ | Ft]. (66)

1Recall that for convergent sequences lim and lim sup coincide.
2We do not require τ∗ to be known, only finite.
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As E[E[∥f�∥∞ | Ft]] = E[∥f�∥∞] < ∞ (cf. Lemma E.4), an application of Markov’s inequality
implies that:

lim
a→∞

P[E[∥f�∥∞ | Ft] ≥ a] ≤ lim
a→∞

1

a
E[∥f�∥∞] = 0. (67)

Furthermore, mt := E[∥f�∥∞ | Ft] also defines a non-negative martingale, and by the martingale
convergence theorem (Durrett, 2019, Thr. 4.2.11), limt→∞ mt = m∞ := E[∥f�∥∞ | F∞] is well
defined and E[E[∥f�∥∞ | F∞]] = E[∥f�∥∞] < ∞. Again, by Markov’s inequality, for any a > 0,
we have that:

P
[
lim
t→∞
∥µt∥∞ ≥ aE[∥f�∥∞]

]
≤ E [limt→∞∥µt∥∞]

aE[∥f�∥∞]
≤ E [limt→∞ E[∥f�∥∞ | Ft]]

aE[∥f�∥∞]
=

1

a
. (68)

Therefore, for any a > 0 and any given x ∈ X , with probability at least 1− 1
a , the following holds:

lim
t→∞

P[xt = x | Ft−1] ≥ p(x) lim
t→∞

ℓt−1(x)

≥ p(x) lim
t→∞

Ψ

(
−∥µt−1∥∞ + τ∗

σϵ

)
≥ p(x)Ψ

(
−aE[∥f�∥∞] + τ∗

σϵ

)
=: b∞(a) > 0 .

(69)

Hence, for any εa ∈ (0, b∞(a)), there is Na ∈ N, such that P[xt = x | Ft−1] ≥ b∞(a) − εa > 0,
for all t ≥ Na. As a result,

∑t
t′=1 P[xt′ = x | Ft′−1] ≥ (b∞(a) − εa)(t − Na), for all t ≥ Na,

which asymptotically diverges at a rate proportional to t. By Lemma E.5 and the definition of the
big-O notation, for any x ∈ X , we then have that:

∀a > 0, P
[
lim sup
t→∞

∣∣tσ2
t (x)

∣∣ ≤ σ2
ϵ <∞

]
≥ 1− 1

a
. (70)

Taking the limit as a→∞, we can finally conclude that:

P
[
lim sup
t→∞

∣∣tσ2
t (x)

∣∣ <∞] = 1, (71)

i.e., σ2
t is almost surely O(t−1), which concludes the proof.

Remark E.1. The convergence rate in Theorem E.1 is optimal and cannot be further improved. As
shown by previous works in the online learning literature (Mutný & Krause, 2018; Takeno et al.,
2024), a lower bound on the GP variance at each iteration t ≥ 1 is given by σ2

t (x) ≥ σ2
ϵ (σ

2
ϵ + t)−1

(assuming k(x,x) = 1), which is the case when every observation in the dataset was collected at
the same point x ∈ X (see Takeno et al., 2024, Lem. 4.2). Therefore, the lower and upper bounds on
the asymptotic convergence rates for the GP variance differ by only up to a multiplicative constant.

The result in Theorem E.1 now allows us to derive a convergence rate for VSD’s approximations to
the level-set distributions. To do so, however, we will require the following mild assumption, which
is satisfied by any prior distribution which has support on the entire domain X .
Assumption E.5. The prior distribution is such that p(x) > 0, for all x ∈ X .
Theorem 2.1. Under mild assumptions (E.1 to E.5), the variational distribution of VSD equipped
with GP-PI converges to the level-set distribution in probability at the following rate:

DKL[p(x|y > τt,Dt)∥p(x|y > τt, f�)] ∈ OP(t
−1/2) . (12)

Proof. We first prove an upper bound for the KL divergence in terms of the PI approximation error.
We then derive a bound for this term and apply Theorem E.1 to obtain a convergence rate.

KL bound formulation. Let ℓt(x) := p(y > τt|x,Dt) and ℓ∗t (x) := p(y > τt|x, f�), for x ∈ X .
From the definition of the KL divergence, we have that:
DKL[p(x|y > τt,Dt)∥p(x|y > τt, f�)] = Ep(x|y>τt,Dt)[log p(x|y > τt,Dt)− log p(x|y > τt, f�)]

= Ep(x|y>τt,Dt)[log ℓt(x)− log ℓ∗t (x)]

+ logEp(x)[ℓ
∗
t (x)]− logEp(x)[ℓt(x)]

= Ep(x|y>τt,Dt)

[
log

(
ℓt(x)

ℓ∗t (x)

)]
+ log

(Ep(x)[ℓ
∗
t (x)]

Ep(x)[ℓt(x)]

)
.

(72)
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For logarithms, we know that log(1 + a) ≤ a, for all a > −1, which shows that:

log

(
ℓt(x)

ℓ∗t (x)

)
= log

(
1 +

ℓt(x)− ℓ∗t (x)

ℓ∗t (x)

)
≤ ℓt(x)− ℓ∗t (x)

ℓ∗t (x)
(73)

log

(Ep(x)[ℓ
∗
t (x)]

Ep(x)[ℓt(x)]

)
= log

(
1 +

Ep(x)[ℓ
∗
t (x)− ℓt(x)]

Ep(x)[ℓt(x)]

)
≤

Ep(x)[ℓ
∗
t (x)− ℓt(x)]

Ep(x)[ℓt(x)]
. (74)

Combining the above into Equation 72 yields:

DKL[p(x|y > τt,Dt)∥p(x|y > τt, f�)] ≤ Ep(x|y>τt,Dt)

[
ℓt(x)− ℓ∗t (x)

ℓ∗t (x)

]
+

Ep(x)[ℓ
∗
t (x)− ℓt(x)]

Ep(x)[ℓt(x)]
.

(75)

The denominator in the expression above is such that:

∀t ≥ 0, ℓ∗t (x) = p(y > τt|x, f�) = Ψ

(
f�(x)− τt

σϵ

)
≥ Ψ

(
−∥f�∥∞ + τ∗

σϵ

)
, ∀x ∈ X . (76)

By Lemma E.4, we know that E[∥f�∥∞] <∞, which implies that P[∥f�∥∞ <∞] = 1 by Markov’s
inequality. Next, we derive a bound for the approximation error term.

Error bound. We now derive an upper bound for the difference ∆ℓt(x) := ℓt(x) − ℓ∗t (x) and
then show that it asymptotically vanishes. Applying Taylor’s theorem to Ψ, we can bound ∆ℓt as a
function of the approximation error between the mean µt and the true function f� as:

∀t ≥ 0, |∆ℓt(x)| =

∣∣∣∣∣Ψ
(

µt(x)− τt√
σ2
t (x) + σ2

ϵ

)
−Ψ

(
f�(x)− τt

σϵ

)∣∣∣∣∣
≤ 1√

2π

∣∣∣∣∣ µt(x)− τt√
σ2
t (x) + σ2

ϵ

− f�(x)− τt
σϵ

∣∣∣∣∣
=

1√
2π

∣∣∣∣∣σϵµt(x)− f�(x)
√

σ2
t (x) + σ2

ϵ + τt(
√

σ2
t (x) + σ2

ϵ − σϵ)

σϵ

√
σ2
t (x) + σ2

ϵ

∣∣∣∣∣
≤ |σϵµt(x)− f�(x)

√
σ2
t (x) + σ2

ϵ |+ |τt|σt(x)

σ2
ϵ

√
2π

≤ σϵ|µt(x)− f�(x)|+ σt(x)(|f�(x)|+ |τt|)
σ2
ϵ

√
2π

, ∀x ∈ X ,

(77)

since supϵ∈R

∣∣∣ dΨ(ϵ)
dϵ

∣∣∣ = 1√
2π

< 1, and we used the fact that σϵ ≤
√
σ2
t (x) + σ2

ϵ ≤ σt(x) + σϵ to
obtain the last two inequalities.

Convergence rate. To derive a convergence rate, given any x ∈ X and t ≥ 0, we have that:

E[|∆ℓt(x)| | Ft] ≤
σϵE[|µt(x)− f�(x)| | Ft] + σt(x)(E[|f�(x)| | Ft] + |τt|)

σ2
ϵ

√
2π

. (78)

We know that E[|f�(x)| | Ft] is almost surely bounded, and by Jensen’s inequality, it also holds that:

E[|µt(x)− f�(x)| | Ft] ≤ σt(x). (79)

Applying Theorem E.1, we then have that:

|∆ℓt(x)| ∈ OP(t
−1/2). (80)

Since ∥µt∥∞ ≤ E[∥f�∥∞|Ft] ∈ OP(1), we also have that:

1

Ep(x)[ℓt(x)]
∈ OP(1) . (81)

Lastly, we know that 1
ℓ∗t (x)

∈ OP(1) by Equation 76 and the observation that ∥f�∥∞ ∈ OP(1). The
main result then follows by combining the rates above into Equation 75.
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E.5 PERFORMANCE ANALYSIS

At every iteration t ≥ 1, VSD samples xt from (an approximation to) the target p(x|y > τt−1,Dt−1)
and obtains an observation yt ∼ p(y|xt). A positive hit consists of an event yt > τt−1, where τt−1

is computed based on the data available in Dt−1 or a constant. Therefore, we can compute the
probability of a positive hit for a given realization of f� as:

P[yt > τt−1 | Dt−1, f�] = Ep(x|y>τt−1,Dt−1)[p(y > τt−1|x, f�)] . (82)

Then the expected number of hits HT after T ≥ 1 iterations is given by:

E[HT | f�] =
T∑

t=1

Ep(x|y>τt−1,Dt−1)[p(y > τt−1|x, f�)] . (83)

We will compare this quantity with the expected number of hits H∗
T obtained by a sampling distri-

bution with full knowledge of the objective function f�:

E[H∗
T | f�] =

T∑
t=1

Ep(x|y>τt−1,f�)[p(yt > τt−1|x, f�)] . (84)

The next result allows us to bound the difference between these two quantities.

Corollary 2.1. Under the settings in Theorem 2.1, we also have that:

E[|HT −H∗
T |] ∈ O(

√
T ) . (13)

Proof. For all T ≥ 1, we have that:

E[HT −H∗
T ] = E

[
T∑

t=1

Ep(x|y>τt−1,Dt−1)[p(y > τt−1|x, f�)]− Ep(x|y>τt−1,f�)[p(yt > τt−1|x, f�)]

]

= E

[
T∑

t=1

∑
x∈X

p(y > τt−1|x, f�) (p(x|y > τt−1,Dt−1)− p(x|y > τt−1, f�))

]

= E

[
T−1∑
t=0

∑
x∈X

p(y > τt|x, f�)p(x)
(

ℓt(x)

Ep(x′)[ℓt(x′)]
− ℓ∗t (x)

Ep(x′)[ℓ
∗
t (x

′)]

)]

≤ E

[
T−1∑
t=0

∑
x∈X

p(x)

(
|∆ℓt(x)|

min{Ep(x′)[ℓt(x′)] ,Ep(x′)[ℓ
∗
t (x

′)]}

)]
,

(85)

since p(y > τt−1|x, f�) ≤ 1, for all t ≥ 1. As both ∥µt∥∞ and ∥f�∥∞ are in OP(1),
min{Ep(x′)[ℓt(x

′)] ,Ep(x′)[ℓ
∗
t (x

′)]} is lower bounded by some constant. As ∆ℓt(x) ∈ OP(t
−1/2),

for T large enough and some C > 0, we then have that:

E[|HT −H∗
T |] ≤ C

T∑
t=1

1√
t
≤ 2C

√
T ∈ O(

√
T ), (86)

which follows by an application of the Euler-Maclaurin formula, since
∫ T

1
1√
t
dt = 2

√
T − 2 and

the remainder term asymptotically vanishes.

Remark E.2. If the oracle achieves E[H∗
T ] = T , the error bound in Corollary 2.1 suggests an

increasing rate of positive hits by VSD as 1
T E[HT ] ≥ 1 − CT−1/2, for some constant C > 0

and large enough T . Therefore, VSD should asymptotically achieve a full rate of 1 positive hit per
iteration in the single-point batch setting we consider. Note, however, that the results above do not
discount for repeated samples, though should still indicate that VSD achieves a high discovery rate
over the course of its execution.
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F VSD WITH NEURAL NETWORK CPES

In this section, we consider VSD with class probability estimators that are not based on GP regres-
sion, which was the case for the previous section, while specifically focusing on neural network
models. We will, however, show that with a kernel-based formulation we are able to capture the
classification models based on neural networks which we use. This is possible by analyzing the be-
havior of infinite-width neural networks (Jacot et al., 2018; Lee et al., 2019), whose approximation
error with respect to the finite-width model can be bounded (Liu et al., 2020; Eldan et al., 2021).

Although our classifiers are learned by minimizing the cross-entropy (CE) loss, we can connect
their approximations with theoretical results from the infinite-width neural network (NN) literature,
which are mostly based on the mean squared error (MSE) loss. Recall that, given a dataset Dz

N :=
{(xn, zn)}Nn=1 with binary labels zn ∈ {0, 1}, the cross-entropy loss for a probabilistic classifier
πθ : X → [0, 1] parameterized by θ is given by3:

LCPE(θ,Dz
N ) := − 1

N

N∑
n=1

zn log πθ(xn) + (1− zn) log(1− πθ(xn)) . (87)

The MSE loss for the same model corresponds to:

LMSE(θ,Dz
N ) :=

1

N

N∑
n=1

(zn − πθ(xn))
2 . (88)

The following result establishes a connection between the two loss functions.
Proposition F.1. Given a binary classification dataset Dz

N of size N ≥ 1, the following holds for
the cross-entropy and the mean-square error losses:

LCPE(θ,Dz
N ) ≥ LMSE(θ,Dz

N ), ∀N ∈ N . (89)

Proof. Applying the basic logarithmic inequality log(1 + a) ≤ a, for all a > −1, to the cross-
entropy loss definition yields:

LCPE(θ,Dz
N ) := − 1

N

N∑
n=1

zn log πθ(xn) + (1− zn) log(1− πθ(xn))

≥ − 1

N

N∑
n=1

zn(πθ(xn)− 1)− (1− zn)πθ(xn)

= − 1

N

N∑
n=1

2znπθ(xn)− zn − πθ(xn)

=
1

N

N∑
n=1

zn − 2znπθ(xn) + πθ(xn) .

(90)

Now note that zn = z2n, for zn ∈ {0, 1}, and πθ(xn) ≥ πθ(xn)
2, as πθ(xn) ∈ [0, 1], for all

n ∈ {1, . . . , N}. Making these substitutions in Equation 90, we obtain:

LCPE(θ,Dz
N ) ≥ 1

N

N∑
n=1

z2n − 2znπθ(xn) + πθ(xn)
2 = LMSE(θ,Dz

N ) , (91)

which concludes the proof.

The result in Proposition F.1 suggests that minimizing the cross-entropy loss will lead us to minimize
the MSE loss as well, since the latter is upper bounded by the former. This result provides us with
theoretical justification to derive convergence results based on the MSE loss, which has been better
analyzed in the NN literature (Jacot et al., 2018; Lee et al., 2019), as a proxy to establish convergence
guarantees for the CE-based VSD setting.

3We implicitly assume that 0 < πθ(xn) < 1, for n ∈ {1, . . . , N}, so that the CE loss is well defined. This
assumption can, however, be relaxed when dealing with the MSE loss, which remains well defined otherwise.
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F.1 LINEAR APPROXIMATIONS VIA THE NEURAL TANGENT KERNEL

For this analysis, we will follow a frequentist setting. Namely, let π∗ denote the unknown true clas-
sifier, i.e., π(x) := p(y > τ |x, f�), for x ∈ X . We assume that π∗ is an unknown, fixed element
of a reproducing kernel Hilbert space (RKHS) associated with a given kernel (Schölkopf & Smola,
2001). In the case of infinite-width neural networks, we know that under certain assumptions the
NN trained via gradient descent under the MSE loss will asymptotically converge to a kernel ridge
regression solution whose kernel is given by the neural tangent kernel (NTK, Jacot et al., 2018). This
asymptotic solution is equivalent to the posterior mean of a Gaussian process that assumes no ob-
servation noise. However, for a finite number of training steps s <∞, the literature has shown that
gradient-based training provides a form of implicit regularization, which we use to ensure robustness
to label noise. Moreover, although our analysis will be based on the NTK, the approximation error
between the infinite-width and the finite-width NN vanishes with the square root of the network
width for most popular NN architectures (Liu et al., 2020). Therefore, we can assume that these
approximation guarantees will remain useful for wide-enough, finite-width NN models.

Reproducing kernel Hilbert spaces. The RKHS Fk associated with a positive-semidefinite ker-
nel k : X × X → R is a Hilbert space of functions over X with an inner product ⟨·, ·⟩k and
corresponding norm ∥·∥k :=

√
⟨·, ·⟩

k
such that, for every π ∈ Fk, the reproducing property

π(x) = ⟨π, k(·,x)⟩k holds for all x ∈ X (Schölkopf & Smola, 2001).

Implicit regularization. Several results in the literature have shown that training overparameter-
ized neural networks via gradient descent provides a form of implicit regularization on the learned
model (Fleming, 1990; Yao et al., 2007; Soudry et al., 2018; Barrett & Dherin, 2021), with some of
the same behavior extending to the stochastic gradient setting (Smith et al., 2021). In earlier works,
Fleming (1990) showed a direct equivalence between an early stopped gradient-descent linear model
and the solution of a regularized least-squares problem with a penalty on the parameters vector Eu-
clidean norm. In the NTK regime, the network output predictions at iteration s ∈ N of gradient
descent are given by (Lee et al., 2019):

π̂N (x) = π0(x) + kN (x)⊤K−1
N (I− e−νsKN )(zN − π0(XN )) , x ∈ X , (92)

where π0 represents the network’s initialization, ν > 0 denotes the learning rate, the kernel k
corresponds to the NTK associated with the given architecture, and the data is represented byXN :=
{xi}Ni=1 ⊂ X and zN := [zi]

N
i=1 ∈ {0, 1}N . Rearranging terms and performing basic algebraic

manipulations, the equation above can be shown to be equivalent to:

π̂N (x) = π0(x) + kN (x)⊤(KN +ΣN )−1(zN − π0(XN )) , x ∈ X , (93)

where ΣN := KN (eνsKN −I)−1 corresponds to a data-dependent regularization matrix. The above
is equivalent to the solution of the a regularized least-squares problem, as we show below.
Lemma F.1. Assume k : X × X → R is positive definite and π0 = 0. Then Equation 93 solves the
following regularized least-squares problem:

π̂N ∈ argmin
π∈Fk

N∑
i=1

(π(xi)− zi)
2 + ∥R1/2

N π∥2k , (94)

where RN := ΦN (e−νsKN − I)−1Φ⊤
N , ΦN := [φ(x1), . . . , φ(xN )], and φ(x) := k(·,x) ∈ Fk

represents the kernel’s canonical feature map, for x ∈ X .

Proof. The least-squares loss can be rewritten as:

ℓN (π) :=

N∑
i=1

(π(xi)− zi)
2 + ∥π∥2RN

= ∥Φ⊤
Nπ − zN∥22 + ∥R

1/2
N π∥2k , (95)

where ∥·∥2 denotes the Euclidean norm of a vector. Taking the functional gradient with respect to
π ∈ Fk and equating it to zero, we have that an optimal solution π̂ satisfies:

∇ℓN (π̂) = 2ΦN (Φ⊤
N π̂ − zN ) + 2RN π̂ = 0 . (96)
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The minimum-norm solution is then given by:

π̂ = (ΦNΦ⊤
N +RN )+ΦNzN , (97)

where A+ denotes the Moore-Penrose pseudo-inverse of an operator A : Fk → Fk.

Let ΦN = UNSNV⊤
N represent the singular value decomposition of ΦN in the RKHS (Mollen-

hauer et al., 2020), where UN := [u1, . . . , uN ], VN := [v1, . . . ,vN ], with {ui}Ni=1 ⊂ Fk and
{vi}Ni=1 ⊂ RN denoting the left and right singular vectors, respectively, and SN ∈ RN×N corre-
sponds to the diagonal matrix of singular values of ΦN . There are N non-zero singular values, since
k is assumed to be positive definite, and we have the correspondence KN = Φ⊤

NΦN = VNΛNV⊤
N

with ΛN = S2
N representing the diagonal matrix of eigenvalues of KN , which is full-rank for a

positive-definite kernel with distinct entries XN := {xi}Ni=1 ⊂ X . Applying the SVD to derive the
pseudo-inverse in Equation 97 then yields:

π̂ = (ΦNΦ⊤
N +ΦN (e−νsKN − I)−1Φ⊤

N )+ΦNzN

= (UNΛNU⊤
N +UNSNV⊤

N (e−νsVNΛNV⊤
N − I)−1VNSNU⊤

N )+UNSNV⊤
NzN

= UN (ΛN +ΛN (e−νsΛN − I)−1)−1SNV⊤
NzN

= UNSNV⊤
NVN (ΛN +ΛN (e−νsΛN − I)−1)−1V⊤

NzN

= ΦN (KN +KN (e−νsKN − I)−1)−1zN

= ΦN (KN +ΣN )−1zN ,

(98)

which concludes the proof.

For our analysis, we will assume that the classifier network is zero initialized with π0 = 0, noting
that the least-squares problem can always be solved for the residuals z − π0(x) and then have π0

added back to the solution. We refer the reader to Lee et al. (2019) for further discussion on the
effect of the network initialization.

Approximation for finite-width networks. For fully connected, convolutional or residual net-
works equipped with smooth activation functions (e.g., sigmoid or tanh), Liu et al. (2020) showed
that the approximation error between the linear model and the finite-width NN is Õ(m−1/2), where
m denotes the minimum layer width, and the Õ notation corresponds to the O-notation with loga-
rithmic factors suppressed. NTK results for other activation functions and different neural network
architectures, such as multi-head attention (Hron et al., 2020), are also available in the literature.

F.2 ASSUMPTIONS

In the following, we present a series of mild technical assumptions needed for our theoreti-
cal analysis of NN-based CPEs. For this analysis, we mainly assume that the true classifier
π∗(x) = p(y > τ |x, f�) is a fixed, though unknown, element of the RKHS Fk given by a bounded
NTK k, which is formalized by the following two assumptions. As in the GP case, we assume
batches of size B = 1 to simplify the analysis.

Assumption F.1. There is π∗ ∈ Fk such that:

π∗(x) = p(y > τ |x, f�), ∀x ∈ X . (99)

For a rich enough RKHS, such assumption is mild, especially given that most popular NN architec-
tures offer universal approximation guarantees (Hornik et al., 1989).

Assumption F.2. The NTK k corresponding to the network architecture in πθ is positive definite
and bounded in X .

We will also assume that the threshold is fixed to simplify the analysis. However, our results should
asymptotically hold for time-varying thresholds as long as the limit limt→∞ τt = τ exists.

Assumption F.3. The threshold is fixed, i.e., τt = τ ∈ R, for all t ≥ 1.
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The following assumption on label noise should always hold for Bernoulli random variables
(Boucheron et al., 2013). Any upper bound on the sub-Gaussian parameter should suffice for the
analysis (e.g., σζ ≤ 1 for Bernoulli variables).

Assumption F.4. For all t ∈ N and all x ∈ X , label noise ζ = 1[y > τ ] − π∗(x), with y ∼
p(y|x, f�), is σζ-sub-Gaussian:

∀a ∈ R, E [exp (aζ)] ≤ exp

(
a2σ2

ζ

2

)
, (100)

for some σζ ≥ 0.

The next assumption ensures a sufficient amount of sampling is asymptotically achieved over the
domain X , which we still assume is finite.

Assumption F.5. For any t ≥ 1, the variational family is such that sampling probabilities are
bounded away from 0, i.e.:

∃b > 0 : ∀t ∈ N, q(x|ϕt) ≥ b, ∀x ∈ X . (101)

The assumption above only imposes mild constraints on the generative models q(x|ϕ), so that prob-
abilities for all candidates x ∈ X are never exactly 0, though still allowed to be arbitrarily small.

Assumption F.6. The learning rate νt at each round t is such that:

0 < ν∗ ≤ νt ≤
1

λmax(Kt)
, ∀t ∈ N , (102)

for some ν∗ > 0, where λmax(·) denotes the maximum eigenvalue of a matrix, and Kt denotes the
NTK matrix evaluated at the training points available at iteration t ≥ 1.

This last assumption ensures that a gradient descent algorithm is convergent (Fleming, 1990), though
we use it to bound the spectrum of the implicit regularization matrix Σt after a finite number of
training steps s < ∞ (a.k.a. early stopping), which is needed for our results. We highlight that,
under mild assumptions on the data distribution, λmax(Kt) ∈ O(1) w.r.t. the number of data
points (Murray et al., 2023), so that the bound in Assumption F.6 will not vanish. Therefore, such
assumption is easily satisfied by maintaining a sufficiently small learning rate.

F.3 APPROXIMATION ERROR FOR NN-BASED CPES

Similar to the GP-PI setting, we will assume a batch size of 1, so that we can simply use the iteration
index t ≥ 0 for our estimators. We recall that convergence rates for the batch setting should only
be affected by a batch-size-dependent multiplicative factor, preserving big-O convergence rates. We
start by defining the following proxy variance:

t ≥ 1, σ̂2
t (x) = k(x,x)− kt(x)

⊤(Kt +Σt)
−1kt(x) , x ∈ X , (103)

where Σt is the implicit regularization matrix in Equation 93 due to early stopping. The proxy
variance is then equivalent to a GP posterior variance under the assumption of heteroscedastic (i.e.,
input dependent) Gaussian noise with covariance matrix given by Σt. Given its similarities, we have
that if enough sampling is asymptotically guaranteed, we can apply the same convergence results
available for the GP-PI-based CPE, i.e., σ̂2

t ∈ O(t−1) almost surely.

Lemma F.2. Let assumptions F.2, F.5 and F.6 hold. Then the following almost surely holds for the
proxy variance:

σ̂2
t ∈ O(t−1) . (104)

Proof. We first observe that σ̂2
t (103) is upper bounded by the posterior predictive variance of a GP

model assuming i.i.d. Gaussian noise (cf. Sec. E.1) with variance ρ∗ satisfying:

ρ∗ ≥ λmax(Σt) , ∀t ∈ N , (105)

37



Published as a conference paper at ICLR 2025

which is such that:

Σt = Kt(e
νtsKt − I)−1

⪯ Kt(νtsKt)
−1

⪯ 1

sνt
I

(106)

since eA ⪰ I+A, for any Hermitian matrix A, where⪰ denotes the Loewner partial ordering in the
space of positive-semidefinite matrices, i.e., A ⪰ B if and only if A − B is positive semidefinite.
Noting that the sum of sampling probabilities at any point x ∈ X diverges as t → ∞ by Assump-
tion F.5, the result then follows by applying Lemma E.5 to the GP predictive variance upper bound
with noise variance set to ρ∗ := (sν∗)

−1 (Assumption F.6).

Lemma F.3. Let assumptions F.1 to F.6 hold. Then, given any δ ∈ (0, 1], the following holds with
probability at least 1− δ for the approximation error between π̂t and π∗:

∀t ≥ 1, |π̂t(x)− π∗(x)| ≤ βt(δ)σ̂t(x), x ∈ X , (107)

where βt(δ) := ∥π∗∥k + σζ

√
2ρ−1 log(det(I+ ρ−1Kt)1/2/δ), and ρ := e−s

sν∗
.

Proof. The result above is a direct application of Theorem 3.5 in Maillard (2016) which provides
an upper confidence bound on the kernelized least-squares regressor approximation error (another
version of the same result is also available in Durand et al. (2018, Thr. 1)).

Let ζi := zi − π∗(xi) denote the label noise in observation i, for i ∈ {1, . . . , t}. Expanding the
definition of π̂t (93) with π0 = 0, given any t ∈ N and x ∈ X , we can decompose the approximation
error as:

|π∗(x)− π̂t(x)| = |π∗(x)− kt(x)
⊤(Kt +Σt)

−1zt|
= |π∗(x)− kt(x)

⊤(Kt +Σt)
−1(π∗

t + ζt)|
≤ |π∗(x)− kt(x)

⊤(Kt +Σt)
−1π∗

t |+ |kt(x)
⊤(Kt +Σt)

−1ζt|
(108)

where we applied the triangle inequality to obtain the last line. Analyzing the two terms on the
right-hand side, by the reproducing property, we now have for the first term:

|π∗(x)− kt(x)
⊤(Kt +Σt)

−1π∗
t | = |⟨π∗, (I−Φt(Kt +Σt)

−1Φ⊤
t )φ(x)⟩k|

= |⟨π∗, (I+ΦtΣ
−1
t Φ⊤

t )
−1φ(x)⟩k|

≤ ∥π∗∥k∥(I+ΦtΣ
−1
t Φ⊤

t )
−1φ(x)∥k

= ∥π∗∥k
√
φ(x)⊤(I+ΦtΣ

−1
t Φ⊤

t )
−2φ(x)

≤ ∥π∗∥k
√
φ(x)⊤(I+ΦtΣ

−1
t Φ⊤

t )
−1φ(x)

= ∥π∗∥kσ̂t(x),

(109)

where the second equality follows by an application of Woodbury’s identity, the first inequality is
due to Cauchy-Schwarz, the second inequality is due to the fact that A−2 ⪯ A−1 whenever A ⪰ I,
and the last line follows from the definition of σ̂2

t . For the remaining in term (108), we have that:

|kt(x)
⊤(Kt +Σt)

−1ζt| = |⟨φ(x),Φt(Kt +Σt)
−1ζt⟩k|

= |⟨φ(x), (I+ΦtΣ
−1
t Φ⊤

t )
−1ΦtΣ

−1
t ζt⟩k|

= |⟨(I+ΦtΣ
−1
t Φ⊤

t )
−1/2φ(x), (I+ΦtΣ

−1
t Φ⊤

t )
−1/2ΦtΣ

−1
t ζt⟩k|

≤
√

φ(x)⊤(I+ΦtΣ
−1
t Φ⊤

t )
−1φ(x)∥(I+ΦtΣ

−1
t Φ⊤

t )
−1/2ΦtΣ

−1
t ζt∥k

= σ̂t(x)

√
ζ⊤
t Σ

−1
t Φ⊤

t (I+ΦtΣ
−1
t Φ⊤

t )
−1ΦtΣ

−1
t ζt,

(110)

where we applied the identity B⊤(BB⊤ + A)−1 = (I + B⊤A−1B)−1B⊤A−1, which holds for
an invertible matrix A (Searle, 1982), to obtain the second equality, and the upper bound follows
by the Cauchy-Schwarz inequality. For the norm of the noise-dependent term, we will apply a
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concentration bound by Abbasi-Yadkori (2012), which first requires a few transformations towards
a non-time-varying regularization factor. Applying the SVD Φt = UtStV

⊤
t (Mollenhauer et al.,

2020), as in the proof of Lemma F.1, we have that Σt = VtDtV
⊤
t , where Dt := Λt(e

νtsΛt − I)−1

and Λt = S2
t , which leads us to:

∥(I+ΦtΣ
−1
t Φ⊤

t )
−1/2ΦtΣ

−1
t ζt∥2k = ζ⊤

t Σ
−1
t Φ⊤

t (I+ΦtΣ
−1
t Φ⊤

t )
−1ΦtΣ

−1
t ζt

= ζ⊤
t VtD

−1
t StU

⊤
t (I+UtStD

−1
t StU

⊤
t )

−1UtStD
−1
t V⊤

t ζt

= ζ⊤
t VtS

2
tD

−2
t (I+D−1

t S2
t )

−1V⊤
t ζt

= ζ⊤
t Vt(S

−2
t D2

t +Dt)
−1V⊤

t ζt ,

(111)

where we applied the identity (I+AB)−1A = A(I+BA)−1 (Searle, 1982). For the eigenvalues
of Σt, we have the following lower bound:

Dt = Λt(e
νtsΛt − I)−1

= Λte
−νtsΛt(I− e−νtsΛt)−1

⪰ Λte
−νtsΛt(νtsΛt)

−1

=
1

νts
e−νtsΛt

⪰ 1

ν∗s
e−sI ,

(112)

where the first inequality is due to e−A ⪰ I −A, and the last inequality holds by Assumption F.6.
Hence, setting ρ := e−s

sν∗
, we have that:

∥(I+ΦtΣ
−1
t Φ⊤

t )
−1/2ΦtΣ

−1
t ζt∥2k ≤ ζ⊤

t Vt(ρ
2S−2

t + ρI)−1V⊤
t ζt

= ρζ⊤
t VtSt(ρI+ S2

t )
−1StV

⊤
t ζt

= ρ−1ζ⊤
t VtSt(ρI+ S2

t )
−1StV

⊤
t ζt

= ρ−1ζ⊤
t Φ

⊤
t (ρI+ΦtΦ

⊤
t )

−1Φtζt

= ∥(ρI+ΦtΦ
⊤
t )

−1/2Φtζt∥2k

(113)

By Abbasi-Yadkori (2012, Cor. 3.6), given any δ ∈ (0, 1], we then have that the following holds
with probability at least 1− δ:

∀t ≥ 1, ∥(I+ΦtΣ
−1
t Φ⊤

t )
−1/2ΦtΣ

−1
t ζt∥2k ≤ 2σ2

ζ log

(
det(I+ ρ−1Kt)

1/2

δ

)
. (114)

Finally, combining the bounds above into Equation 108 leads to the result in Lemma F.3.

For the next result, we need to define the following quantity:

ξT := max
XT⊂X :|XT |≤T

1

2
log det(I+ ρ−1K(XT )) , (115)

where K(XT ) := [k(x,x′)]x,x′∈XT
∈ R|XT |×|XT |. Note that ξT corresponds to the maximum

information gain of a GP model (Srinivas et al., 2010) with covariance function given by the NTK,
assuming Gaussian observation noise with variance given by ρ. Then ξT is mainly dependent on
the eigenvalue decay of the kernel under its spectral decomposition (Vakili et al., 2021). For the
spectrum of the NTK, a few results are available in the literature (Murray et al., 2023).

Proposition F.2. Let assumptions F.1 to F.6 hold. Then, given δ ∈ (0, 1], the following holds with
probability at least 1− δ for VSD equipped with a wide enough NN-based CPE model π̂t:

DKL[p(x|y > τt,Dt)∥p(x|y > τt, f�)] ∈ OP

(√
ξt
t

)
. (116)
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Proof. The result follows by applying the same steps as in the proof of Theorem 2.1. We note that
ℓ∗t (x) = π∗(x) > 0, due to observation noise, so that ℓ∗t (x)

−1 ∈ OP(1). Similarly, Lemma F.3
implies that |π̂t(x) − π∗(x)| ≤ βt(δ)σt(x) with probability at least 1 − δ simultaneously over all
x ∈ X , so that ratio-dependent terms in Theorem 2.1 should remain bounded in probability. The
upper bound in the result then follows by noticing that in our case |∆ℓt(x)| ≤ βt(δ)σ̂t(x) with
high probability, where σ̂t ∈ O(t−1/2) by Lemma F.2, and βt(δ) ∈ O(

√
ξt) by Lemma F.3 and the

definition of ξt in Equation 115.

The result above tells us that VSD equipped with an NN-based CPE can recover a similar asymp-
totic convergence guarantee to the one we derived for the GP-PI case, depending on the choice of
NN architecture and more specifically on the spectrum of its associated NTK. In the case of a fully
connected multi-layer ReLU network, for example, Chen & Xu (2021) showed an equivalence be-
tween the RKHS of the ReLU NTK and that of the Laplace kernel k(x,x′) = exp(−C∥x − x′∥).
As the latter is equivalent to a Matérn kernel with smoothness parameter set to 0.5 (Rasmussen &
Williams, 2006), the corresponding information gain bound is ξt ∈ Õ(t

d
1+d ), where d here denotes

the dimensionality of the domain X (Vakili & Olkhovskaya, 2023). In the case of discrete sequences
of length M , the dimensionality of X is determined by M . Hence, we have proven Corollary 2.2.4

Corollary 2.2. Let πθ be modeled via a fully connected ReLU network. Then, under assumptions
on identifiability and sampling (F.1 to F.6), in the infinite-width limit, VSD with CPE-PI achieves:

DKL[p(x|y > τt,Dt)∥p(x|y > τt, f�)] ∈ ÕP

(
t−

1
2(M+1)

)
. (14)

Similar steps can be applied to derive convergence guarantees for VSD with other neural network
architectures based on the eigenspectrum of their NTK (Murray et al., 2023) and following the recipe
in, e.g., Vakili et al. (2021) or Srinivas et al. (2010).

G VSD AS A BLACK-BOX OPTIMIZATION LOWER BOUND

A natural question to ask is how VSD relates to the BO objective for probability of improve-
ment (Garnett, 2023, Ch.7),

x∗
t = argmax

x
logαPI(x,DN , τ) . (117)

Firstly, we can see that the expected log-likelihood of term of Equation 6 lower-bounds this quantity.

Proposition G.1. For a parametric model, q(x|ϕ), given ϕ ∈ Φ ⊆ Rm and q ∈ P : X ×Φ→ [0, 1],

max
x

logαPI(x,DN , τ) ≥ max
ϕ

Eq(x|ϕ)[logαPI(x,DN , τ)] , (118)

and the bound becomes tight as q(x|ϕ∗
t )→ δ(x∗

t ), a Dirac delta function at the maximizer x∗
t .

Taking the argmax of the RHS will result in the variational distribution collapsing to a delta distri-
bution at x∗

t for an appropriate choice of q(x|ϕ). The intuition for Equation 118 is that the expected
value of a random variable is always less than or equal to its maximum. The proof of this is in
Daulton et al. (2022); Staines & Barber (2013). Extending this lower bound, we can show the
following.
Proposition G.2. For a divergence D : P(X )× P(X )→ [0,∞), and a prior p0 ∈ P(X ),

max
x

logαPI(x,DN , τ) ≥ max
ϕ

Eq(x|ϕ)[logαPI(x,DN , τ)]− D[q(x|ϕ)∥p0(x)] . (119)

We can see that this bound is trivially true given the range of divergences, and this covers VSD as
a special case. However, this bound is tight if and only if p0 concentrates as a Dirac delta at x∗

t
with an appropriate choice of q(x|ϕ). In any case, the lower bound remains valid for any choice of
informative prior p0 or even a uninformed prior, which allows us to maintain the framework flexible
to incorporate existing prior information whenever that is available.

4Here ÕP suppresses logarithmic factors, as in Õ, and holds in probability.
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